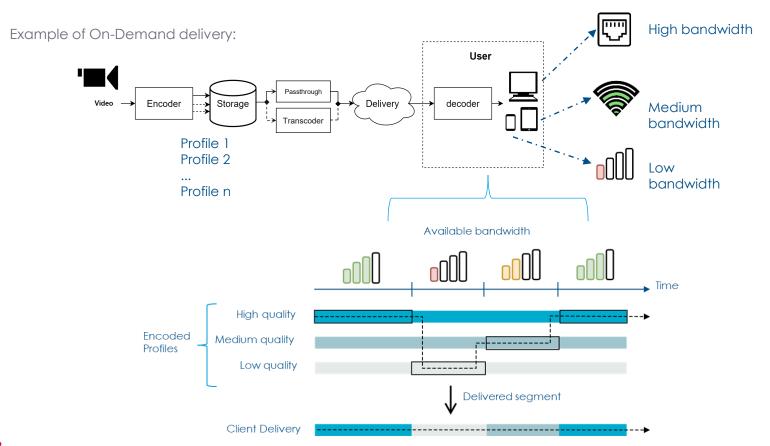
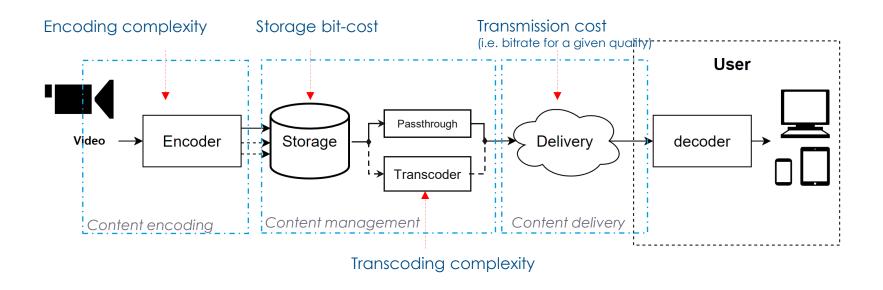


Optimizing ABR Streaming Costs with Joint Multi-Profile Coding

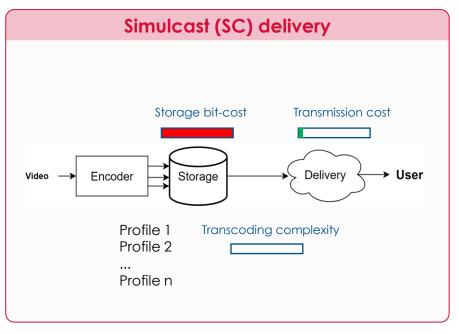

Paul O'Donovan – Senior Product Manager

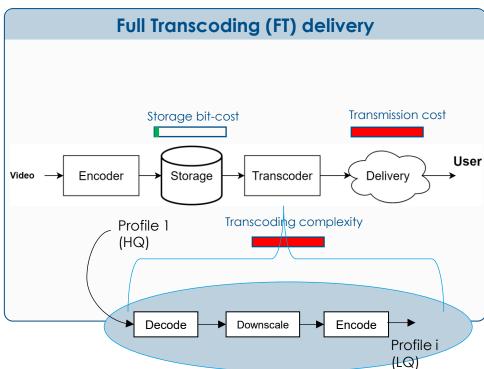
Paul.ODonovan@MediaKind.com

Context: Adaptive Bitrate Streaming (ABR)

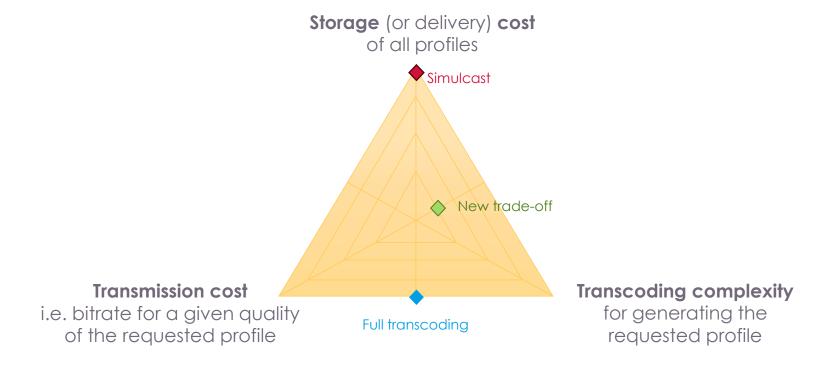


ABR delivery system and associated costs

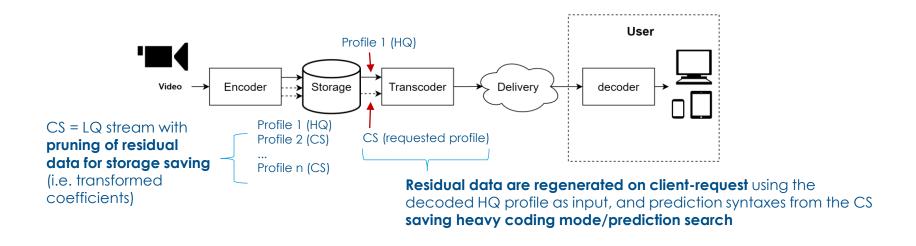



Example of On-Demand delivery:

ABR system optimization: two common extrema for delivery



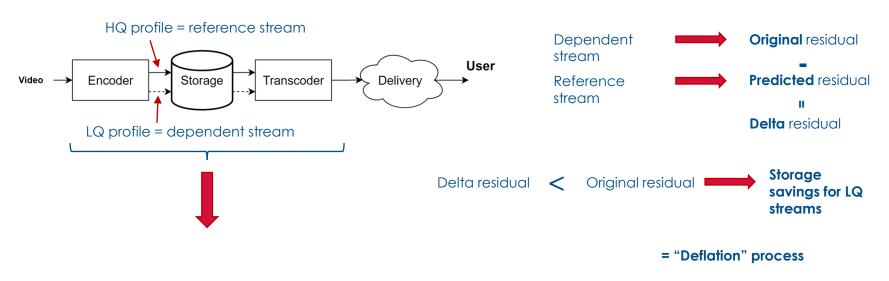
Investigating better trade-off?


with the operational constraints that:

- the delivered stream remains compliant with standard decoder available at the client
- the highest quality profile has the same transmission cost and quality than for Simulcast

State-of-the Art: Guided Transcoding

Introduce the concept of Guided Transcoding by means of Control Stream (CS)



State-of-the Art: Guided Transcoding with Deflation and Inflation

- Hollmann et al., 2018
- Introduce the principle of Predictive Residual Coding (PRC) across profiles for storage saving

State-of-the Art: Guided Transcoding with Deflation and Inflation

Advantages Lower transcoding complexity vs Full transcoding Lower storage requirements vs Simulcast Transmission cost equal to Simulcast Disadvantage Complex residual predictor generation Requires 2 full decoding loops for transcoding

Contribution: further reduce transcoding complexity by using 1 partial decoding loop for predictive residual coding at the cost of lower storage saving

Contribution: coding efficiency optimizations

Introduce two complementary optimizations for coding efficiency improvement of any method based on Predictive Residual Coding

- 1. Conditional Delta Residual (CDR) coding and signaling
 - · Motivation: discard residual predictor not well correlated with the residual samples to predict
 - For every coding unit (CU), code the delta residual only if it lowers the bit-cost, else code the original residual
 - Add a 1-bit CU flag for signaling the decision
- Rate-Distortion Optimization based on Delta Residuals (RDODR)
 - Motivation: favor prediction and coding modes that will minimize the delta residual to code for the dependent streams
 - Update the RDO process used for coding mode/prediction search by using delta residual bit-cost for the rate estimations

Experimental framework and test conditions

- Proposals and State of the Art (SOTA) methods compared in the context of VVC codec
 - Implementations done on top-of VTM-19.0 leveraging on VVC Multi-layer coding structure
 - Including GTDI method renamed as PRC-Full-PTQ in subsequent tables
- Performance assessment vs. Simulcast (SC) and Full Transcoding (FT) in terms of:
 - Storage bit-cost, transmission efficiency and transcoding complexity
 - Using similar test condition and test sequences than the MPEG CfE on NDVC

Sequence	Sequence name	Frame	Frame	Bit	Resolution*	Subsampled resolutions
ĪD		count	rate	depth		_
UHD1	CatRobot1	600	60fps	10	3840x2160	1440p,1080p,720p,540p,360p
UHD2	FoodMarket3	720	60fps	10	3840x2160	1440p,1080p,720p,540p,360p
UHD3	BuildingHall1	500	50fps	10	3840x2160	1440p,1080p,720p,540p,360p
HD1	Cactus	500	50fps	8	1920x1080	720p, 540p, 360p
HD2	BQTerrace	600	60fps	8	1920x1080	720p, 540p, 360p
HD3	BasketballDrive	500	50fps	8	1920x1080	720p, 540p, 360p

• For two video delivery scenarios: multi-bitrate and multi-resolution

			Storage	Bitcost		Transmission efficiency		Transcoding complexity	
		vs SC				vs SC		vs FT	vs PRC-Full-PTQ
	Streams:	All		Dependent		Dependent		Dependent	Dependent
Approach	Variant	QP_0 22	QP_0 27	QP_0 22	QP_0 27	QP_0 22	QP_0 27	QP_0 22, 27	QP_0 22, 27
Full Transcoding* [10]	NA	-60.5%	-66.1%	-100%	-100%	14.2%	17.5%	0%	2079.8%
PRC-Full-PTQ	Base* [11]	-25.3%	-25.5%	-41.4%	-38.5%	0%	0%	-95.2%	0%
	CDR	-24.8%	-24.4%	-40.5%	-36.8%	0%	0%	-95.2%	0%
	CDR+RDODR	-29.0%	-30.3%	-47.3%	-45.7%	0.4%	-0.9%	-95.2%	0%
PRC-Part-TQ	Base	-6.4%	-6.9%	-10.5%	-10.5%	0%	0%	-98.5%	-67.5%
	CDR	-7.9%	-7.8%	-13.0%	-11.8%	0%	0%	-98.5%	-67.5%
	CDR+RDODR	-10.7%	-10.8%	-17.6%	-16.4%	1.8%	0.8%	-98.5%	-67.5%

Guided Transcoding with Deflation and Inflation:

- About -40% storage saving for dependent streams (-25% overall) vs. Simulcast
- Same transmission cost than Simulcast; no bitrate overhead for the same quality
- -95% run-time reduction vs. Full Transcoding
- Proposed R-D optimizations can boost storage saving by -8% for negligible impact on transmission cost

Conclusion

- Significant cost savings are possible using new Guided Transcoding techniques
 - vs. Simulcast and Full Transcoding
 - Works with any client
- Approaches are compatible with:
 - Content- or Audience- aware dynamic bitrate ladder
 - CDN optimization
- Future use cases include VOD archive and cDVR services.

MediaKind.com