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Dear Participants,

At the time of submitting our bid for SSW11, I hoped that we can re-create the
atmosphere of SSW1 in Autrans that was the first international speech conference I
could attend in 1990. I enjoyed the single-track approach that allowed everyone to
listen to all the presentations. At the age of 31 years, coming from a country where
an ordinary citizen until then only once in 3 years was allowed to travel to Western
Europe, that conference was a sort of ”open door” to the speech synthesis research
community. We could have a chat anytime with world-famous researchers (e.g. Ken
Stevens). That was when we could start a friendship with one of the organizers,
Christian Benoit, whose name is still well-known although he passed away 23 years
ago. Fortunately, the other organizer of SSW1 – Gérard Bailly- will be with us on-
site. That is one of the reasons why I encourage everyone to come to Budapest in
person.

Another important reason is that Hungary was among the first TTS developers of
the world. The HungaroVox formant-based TTS system was demonstrated in 1981
by the Hungarian Academy of Sciences. One of the HungaroVox developers - Gábor
Olaszy - will be also on-site with us.

Unfortunately, due to the COVID pandemic, our original plans could not be ful-
filled. Initially, we wanted to have everyone in the same hotel (just as it was at SSW1
in Autrans) by Lake Velence. Due to travel restrictions and uncertainty, we moved the
conference to a hybrid setting, and the location is a wellness hotel in Budapest which
is more flexible in terms of lecture room size and reservations. Although Hungary
and Budapest are some of the safest places worldwide, it seems that most participants
could only afford remote registration. Even with these limitations, we try to provide
as much interaction possibility during the conference as possible.

All submitted papers were reviewed by three members of the Scientific Commit-
tee. The accepted 40 papers will be presented in oral sessions, where 24 minutes are
devoted to the introduction, the talk, and Q&A activity. On each day, we start with an
oral session. One-hour keynotes are planned for the middle of the day in Europe so
that the audience spanning from Vancouver to Tokyo had a chance to be fully aware.
Discussions may be mixed with lunch after the keynotes. In selecting the keynotes,
we tried to follow the special topic proposed for SSW11: ”Speech uniqueness and
deep learning”. The first plenary speaker is Lior Wolf, who will present the cross-
roads of speech, singing, and music. Our second keynote speaker, István Winkler,
will introduce us into his basic research on the development of the communication



of infants. On the last day, Thomas Drugman will present the latest results on ex-
pressive TTS, which is an essential requirement for more extended human-machine
speech dialogues.

Authors are encouraged to submit an extended version of the papers to a special
issue on speech synthesis of the Infocommunications Journal (www.infocommuni
cations.hu).

Please use the breaks and the session discussions for both private and group forms
of exchanging ideas and opinions. The platform of the presentations will be Zoom
Webinar. To facilitate discussions, we shall use the Spatial Chat infrastructure.

Those who come in person have the advantage of personal participation at the
welcome reception and the social event besides the regular program.

I would like to thank members of the Organizing Committee for all the effort
that made SSW11 possible. Both the past and current Synsig Board members have
helped a lot during the preparation. Péter Nagy and Mária Tézsla from the Scien-
tific Association for Infocommunications have taken up the burden of organizational
and financial administration. Scientific Committee members spent several hours on
thoroughly evaluating the papers and give helpful feedback to the authors.

Our sponsors, Google, Apple, Samsung, iFlytek, ISCA, and the Hungarian
Academy of Sciences, allowed us to keep registration fees low while providing high-
quality services to the audience. I hope that against all the difficulties caused by the
COVID pandemic, SSW11 will provide a remarkable contribution to the development
of speech synthesis. Although smaller in numbers, but hopefully through intensive
interaction with each other and the two keynote speakers who will be in Budapest,
on-site participants will have a unique chance. On behalf of our Speech Commu-
nication and Smart Interaction Labs of the Budapest University of Technology and
Economics, you are all welcome anytime when you visit Budapest.

I hope that one of the young researchers participating at SSW11 will chair SSW26
30 years from now. That would be a remarkable result.

Looking forward to meeting you at SSW11.

Budapest, August 10, 2021.

Géza Németh, Chairman

https://www.infocommunications.hu/
https://www.infocommunications.hu/
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Lior Wolf, Facebook AI Research and Tel Aviv University, Israel 
Deep Audio Conversion Technologies and Their Applications in Speech, Singing, 
and Music 

 Lior Wolf is a research scientist at Facebook AI Research and a full professor in 
the School of Computer Science at Tel-Aviv University, Israel. He conducted 
postdoctoral research at prof. Poggio's lab at the Massachusetts Institute of 
Technology and received his PhD degree from the Hebrew University, under the 
supervision of Prof. Shashua. He is an ERC grantee and has won the ICCV 2001 
and ICCV 2019 honorable mention, and the best paper awards at ECCV 2000 and 
ICANN 2016. His research focuses on computer vision, audio synthesis, and deep 
learning. 

  

 



István Winkler, Research Centre for Natural Sciences, Hungary 
Early Development of Infantile Communication by Sound 

István Winkler, PhD, DSc, electrical engineer, psychologist. He received his PhD in 
1993 at the University of Helsinki, studying auditory sensory memory by 
electroencephalographic measures. He defended his Doctor of Science thesis in 
2005 at the Hungarian Academy of Sciences on auditory deviance detection. His 
current fields of interest are predictive processing in the auditory deviance 
detection, auditory scene analysis, communication by sound, and the 
development of these functions in infancy. During his career, he has 
authored/coauthored over 250 publications, which received over 11000 
references. Currently he is the director of the Institute of Cognitive Neuroscience 
and Psychology, Research Centre for Natural Sciences, Budapest, Hungary and 

the head of the Sound and Speech Perception research group (http://www.ttk.hu/kpi/en/sound-and-
speech-perception/). 



Thomas Drugman, Amazon, Germany 
Expressive Neural TTS 

Thomas Drugman is a Science Manager in Amazon TTS Research team. He 
received his PhD in 2011 from the University of Mons, winning the IBM Belgium 
award for “Best Thesis in Computer Science”. His PhD thesis studied the use of 
glottal source analysis in Speech Processing. He then made a 3-year post-doc on 
speech/audio analysis for two biomedical applications: trachea-esophageal 
speech reconstruction and cough detection in chronic respiratory diseases. In 
2014, he joined Amazon as a Scientist in the Alexa ASR team. He then transferred 
to the TTS team in 2016, where he is Science Manager since 2017. He has 
contributed in making Amazon’s Neural TTS more natural and expressive, 
notably by enriching Alexa’s experience with different speaking styles: 
emotions, newscaster, whispering, etc. His current research interests lie in 
improving the naturalness and flow of longer synthetic speech interactions. He 

has about 125 publications in the field of Speech Processing. He got the Interspeech Best Student Paper 
awards in 2009 and 2014 (as supervisor). He is also member of the IEEE Speech and Language Technical 
Committee since 2019. 
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Identifying the vocal cues of likeability, friendliness and skilfulness in synthetic
speech

Sai Sirisha Rallabandi1, Babak Naderi 1 and Sebastian Möller1,2

1Quality and Usability Lab, Technische Universität Berlin, Germany,
2Speech and Language Technology, Deutsches Forschungszentrum für Künstliche Intelligenz

(DFKI), Berlin, Germany
{s.rallabandi, babak.naderi, sebastian.moeller}@tu-berlin.de

Abstract
The advent of neural Text-to-Speech (TTS) synthesizers has

enhanced the expressivity of synthetic speech in the recent past.
However, there is very little work on understanding the acoustic
correlates of paralinguistic traits, emotions, speaker attributes
and characteristics from synthetic speech. This paper investi-
gates the acoustic correlates of the speaker attributes: likeabil-
ity, friendliness, and skillfulness. Our study was carried out on
the voices derived from the two commercial TTS systems, Ama-
zon Polly (9 voices) and Google TTS engine (10 voices). In
our previous study, we performed a crowd-sourcing-based eval-
uation to collect the subjective ratings for the desired speaker
attributes. In this work, we perform the acoustic feature pre-
diction using the backward elimination algorithm. We show
that the level of loudness, spectral flux, fundamental frequency,
its formant frequencies, and their combinations contribute to
the desired speaker attributes. We further combine the ratings
of friendliness and likeability to investigate the characteristic,
warmth in synthetic speech and correspondingly, skilfullness
represents the characteristic, competence.
Index Terms: Synthetic speech, acoustic correlates, linear re-
gression, likeable, friendly, skillful

1. Introduction
Artificial speech generation is predominant through its appli-
cations such as navigation [1], language learning systems [2],
customer service [3], personal assistants [4] and many more.
The neural speech synthesizers have facilitated the expressivity
in the generated speech in the recent past [5, 6, 7, 8, 9, 10]. The
fidelity of these TTS systems can be further enhanced through
the generation of paralinguistic traits, various emotions, and so-
cial speaker characteristics. In order to achieve this, there is a
need for the investigation of the acoustic correlates of various
speaker attributes in synthetic speech. In this paper, we identify
the vocal cues responsible for the social speaker characteristics,
warmth and competence in synthetic voices.

Perception of a person from their behavior has been re-
searched extensively in 1940s and 50s [11, 12]. Various studies
were carried out similar to the BIG FIVE personality traits to
categorise and understand the human behavior [13, 14, 15, 16].
In [12], the sociology researchers stated that the perception of
a person is done based on two criteria: social norms (warmth)
and task accomplishment (competence). In [17] psychology re-
searchers state that the characteristics, warmth and competence
can be termed as the universal dimensions of social perception.
This is because they include both interpersonal relationships
and the social behavior of a person. The attributes that describe
the characteristics, warmth and competence in humans were:

likeability, friendliness, and skilfulness respectively [18]. Fol-
lowing [18], in our current work, we utilise these 3 dimensions
(likeability, friendliness and skilfulness) to interpret warmth and
competence in synthetic voices. Similar to BIG FIVE [13, 14]
and [18, 19], we conducted a subjective evaluation with two
commercial TTS systems (Google TTS engine, Amazon Polly)
in [20]. The evaluation was carried out with 15 different adjec-
tives describing various speaker attributes of TTS voices. As an
extension, in the current work, we are interested in identifying
the acoustic correlates of the speaker attributes that contribute to
the social characteristics, warmth and competence in synthetic
speech. Inspired by [18] we utilise a subset of the subjective
ratings (likeability, friendliness, skilfulness) collected in [20].

The acoustic correlates of various emotions, moods, atti-
tudes, personality traits have been researched previously in both
natural and synthetic voices [21, 22, 22, 23, 24, 25]. Speech
rate, intensity, speech pauses, pitch, duration and their combi-
nations were commonly identified as the vocal cues responsible
for various emotions, personality traits and speaker characteris-
tics [21, 24, 25, 26, 27, 28]. Literature suggests that the acoustic
correlates of various emotions and expressions can be divided
into 3 categories: voice quality, timing and pitch parameters
[21, 22, 28].

To the best of our knowledge, this is the first attempt to
analyse the vocal cues of speaker attributes, friendliness, like-
ability and skilfulness in order to understand the social speaker
characteristics, warmth and competence from synthetic speech.
Inspired by [25], we perform an acoustic feature prediction over
the OpenSMILE features [29] extracted for the synthetic voices.
Through our work, we present that the spectral flux, formants
(F1, F2, F3), slope of the voiced segment are responsible for
warmth in female voices. While, first and second formants
(F1, F2), slope of Unvoiced segment, and loudness contribute
to warmth in male voices. Competence in female voices is per-
ceived through slope of voiced segment, spectral flux and mfcc.
While, the competence in male voices is due to fundamental
frequency (F0) and voiced segment length. Later, we perform
an automatic prediction of warmth and competence using linear
regressor and Support Vector Regressor (SVR).

This paper is organised as follows: In Section 2, we de-
scribe the evaluation setup followed by the system performance
in Section 3. In Section 4 we present the acoustic feature predic-
tion. Automatic prediction of warmth and competence is pre-
sented in Section 5 followed by a discussion in Section 6.

Throughout this work, we will be using the terms
voices/speakers/systems to refer the TTS voices and partici-
pants/raters/listeners for the subjects who participated in the
evaluation. The terms items/attributes/adjectives/questionnaire
refer to the questions we used in the subjective evaluation. We
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use the terms dimensions/speaker attributes to refer likeabil-
ity/friendliness/skilfulness.

2. Evaluation setup
2.1. Speech data preparation

The commercial TTS systems, Amazon Polly 1 (Neural) and
Google TTS engine 2 (Wavenet) have been explored for the
study of speaker attributes. There were 4 male and 5 female
voices from Amazon Polly and 5 male, 5 female from Google
TTS engine. In total, we had 19 different US native speakers’
voices. The speech samples generated for each of these voices
were from the Harvard database 3. The number of sentences
generated were 32. We have combined the individual speech
samples and created speech segments each of length 20 seconds
(approx.). Finally, there were 4 speech segments for each of the
TTS voices (4 speech segments * 19 voices).

2.2. Subjective evaluation

The social perceptions of synthetic voices were studied in [20].
In [20], we performed a 15-item semantic differential scaling
test in a crowd-sourcing subjective test setup. The 15 items
were: relaxed, confident, enthusiastic, energetic, friendly, arro-
gant, pleasant, likeable, responsible, reliable, accessible, sym-
pathetic, skilful, kind, extrovert. For our test, we have in-
cluded the speaker attribution task in the P.808 toolkit [30]. We
have utilised the continuous 100-point scale with the adjective-
antonym pairs at its extreme ends. We used The Fragebo-
gen [31] implementation for presenting the questionnaire dur-
ing the subjective tests. The test was conducted on Amazon
Mechanical Turk (AMT). We have included the eligibility and
the environment suitability tests in out evaluation setup. We
have recruited only US native speakers for the task. The par-
ticipants were instructed to use headphones throughout the test
without fail. The following are the instructions provided to the
participants during the test.

For each question, please listen to the audio sample and
give your opinion about the voice you hear on the following
scales. You will find the positive adjective at the extreme left
and a negative adjective at the extreme right of the scale. You
can listen to each audio sample multiple times during the test.
There is no right or wrong answer as long as you listen to the
audio files and give your opinion.

In each session, participants were provided with 4 speech
clips and 15 attributes. Additionally, we have repeated one at-
tribute randomly for every question in a session. We have used
this repeated attribute as the hidden quality control mechanism
[32, 33]. Each speech clip played in a loop until the participant
rated all the adjectives.

2.3. Data processing

We performed a pre-processing of the subjective data to remove
the participants whose ratings were not reliable. Based on the
environment suitability tests, we have rejected 41 responses.
Later on, we calculated the Pearson correlation coefficient for
the repeated attributes in the test and the original attribute. The
ratings were rejected if the correlation coefficient was below 0.5
(5 participants were removed). In total, we have accepted 90%
of the subjective data. The number of participants that were

1https://aws.amazon.com/polly/
2https://cloud.google.com/text-to-speech/
3https://www.cs.columbia.edu/ hgs/audio/harvard.html

retained after the pre-processing were 43 female and 44 male
(87 participants). Their ages ranged between 19 and 77 (mean
= 40.31 and std = 12.57). On the retained subjective data, we
have calculated the intraclass correlation coefficient ICC(1,k)
for inter-rater reliability. The average raters absolute value was
0.974 with a 95% confidence interval in the range of 0.95 to
0.99. For our current study, we have utilised the subjective rat-
ings of the scales, friendliness, likeability and skilfulness.

3. TTS performance
Figures 1, 2, 3, 4 display the perceived speaker attributes:
friendliness, likeability and skilfulness in both the TTS systems.
We have calculated the mean of the subjective ratings for each
of these speaker attributes.

3.0.1. Google’s female voices

Figure 1 displays the mean subjective ratings calculated over
the three desired attributes for Google’s female voices along
with the 95% confidence intervals. Among the Google’s fe-
male voices, H displays lowest mean ratings on friendliness
(37), likeability (37.6) and skilfulness (32.13). Speaker E dis-
plays highest rating on friendliness (59.9) and likeability (54.3).
Speaker C displays the highest rating on skilfulness (41.64).

3.0.2. Google’s male voices

Figure 2 displays the mean subjective ratings calculated over
the three desired attributes for Google’s male voices along with
the 95% confidence intervals. Among the Google’s male voices,
J displays lowest mean ratings on friendliness (31), likeability
(29.25) and skilfulness (25.53). Speaker B displays highest rat-
ing on friendliness (47) and likeability (46.89). Speaker A dis-
plays the highest rating on skilfulness (35.66).

3.0.3. Amazon Polly’s female voices

Figure 3 displays the mean subjective ratings calculated over the
three desired attributes for Amazon Polly’s female voices along
with the 95% confidence intervals. Among the Amazon Polly’s
female voices, Ivy displays lowest mean ratings on friendliness
(36.9). Joanna display lowest ratings on likeability (35.93) and
skilfulness (31.17). Speaker Kendra displays highest rating on
friendliness (54.28) and likeability (51.39). Speaker Ivy dis-
plays the highest rating on skilfulness (45.6).

3.0.4. Amazon Polly’s male voices

Figure 4 displays the mean subjective ratings calculated over the
three desired attributes for Amazon Polly’s male voices along
with the 95% confidence intervals. Among the Amazon Polly’s
male voices, Justin displays lowest mean ratings on friendliness
(30.6), likeability (32.53). Matthew displays the lowest mean
ratings on skilfulness (31.6). Speaker Joey displays highest rat-
ing on friendliness (46.2) and likeability (48.03). Speaker Kevin
displays the highest rating on skilfulness (45.03).

4. Prediction of acoustic correlates
In order to predict the acoustic correlates of the desired char-
acteristics, we initially downsample the speech segments to
16 kHz and derive the OpenSMILE [29] features. We have
employed the Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) configuration [34], since this was built to capture
affective speaker characteristics. We have therefore derived
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Figure 1: Mean subjective ratings calculated over friendliness,
likeability and skilfulness for Google’s female voices.

Figure 2: Mean subjective ratings calculated over friendliness,
likeability and skilfulness for Google’s male voices.

Figure 3: Mean subjective ratings calculated over friendliness,
likeability and skilfulness for Amazon Polly’s female voices.

Figure 4: Mean subjective ratings calculated over friendliness,
likeability and skilfulness for Amazon Polly’s male voices.

88 acoustic features corresponding to each speech segment of
the TTS voices. Later, we have employed a linear regression
based backward elimination algorithm for each of the speaker
attributes, friendliness, likeability and skilfulness. Tables, 1,
2, 3 display the derived acoustic features (for each of friend-
liness/likeability/skilfulness respectively), their corresponding
coefficients along with their variances for female voices. We
derived these vocal cues using the linear regression on 4 speech
segments per each female voice (4 speech segments * 5 Google
female voices + 4 speech segments * 5 Amazon Polly female
voices). Tables, 4, 5, 6 display the derived acoustic features (for
each of friendliness/likeability/skilfulness respectively), their
corresponding coefficients along with their variances for male
voices. We derived these vocal cues using the linear regression
on 4 speech segments per each male voice (4 speech segments
* 5 Google male voices + 4 speech segments * 4 Amazon Polly
male voices).

Here, the derived acoustic features are the independent vari-
ables, the speaker attributes: friendliness, likeability and skil-
fulness are the dependent variables. A positive coefficient indi-
cates that for a 1-unit change in the acoustic feature (indepen-
dent variable), there will be an increase in the perception of the
speaker attribute (friendliness/likeability/skilfulness) from that
voice (increase in the mean of the dependent variable by that
coefficient value) and vice versa.

4.1. Friendliness in female voices

Table 1 displays the acoustic correlates of friendliness in fe-
male voices (Google and Amazon Polly female voices). We
observed that the attribute, friendliness was dependent on the
acoustic features, spectral flux, and formants F1, F2 and F3 in
female voices. We have also presented the explained variance
(R squared = 0.829) obtained during the acoustic feature pre-
diction. We observed that with the change in the spectral flux
and the second formant (F2), the friendliness in female voices
decreases by the value of 8.7546 and 0.0052 respectively. Ac-
cordingly, with the change in the first (F1) and third formants
(F3) the friendliness in female voices increase by 0.0174 and
0.0037 respectively.

Table 1: Acoustic correlates of friendliness in Amazon and
Google female voices. The explained variance for female
friendliness is 82.9%.

Acoustic features Coefficients

Spectral Flux -8.7546
F1 mean 0.0174
F2 mean -0.0052
F3 mean 0.0037

4.2. Likeability in female voices

Table 2 displays the acoustic correlates of likeability of female
voices (Google and Amazon Polly female voices). We observed
that the attribute, likeability was dependent on the acoustic fea-
tures, spectral flux, formants F1, F2 and Voiced segment Slope
(500-1500) in female voices. We have also presented the ex-
plained variance (R squared = 0.812) obtained during the acous-
tic feature prediction. We observed that with the change in the
spectral flux, the second formant (F2), and the slope the like-
ability in female voices decreases by the value of 9.0631, 0.0086
and 57.3852 respectively. Accordingly, with the change in the
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first (F1), the likeability of female voices increase by a factor of
0.0241.

Table 2: Acoustic correlates of likeability in Amazon and
Google female voices. The explained variance for female like-
ability is 81.2%.

Acoustic features Coefficients

Spectral Flux -9.0631
F1 mean 0.0241
F2 mean -0.0086

SlopeV500-1500 -57.3852

4.3. Skilfulness in female voices

Table 3 displays the acoustic correlates of skilfulness in female
voices (Google and Amazon Polly female voices). We observed
that the attribute, skilful was dependent on the acoustic features,
Voiced segment Slope (0-500),spectral flux, voiced segment
mfcc3 in female voices. We have also presented the explained
variance (R squared = 0.581) obtained during the acoustic fea-
ture prediction. We observed that with the change in the spectral
flux, slope and Mel Frequency Cepstral Coefficients (mfcc3),
the perception of skilfulness in female voices decreases by the
value of 6.4559, 0.1868 and 0.2858 respectively.

Table 3: Acoustic correlates of skilfulness in Amazon and
Google female voices. The explained variance for female skil-
fulness is 58.1%.

Acoustic features Coefficients

SlopeV0-500 -0.1868
SpectralFlux -6.4559

mfcc3V -0.2858

4.4. Friendliness in male voices

Table 4 displays the acoustic correlates of friendliness in male
voices (Google and Amazon Polly male voices). We observed
that the attribute, friendliness was dependent on the acous-
tic features, first formant (F1), Unvoiced segment Slope (500-
1500) and loudness in male voices. We have also presented
the explained variance (R squared = 0.685) obtained during the
acoustic feature prediction. We observed that with the change
in the first formant (F1), Voiced segment Slope (500-1500) and
loudness the friendliness in male voices decreases by the value
of 0.0117, 176.8888 and 1.1870 respectively.

Table 4: Acoustic correlates of friendliness in Amazon and
Google male voices. The explained variance for male friend-
liness is 68.5%.

Acoustic features Coefficients

F1 mean -0.0117
SlopeUV500-1500 -176.8888

loudness -1.1870

4.5. Likeability in male voices

Table 5 displays the acoustic correlates of likeability of male
voices (Google and Amazon Polly male voices). We observed

that the attribute, likeability was dependent on the acoustic fea-
tures, loudness, loudness rising slope, formant F1, and unvoiced
segment Slope (500-1500) in male voices. We have also pre-
sented the explained variance (R squared = 0.731) obtained dur-
ing the acoustic feature prediction. We observed that with the
change in the loudness rising slope, first formant (F1), second
formant (F2), and unvoiced slope the likeability of male voices
decreases by the value of 0.6164, 0.0101 and 169.6958 respec-
tively. Accordingly, with the change in the loudness, the like-
ability of male voices increase by a factor of 6.7662.

Table 5: Acoustic correlates of likeability in Amazon and
Google male voices. The explained variance for male likeability
is 73.1%.

Acoustic features Coefficients

loudness 6.7662
loudness rising slope -0.6164

F1 mean -0.0101
SlopeUV500-1500 -169.6958

4.6. Skilfulness in male voices

Table 6 displays the acoustic correlates of skilfulness in male
voices (Google and Amazon Polly male voices). We observed
that the attribute, skilful was dependent on the acoustic fea-
tures, fundamental frequency (F0) and voiced segment length
in male voices. We have also presented the explained variance
(R squared = 0.698) obtained during the acoustic feature pre-
diction. We observed that with the change in the fundamental
frequency (F0), the perception of skilfulness in male voices de-
creases by the value of 8.7332. Accordingly, with the change in
the voiced segment length, the perception of skilfulness in male
voices increase by a factor of 6.1338.

Table 6: Acoustic correlates of skilfulness in Amazon and
Google male voices. The explained variance for male skilful-
ness is 69.8%.

Acoustic features Coefficients

F0 semitone -8.7332
Voiced Segment Length 6.1338

5. Automatic prediction of warmth and
competence

In this section, we present the automatic prediction of warmth
and competence using the regression algorithms, linear regres-
sor, and Support Vector Machine (SVM). For prediction of
warmth, we have combined the subjective ratings of the scales,
friendliness and likeability. For competence, we use the subjec-
tive ratings of skilfulness. The number of training examples we
had were 40 for female and 36 for male voices. Hence, we per-
form a Leave-one-speaker-out cross validation. Table 7 shows
the results of automatic prediction of warmth and competence.
The first block consists of the prediction of warmth in male and
female TTS voices. In the second block, we present the predic-
tion performance for the characteristic, competence. The num-
ber of input features fed to the model in case of male and fe-
male voices and the characteristic predicted is presented. The
performance of the models is evaluated with the metric, mean
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Table 7: Results of automatic prediction of warmth and compe-
tence from synthetic speech. AFs= number of acoustic features
fed to the model, Ch. = characteristic, warmth (W) or com-
petence (C) (2 attributes (likeability, friendliness) representing
warmth and 1 attribute, skilfulness representing Competence) ,
LR = Linear Regression, SVR = Support Vector Regressor, MSE
= mean squared error

Model Female Male
AFs Ch MSE AFs Ch MSE

LR 5 W 0.21 5 W 0.32
SVR 5 W 0.20 5 W 0.33
LR 3 C 0.47 2 C 0.35
SVR 3 C 0.45 2 C 0.34

squared error (MSE). We observe that the MSE score for female
warmth is lower compared to that of MSE of male warmth with
the same number of input features. In case of competence, even-
though the female input features are more than that of the male
input features, the MSE scores of female are much higher than
that of the male voices. The MSE scores of male warmth and
competence display similar MSE scores with different number
of input features.

6. Discussion
Table 8 presents the acoustic correlates of warmth in female
voices. The vocal cues responsible for both the speaker at-
tributes, friendliness and likeability are spectral Flux, first and
the second formant (F1, F2). Additionally, third formant (F3)
contributes to friendliness and Voiced slope contributes to like-
ability in female voices.

Table 8: Warmth in female

Friendliness Likeability

Spectral Flux Spectral Flux
F1 mean F1 mean
F2 mean F2 mean
F3 mean SlopeV500-1500

Table 9 presents the acoustic correlates of warmth in male
voices. The vocal cues responsible for both the speaker at-
tributes, friendliness and likeability are loudness, first formant
(F1) and unvoiced slope. Additionally, loudness rising slope
contributes to likeability in male voices.

Table 9: Warmth in male

Friendliness Likeability

F1 mean loudness
SlopeUV500-1500 F1 mean
loudness loudness rising slope
- SlopeUV500-1500

Table 10 presents the acoustic correlates of competence in
male and female voices. The vocal cues responsible for com-
petence in male voices were fundamental frequency (F0) and

voiced segment length. The acoustic correlates of competence
in female voices were voiced slope, spectral flux and mfcc.

Table 10: Competence in female and male voices

Female Male

Voiced Slope F0
Spectral Flux Voiced length
mfcc -

From our analysis, we observed that the acoustic features
intensity/loudness, spectral flux, fundamental frequency and its
formants are the common acoustic features in both natural and
synthetic voices contributing to various emotions and speaker
characteristics [22, 25, 27]. We observe that the acoustic cor-
relates of social speaker characteristics in synthetic speech can
also be categorised into vocal quality (spectral parameters), tim-
ing (voiced segment length) and pitch (frequency parameters) as
in natural speech [21, 22, 28].

The TTS voices, E (Google female voice) and Kendra
(Amazon Polly female) display highest warmth among other
TTS voices. The voices, Ivy (Amazon Female) and Kevin
(Amazon male) display highest competence over the considered
TTS voices.

The acoustic correlates predicted for each of the 3 attributes
were obtained from the subjective evaluation conducted on a 15-
item semantic differential scaling test. The subjective responses
when requested for 3 scales (likeability, friendliness and skilful-
ness) alone might be different. Additionally, the models were
trained on the 20 second long speech segments. Thus, we might
have averaged the acoustic information present in the speech
samples. Analysing the subjective ratings of individual speech
samples could be interesting. Also, collection of the subjective
ratings for a larger database and also different speech corpora
(conversations, news reading, Semantically Unpredictable Sen-
tences) is another future work. In the current work, the input
dimensions (88) were higher than that of the number of training
examples (40 for female, 36 for male) during automatic feature
prediction. We have thus followed a recursive feature elimina-
tion approach for acoustic feature prediction. Therefore, as an
extension to this work, we would perform an analysis with a
larger dataset and unaveraged acoustic information.
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Abstract
In this paper, we present our first experiments in text-to-
articulation prediction, using ultrasound tongue image targets.
We extend a traditional (vocoder-based) DNN-TTS framework
with predicting PCA-compressed ultrasound images, of which
the continuous tongue motion can be reconstructed in syn-
chrony with synthesized speech. We use the data of eight
speakers, train fully connected and recurrent neural networks,
and show that FC-DNNs are more suitable for the prediction
of sequential data than LSTMs, in case of limited training
data. Objective experiments and visualized predictions show
that the proposed solution is feasible and the generated ultra-
sound videos are close to natural tongue movement. Articula-
tory movement prediction from text input can be useful for au-
diovisual speech synthesis or computer-assisted pronunciation
training.
Index Terms: DNN-TTS, audiovisual synthesis, ultrasound

1. Introduction
Statistical parametric methods are frequently used in text-to-
speech (TTS) synthesis, with two main machine learning tech-
niques: hidden Markov-models (HMM, [1]) and deep neu-
ral networks (DNN, [2]). Recently, the focus of TTS re-
search has moved to end-to-end solutions, applying neural
vocoders (e.g. WaveNet [3] and WaveGlow [4]) and sequence-
to-sequence models using attention (e.g. Tacotron2 [5]). Still,
traditional (non-end-to-end, vocoder-based) DNN-TTS systems
are useful in limited data scenarios, when there is few training
data available, for example with speech and biosignal record-
ings, or in case of audiovisual speech synthesis.

1.1. Audiovisual speech synthesis

Audiovisual speech synthesis is a subfield of the more general
areas of speech synthesis and computer facial animation [6].
The goal of the visible speech synthesis is typically to obtain a
mask with realistic motions, not to duplicate the musculature of
the face to control this mask.

The field of visual speech synthesis is fairly well estab-
lished and a variety of approaches have been developed (includ-
ing rule-based [7] and data-driven methods [8]). Rule-based
systems include models for speech sequence planning, for mus-
cle mechanisms and for the physical speech production appa-
ratus. Within the biomechanical model of the vocal tract, the
tongue can be represented as a finite element mesh [7] and com-
plex biomechanical simulations are necessary to estimate the
internal muscle stresses during the movement of human articu-
lators [9]. In the context of data-driven approaches and HMM-
based synthesis, there are two main categories: image-based

systems are supposed to look like a video of a real person, while
motion capture based systems derive features from facial points
tracked over time [8]. For HMM-based audiovisual synthesis,
a synchronous corpus of parametrized facial motion data and
acoustic speech data is necessary. Schabus et al. showed that in
combined HMM-based text-to-speech synthesis and facial an-
imation, joint audiovisual models perform better than training
separate acoustic and visual models [8].

1.2. Predicting articulatory movement from text

Another type of TTS extension is when the target is to predict
articulatory motion (e.g. lip or tongue movement) and not just
the face of the speaker, besides the speech output. This requires
special biosignals to be recorded, which can track the move-
ment of the articulatory organs (e.g. EMA, X-ray, vocal tract
MRI, and ultrasound tongue imaging). With such a system, by
giving an arbitrary input text, one is able to hear the speech and,
in synchrony with it, see how to move the tongue in 3D to pro-
duce target speech sounds. This visual feedback can make a
big difference for pronunciation training in L2 learning, espe-
cially when the target language contains speech sounds which
are difficult to articulate.

Most earlier studies in this context were using point-
tracking devices, like electromagnetic articulography
(EMA) [10, 11, 12, 13, 14, 15]. Ling and his colleagues
proposed a HMM-based text-to-articulatory movement pre-
diction system, i.e. which can synthesize the speaker’s mouth
from text [10]. Here, the durations were not modeled, but in a
subsequent study, they also investigated the timing aspects and
analyzed the critical articulators [11]. Wei et al. used DNNs
for the text-to-EMA prediction and confirmed that stacked
bottleneck features are effective for this purpose [12]. Steiner
and his colleagues experimented similarly with text-to-EMA
prediction using HMMs (with synchronous text-to-speech),
and they also included a geometric 3D tongue model as the
target [13]. Next, they compared HMMs and DNNs for the
text-to-tongue model prediction [14]. It was found that with
less than 2 hours of data, DNNs outperformed HMMs. Yu and
her colleagues predicted 3D articulatory movement, from text
and audio inputs, therefore combining the text-to-speech and
acoustic-to-articulatory inversion fields [15]. For the machine
learning approach, they used a bottleneck long-term recurrent
convolutional neural network. They showed that the text
information complements well the acoustic features during the
prediction of EMA-based articulation. The final output of the
system is speech synchronized with 3D articulatory animation,
using a facial mesh model [15].

As shown above, there have been several studies investigat-
ing text-to-articulatory motion with HMMs or DNNs, but all of
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them are using point-tracking equipment (electromagnetic ar-
ticulography). Medical imaging target, like ultrasound or MRI,
have not been used before in this context.

1.3. Ultrasound tongue imaging

Ultrasound tongue imaging (UTI) is a technique suitable for
the acquisition of articulatory data. Phonetic research has em-
ployed 2D ultrasound for a number of years for investigating
tongue movements during speech [16]. Stone summarized the
typical methodology of investigating speech production using
ultrasound [17]. Usually, when the subject is speaking, the ul-
trasound transducer is placed below the chin, resulting in mid-
sagittal images of the tongue movement. The typical result
of 2D ultrasound recordings is a series of gray-scale images
in which the tongue surface contour has a greater brightness
than the surrounding tissue and air. Compared to other articula-
tory acquisition methods (e.g. EMA, X-ray, XRMB, and vocal
tract MRI), UTI has the advantage that the tongue surface is
fully visible, and ultrasound can be recorded in a non-invasive
way [17, 18, 19]. An ultrasound device is easy to handle and
move, since it is small and light, and thus it is suitable for field-
works, as well. Besides, it is a significantly less expensive piece
of equipment than the above mentioned devices.

In our earlier studies, we have shown that ultrasound is a
feasible solution for articulatory-to-acoustic mapping [18, 20]
and acoustic-to-articulatory inversion [21]. However, text-to-
ultrasound synthesis has not been investigated before.

1.4. Contributions of this paper

The goal of this paper is to extend DNN-TTS with articulatory
movement prediction, using ultrasound images of the tongue.
We show on the data of several speakers that the combined TTS
and synthesized articulatory motion is feasible and can result
in acceptable articulatory movement video. Text-to-articulatory
movement prediction might be useful for computer-assisted
pronunciation training (CAPT) applications and articulatory vi-
sualization.

2. Methods
2.1. Data

For the data, we used the UltraSuite-TaL80 database [22]
(https://ultrasuite.github.io/data/tal_
corpus/). We chose four English male (03mn, 04me, 05ms,
07me) and four female speakers (01fi, 02fe, 06fe, and 09fe).
In parallel with speech, the tongue movement was recorded in
midsagittal orientation using the “Micro” ultrasound system
of Articulate Instruments Ltd. at 81.5 fps. Lip video was
also recorded in UltraSuite-TaL80, but we did not use that
information in the current study. The ultrasound data and
the audio signals were synchronized using the tools provided
by Articulate Instruments Ltd. Each speaker read roughly
200 sentences – the duration of the recordings was about 15
minutes, which was partitioned into training, validation and
test sets in a 85-10-5 ratio.

2.2. Processing the ultrasound data

In our experiments, articulatory features estimated from the raw
scanline data of the ultrasound were used as the additional tar-
get of the networks (see Fig. 1). The 64×842 pixel images were
resized to 64×128 pixels using bicubic interpolation, and we
calculated PCA coefficients, similarly to EigenTongues [23].

While calculating the PCA, we aimed at keeping the 70% of the
variance of the original images, thus having 128 coefficients.
An example for the PCA eigenvectors can be seen in Fig. 2, and
the result of PCA is presented in Fig. 4. To be in synchrony
with the acoustic features (frame shift of 5 ms), the ultrasound
data was resampled to 200 Hz.

2.3. DNN-TTS framework

Fig. 1 illustrates the proposed approach, i.e. the combined
acoustic and articulatory feature prediction using a DNN from
text input. The experiments were conducted in the Mer-
lin DNN-TTS framework [24] (https://github.com/
CSTR-Edinburgh/merlin). Textual / phonetic parameters
are first converted to a sequence of linguistic features as input
(based on a decision tree). Next, neural networks are employed
to predict acoustic (60-dimensional MGC, 5-dimensional BAP,
and 1-dimensional LF0, with delta and delta-delta features) and
articulatory features (128-dimensional ULT-PCA, with delta
and delta-delta) as output for synthesizing speech, at a 5 ms
frame step with the WORLD vocoder. From the predicted
128-dimensional articulatory features, the 64×128 image is re-
constructed using the PCA matrix, and bicubic interpolation
is applied to resize the image to 64×842 pixels, to be com-
parable with the original data. For visualization purposes, we
transformed this raw scanline data to wedge format, which
shows how the real aspect ratio of the tongue surface (for
an example, see Fig. 4). The transformation was done with
’ultrasuite-tools’ (https://github.com/UltraSuite/
ultrasuite-tools)

2.3.1. FC-DNN

The DNN used here is a fully-connected feed-forward multi-
layer perceptron architecture (FC-DNN, six hidden layers, 1024
neurons in each). We applied tangent hyperbolic activation
function, SGD optimizer, and a batch size of 256. The in-
put features had min-max normalization, while output acoustic
features had mean-variance normalization. We trained the net-
works for 25 epochs with a warm-up of 10 epochs, applying
early stopping, and a learning rate of 0.002 after that with ex-
ponential decay. We only trained both a duration model and an
acoustic model, the latter also containing the articulatory fea-
tures.

2.3.2. LSTM

Recurrent networks are typically more suitable to process se-
quential data. Therefore, we also trained an LSTM network
following the Merlin recipe (four FF layers with 1024 neurons
each, and one LSTM layer with 512 neurons). To ensure a
longer training with the recurrent network, we used ADAM op-
timizer, and a warm-up of 30 epochs with early stopping. The
other parameters were the same as for the FF-DDN. We trained
both duration and acoustic models.

All neural network trainings were done individually with
each speakers’ data, without average voice training or adapta-
tion.

3. Experimental results
After training the above models, we synthesized sentences from
the test parts of the ultrasound datasets. To measure the valida-
tion and test error, we calculated both spectral prediction er-
ror (Mel-Cepstral Distortion, MCD), and an articulatory feature
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Figure 1: Block diagram of the proposed approach.

related error (ULT-PCA/RMSE, calculated on the normalized
PCA values). We trained both duration and acoustic models,
but for the error calculations, we synthesized the test sentences
with their original timing. This way, warping the features in
time was not necessary for calculating the error measures.

3.1. Demonstration samples

An example for the PCA eigenvectors are in Fig. 2, and the
predicted articulatory feature sequence can be seen in Fig. 3
(speaker ’01fi’, sentence ’201 aud’). As lower dimensional
PCA vectors contain more information, the visualization was
done in an exponential way and only 8 dimensions are plotted
out of 128. Clearly, both the FC-DNN and the LSTM are fol-
lowing the tendencies found in the original data (e.g. in case of
PCA-1, PCA-2, PCA-4), but the fine details are not modeled
well. This type of oversmoothing is a frequent phenomena in
statistical parametric speech synthesis. The higher dimensions
(e.g. PCA-64 and PCA-128) are almost constant; i.e. they could
not be modeled well with neural networks.

To visualize the individual ultrasound images, we plotted
several ultrasound frames from the original videos and from the
predicted ones, as a function of time, in Fig. 4. The reason why
we are plotting every third frame is that for the 5 ms frame step
of the Merlin toolkit, the 81.5 fps ultrasound video was interpo-
lated to 200 Hz, and therefore, in the predicted data, roughly ev-
ery 3rd frame contains visible tongue motion. In case of speaker
’01fi’, we can see in the top row (original ultrasound images af-
ter PCA) that there is a significant tongue movement, i.e. the
tongue tip (on the right) goes higher, as the time passes. Both
the predictions with the DNN and LSTM network follow the
articulatory movement, but the images are smoothed – again,
resulting from the statistical training. For speaker ’03mn’, sim-
ilar tendencies can be observed: the movement of the tongue
is changing its curvature as a function of time, but in the DNN-
predicted and LSTM-predicted images, the tongue surface is not
as clear as in the original data.

As the synthesized motion of the tongue is more visible in
real-time videos, we made available several samples at
http://smartlab.tmit.bme.hu/ssw11_txt2ult.

3.2. Objective measures

Table 1 summarizes the MCD results. The MCD values of the
test sentences with the FC-DNN are between 5.8–7.0 dB (av-
erage: 6.228 dB), whereas with LSTM they are between 6.0–
7.5 dB (average: 6.593 dB), indicating that the recurrent neu-
ral network was not helpful in estimating the acoustic features.
The reason for this might be that we have limited articulatory-
acoustic databases (roughly 200 sentences for each speaker),
which is too small for training an LSTM model.

The results of the RMSE calculated on the articulatory fea-

Table 1: MCD errors on the dev/test set.

MCD
Speaker FC-DNN LSTM
01fi 6.995 / 6.971 6.647 / 6.588
02fe 6.095 / 5.803 6.486 / 6.259
03mn 5.781 / 5.785 5.977 / 5.948
04me 5.896 / 6.024 6.318 / 6.312
05ms 6.244 / 6.256 7.235 / 7.083
06fe 5.758 / 5.582 6.444 / 6.330
07me 6.589 / 6.562 6.831 / 6.749
09fe 6.516 / 6.844 7.197 / 7.472
average 6.234 / 6.228 6.642 / 6.593

Table 2: ULTPCA/RMSE errors on the dev/test set.

ULTPCA128/RMSE
Speaker FC-DNN LSTM
01fi 3.292 / 3.223 3.319 / 3.208
02fe 3.533 / 3.732 3.753 / 3.904
03mn 3.147 / 3.660 3.289 / 3.680
04me 3.849 / 3.985 4.031 / 4.033
05ms 3.133 / 3.233 3.249 / 3.405
06fe 3.439 / 3.250 3.743 / 3.451
07me 3.544 / 3.595 3.498 / 3.461
09fe 3.022 / 2.864 3.234 / 3.133
average 3.370 / 3.443 3.515 / 3.534

ture are summarized in Table 2. The lowest error was achieved
with the data of speaker 09fe: with FC-DNN, the test error is
2.9, while with LSTM, the test error is 3.1. The tendency is
similar to the case of MCD: the LSTM network was not helpful
in predicting the articulatory features, probably due to the small
size of the data.

4. Discussion and conclusions
We have shown above that text-to-ultrasound video prediction
is feasible as an extension to traditional DNN-based text-to-
speech synthesis, despite the relatively small amount of train-
ing data. Although the synchrony between visual and speech
output is not enforced by the model, the tied acoustic and artic-
ulatory features during the DNN training ensure that the audio
and visual features are in synchrony, i.e. that in the generated
ultrasound videos, the tongue is moving according to the syn-
thesized speech. To objectively check this, SyncNet, part of
Wav2Lip could be applied to assess synchrony [25]. Our paper
found that the joint learning of both acoustic and articulatory
features has advantages, but this is not substantiated – a com-
parison of the joint model against two separate models remains

9
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Figure 2: PCA eigenvectors, from speaker ’01fi’. Top: raw, scanline data (resized to 64×128 pixels). Bottom: wedge orientation.
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Figure 3: Original and predicted articulatory features, from speaker ’01fi’. Sentence: ’”I leave it to nobody,” said Shakespeare, sulkily.’
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future work.
Although there have been several earlier attempts for ex-

tending text-to-speech synthesis with articulatory data, all of
these studies were using EMA, being a point tracking equip-
ment [10, 11, 12, 13, 14, 15], and containing less spatial infor-
mation about the tongue than ultrasound. The advantage of ul-
trasound in this context is that the resulting video shows a larger
portion of the tongue, compared to EMA.

Articulatory movement prediction from text input can be
useful for audiovisual speech synthesis. A specific application
is computer-assisted pronunciation training / computer-aided
language learning [26, 27, 28], which can be beneficial for
learners of second languages. With such a combined TTS and
text-to-articulatory prediction system, by giving an arbitrary in-
put text, one is able to hear the speech and, in synchrony with
it, see how to move the tongue in 2D or 3D to produce target
speech sounds. This visual feedback can be helpful for pro-
nunciation training in L2 learning, especially when the target
language contains speech sounds which are difficult to articu-
late.

In the future, we plan to investigate speaker adaptation and
speaker-independent training. For this, a common articulatory
space has to be defined, as the currently used PCA represen-
tation is specific for each individual speaker. Also, multi-task
learning might be useful in this context: a system could po-
tentially be pre-trained on speech-only material which is easier
to acquire, and the UTI be trained only in addition. Besides,
we plan to investigate the effect of the misalignments in the ul-
trasound transducer position [29, 30] on the text-to-ultrasound
prediction results.

The code is accessible at https://github.com/
BME-SmartLab/txt2ult.
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Abstract
Audio books are commonly used to train text-to-speech

models (TTS), as they offer large phonetic content with rather
expressive pronunciation, but number and sizes of publicly
available audio books corpora differ between languages. More-
over, the quality and accuracy of the available utterance seg-
mentations are debatable. Yet, the impact of segmentation on
the output synthesis is not well established. Additionally, utter-
ances are generally used individually, without taking advantage
of text level structuring information, even though they influence
speaker reading. In this paper, we conduct a multidimensional
evaluation of Tacotron2 trained on different segmentations and
text level annotations of the same French corpus. We show that
both spectrum accuracy and expressiveness depend on the seg-
mentation used. In particular, a shorter segmentation, in ad-
dition with the annotation of paragraphs, benefits to spectrum
reconstruction at the detriment of phrasing. Multidimensional
analysis of mean opinion scores obtained with a MUSHRA-
experiment revealed that phrasing was relatively more impor-
tant than spectrum accuracy in perceptual judgement. This work
serves as evidence that particular attention must be given to
models evaluation, as well as how to use the training corpus
to maximize synthesis characteristics of interest.
Index Terms: Speech Synthesis, French TTS, mixed-inputs
TTS, French dataset

1. Introduction
In recent years, deep learning met huge success in language-
related applications. In particular, state-of-the-art text-to-
speech (TTS) models [1, 2, 3] coupled with neural vocoders [4,
5] achieve synthesis quality close to natural speech. As always
with deep learning, the quality of the output heavily depends on
the dataset used for training. The common approach of neural
TTS, seen in events like Blizzard Challenge [6], is to compare
multiple models on the same corpus to evaluate the resulting
synthesis quality. This process minimizes the importance of in-
put data structuring, which ultimately shapes the output of any
deep learning model. One complementary work is to evalu-
ate multiple segmentations of data structuring on the same TTS
model. This paper adopts this approach.

Publicly available corpora designed to train TTS [7, 8, 9]
are generally composed of audio book extracts read by one
or more speakers, segmented in thousands of utterances. Ut-
terances’ lengths vary between 1 to 20 seconds, with bound-
aries often matching sentences, but not always. Even if these
databases have been used to train state-of-the-art speech mod-
els [3, 10], long utterances may not be the best candidates to
train TTS: (i) Large batch size with long utterances rely on high
computation memory. (ii) Learning long-term dependencies is
a challenging task for sequential models [11]. (iii) Style con-
trol, which is an increasing demand of the field, massively uses

utterance level style embeddings [12, 13], which means that the
shorter the utterances, the finer it is possible to tune speech style
at inference time. These reasons made us consider a shorter seg-
mentation may be better suited to train TTS efficiently.

Proposing a new segmentation gives us the opportunity to
integrate specific annotations in the input data to give mod-
els relevant context information regarding the corresponding
speech to produce: (i) End of paragraph are generally associ-
ated with specific phrasing modifications from the speaker, and
are then worth noticing during training. (ii) In French, silent
letters and optional liaisons are common, which are additional
difficulties to train a TTS model on orthographic inputs alone.
The addition of phonetic annotations contributes to alleviate this
issue, and has shown to benefit to both transcriptions [14].

This paper presents a multidimensional comparison be-
tween the proposed segmentation and annotation of the Lib-
riVox French corpus [15] and the original segmentation from
M-AILABS [7], used to train the same Tacotron2 [1]. We eval-
uate the phrasing and spectral accuracy of each model. These
objective measurements are paired with mean opinion scores
evaluated through a MUSHRA-like experiment [16].

2. Related Work
To our knowledge, there is no publicly available French
Tacotron2. Recent studies published on French synthesis focus
on concatenation based TTS [17] or use Deep Convolutional
TTS (DCTTS) [18]. DCTTS is a fully convolutional neural
TTS, whose initial purpose was to alleviate the need for high
computational power, while enabling quick training on smaller
database. Although synthesis reaches acceptable standards, the
overall quality does not match more recent models [1, 2, 3].

The later TTS explore the well established encoder-decoder
architecture: the encoder converts the input sequence into
a hidden representation that the decoder uses to generate
mel-spectrogram frames. As an interface between the two,
Tacotron2 [1] employs a location-sensitive attention [19] mod-
ule which computes a fixed length vector for each decoder step.
The encoder adopts an approach that is similar to the classi-
cal language model processing pipeline: the input sequence is
passed through three convolutional layers that compute local
pattern, followed by bidirectional LSTM. Alternatively, Trans-
former TTS [2] and Fastspeech [3] introduce self-attention and
multi-head attention layers as a replacement for recurrent units.
These three models produce synthetic speech of similar qual-
ity [3]. We chose Tacotron2 for its relative ease to implement
and straight training process. Additionally, Tacotron2 shows
promising results for expressive control [12, 13], which is also
one of our short term goal.

Although mean opinion scores are generally used to assess
the global quality of TTS, this evaluation takes multiple aspects
of speech into account: phonetic correctness and intelligibility,
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spectral smoothness, expressiveness, etc. These clues may not
vary conjointly, which means that the use of a single metric
may not be sufficient. [20, 21] employ multidimensional scaling
(MDS) [22] to extend the quality analysis of TTS models. This
paper prolongs this perspective.

3. Proposed Method
This section presents the original baseline and the new seg-
mentation proposed from the French LibriVox dataset, and the
modifications added to the Tacotron2 implementation shared by
NVIDIA1. Our implementation2 and database3 are available on-
line.

3.1. Segmentation and Annotation

3.1.1. Original Database

We used the M-AILABS French dataset [7] as a starting point.
This corpus includes more than 190h of recorded speech, seg-
mented in utterances from 1s to 20s, given with corresponding
orthographic transcripts. Recordings come from the free public
domain audio books LibriVox database [15]. We selected a sub-
set of the recordings made by Nadine Eckert-Boulet (NEB), for
a total duration of 34h. Each book duration and corresponding
number of utterances are given in Table 1. Audio files are origi-
nally sampled at 16000Hz, but we re-sampled them at 22050Hz.

Table 1: Books duration (and number of utterances) for original
and new segmentation of the M-AILABS French corpus.

Book Original New segmentation

Les Mystères de Paris 22:31:27 (12285) 21:37:21 (25458)
Mme Bovary 11:39:50 (5775) 11:08:55 (12781)

Total 34:11:17 (18060) 32:46:16 (38239)

The orthographic transcript is given by the Gutenberg
Project4. It is worth mentioning that NEB does not always
strictly follow the original text. Some miss-spelling remain (for
example: "precepteur" is said instead of "percepteur"), as well
as some omissions. These miss-alignments correspond to 0.1%
of the original corpus. We did not correct any of those tran-
scripts for the baseline. Though, we spelled out all texts, in-
cluding frequently used abbreviations in French ("M.": "Mon-
sieur", "Mlle": "Mademoiselle", "n°": "numéro" and "etc":
"et cetera"), and numbers ("1838": "dix-huit cent trente-huit").
Two punctuation marks were also replaced to stand as a single
unique character: "..." was replaced by "~", "–" by "¬".

Each clip was originally bounded with 500ms of silence
(zeros in the waveform) at the beginning and the end. These
silences do not correspond to the recordings, but have been ar-
tificially added to each audio clip after segmentation. To limit
the duration of initial and final silences in the synthesis, we trun-
cated these silences at 130ms. This duration matches the initial
and final silence lengths found in other speech databases such
as LJspeech [8].

3.1.2. Re-segmentation

To reduce the average duration of utterances, we first restore
the initial audio books chapters structure by aligning the orig-

1https://github.com/NVIDIA/tacotron2
2https://github.com/MartinLenglet/Tacotron2
3https://zenodo.org/record/4580406#.YI_qIyaxXmE
4https://www.gutenberg.org/

Table 2: Comparison of F0 and elongation of syllable [23]
around ends of paragraph (.§) and intermediate periods (.).

Syllable
Previous Following

Elongation (%) . +184 +21
.§ +218 +24

F0 (semitone) . 1.96 7.01
.§ 0.96 7.41

inal text from the Gutenberg Project with the recordings from
LibriVox. As for the original segmentation, all texts are spelled
out, but previously mentioned miss-spelling and omissions are
now manually corrected. In addition, end of paragraphs are
annotated with the punctuation mark "§", which is introduced
after the last punctuation mark preceding each carriage return.
Ends of paragraphs are accompanied by phrasing patterns of
NEB, that are worth highlighting in the training corpus. For
instance, Table 2 shows F0 and elongation of the final sylla-
ble before ends of paragraph vs. paragraph-internal periods, as
well as their values for the following syllable. The last sylla-
ble is generally longer before the end of paragraph, and the F0
gap across the boundary is increased (6.45 vs. 5.11 semitones
respectively).

Chapters are then segmented based on silences of at least
400ms. This duration usually corresponds to pauses made be-
tween speaking turns in conversations [24]. 94.56% of silences
coincide with punctuation marks. For the others, a comma is
added at the end of the utterance. 130ms of ambient silence
from the recording are kept at the beginning and the end of each
utterance. Timestamps were hand-checked for each utterance
to ensure optimal segmentation. Table 1 shows duration and
number of utterances of the obtained segmentation. Note that
the proposed segmentation is 01:25:01 shorter than the original,
due to the reduction of intra-utterance silences, but that reduc-
tion does not impact either the text read nor the speaking rate.

Fig.1 gives the distribution of utterances length of the orig-
inal and the proposed segmentation. Median utterance length
(resp. first and third quartiles) are reduced from 6.44s (3.88s
and 9.26s) to 2.77s (1.89s and 3.95s). 82.5% of utterances
of the new segmentation last between 1s and 5s, and 0.25% of
utterances last more than 10s. 1336 utterances are unchanged,
which corresponds to 7.4% and 3.5% of the original and new
segmentation respectively.
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Figure 1: Distribution of utterances length of original and new
segmentation.

14



3.1.3. Phonetic Annotation

Training of both orthographic and phonetic transcripts, called
representation mixing, enables to use both input types in the
same utterance at inference time, and thus remove some am-
biguities on particular issues, without the need for the whole
phonetic transcript of the speech to synthesize. For instance,
NEB performs numerous optional liaisons (22999 liaisons in
the corpus of which 9597 [z], 9029 [t] and 3412 [n]), in par-
ticular bridging 844 infinitives and prepositions with [K/]. Yet,
these liaisons are not systematic, and adding the possibility to
choose if the liaison is being made at inference time (as part
of a style component) would be interesting. To study the im-
pact of phonetic annotation, hand-crafted phonetic alignment is
performed on the whole new segmentation.

3.2. Modifications of Tacotron2

3.2.1. Representation mixing

We introduce the mixed embedding matrices described in [14]
in our model to give the possibility to train with both types of
inputs. Contrary to [14], when the training includes phonetic
inputs, input types are not mixed within the same utterance. The
number of utterances is simply doubled, with the same audio file
corresponding to both the orthographic and the phonetic input.

3.2.2. Gate loss correction

Synthesizing short utterances, typically one or two words, has
been shown to be a challenging task for TTS models [25]. Re-
current artifacts are repetition of the last syllable, or unintelligi-
ble words. With our proposed segmentation, 5% of utterances
last less than 1s, which might cause some issues during infer-
ence. To avoid this, we fine tune the training of each model
with 2 modifications: (i) 9 frames of recorded ambient silence
are added at the end of each utterance, in which the end-of-
sequence probability is set to 1. This silence originates from
the pause following each utterance. (ii) a multiplying factor is
added to the gate loss error before back-propagation. We em-
pirically found that these modifications correct previously men-
tioned artifacts, and improve the overall synthesis quality. The
benefits of these modifications are evaluated in section 4.

4. Experiments and Results
4.1. Experimental Setup

The 6 models trained for this experiment are presented below:
• O and Og are trained on the original segmentation from

M-AILABS for 200 epochs.
• N and Ng are trained on the new segmentation proposed in

section 3.1.2, with only orthographic inputs for 200 epochs.
• P and Pg are trained on the new segmentation proposed

in section 3.1.2, with both orthographic and phonetic inputs
for 100 epochs, since each epoch corresponds to twice the
number of utterances of the orthographic models.
Models annotated g are fine-tuned with the gate loss cor-

rection. The multiplying factor is set to 10 for these models.
This correction is introduced for the last quarter of the train-
ing epochs. Before that separation, only one model is trained
using warm-start from the English model trained on LJSpeech
shared by NVIDIA. The postnet is bypassed during the first 10
epochs, and the learning rate is fixed at 10−3. This phase en-
ables the model to initiate a coarse transition from English to
French. Then the postnet is reactivated and the learning rate

decreases exponentially until reaching 10−5 at 90 epochs. The
batch size is limited to 32, due to memory limitations with long
utterances of the original segmentation, and thus is set to 32 for
all models. Batches are randomly picked among utterances of
approximate same length.

We pick 5% of the original corpus as test set. To ensure a
fair comparison between models, these 903 utterances are ran-
domly selected among the 1336 common utterances between
the original and the new segmentation. Thus, the amount of
speech seen by each model during training is rigorously the
same. Only the orthographic transcript of the test set is used
in this section, even for models P and Pg . Note that this test
set does not favor the new segmentation: phonetic inputs and
paragraphs markers are not used.

The vocoder used is WaveRNN [5]. WaveRNN is faster
and demands less resources than the original WaveNet [4] used
by [1], and still provides a good voice quality [26]. We trained
WaveRNN from scratch for 1000 epochs on the new segmen-
tation from Table 1 with a learning rate of 10−4. Then we
fine-tuned the model with 520 more epochs at a learning rate
of 10−5.

4.2. Objective measurements

4.2.1. Accuracy

We evaluate the spectral accuracy of each model through the
proximity of the generated spectra with the vocoded ground
truth (GT ). Since syntheses differ in length, mel-spectrograms
are first aligned by dynamic time warping (DTW) [27]. Mean
squared error (MSE) on aligned spectrograms are then com-
puted and averaged on the test set; results are shown in Fig. 2.
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Figure 2: Mean squared error between models and ground
truth, calculated on mel-spectrograms aligned by dynamic time
warping. ** indicates a significant effect of the gate loss cor-
rection according to Tukey-Kramer test (p < 0.05).

The model has a statistical effect on the computed distances
according to a one-way ANOVA (F = 246.5, p < 0.001).
Tukey-Kramer multiple comparisons show that all pairs are sta-
tistically different, except Pg/N and Pg/Ng . The gate loss cor-
rection has a significant impact on all models. The new seg-
mentation decreases the spectral distortion, with a beneficial
contribution of the gate loss correction in this case. On the
other hand, this correction decreases the spectral accuracy of
the model trained on the original segmentation.

4.2.2. Phrasing

Pauses position and duration contribute to the expressiveness of
speech [28]. We computed mean speech and silence duration
across the whole synthesised test set for each model and for
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Figure 3: Mean utterance duration on the whole test set for each
model.
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Figure 4: Speaking rate of each model, calculated on each ut-
terance of the test set. Speaking rate is estimated in characters
per second, pause durations are not taken into account. ** indi-
cates a significant effect of the gate loss correction (p < 0.05).

GT . By extension, this calculation also enables us to estimate
the speaking rate of each model on the test set. Mean utter-
ance duration and speaking rate are shown in Fig. 3 and Fig. 4
respectively.

Models trained on the new segmentation do not exhibit the
same temporal behavior than models trained on the original seg-
mentation. Utterances mean duration is smaller with the new
segmentation (3.93s and 3.64s compared to 4.44s for N , P
and O respectively). Silences duration are also proportionally
smaller: 9.2%, 8.2% and 11.3% for N , P and O respectively.
As a result, the speaking rate increases with the new segmenta-
tion. Note that the speaking rate of all models is significantly
higher than GT . The gate loss correction tends to reduce the
differences observed compared to GT . Not only silences du-
ration are increased, but also speech duration, resulting in a
lower speaking rate. This decrease is statistically significant for
the new segmentation, but not for the original. All other pairs
are significantly different according to Tukey-Kramer multiple
comparisons.

Longer pauses observed with O and Og may result from
the intra-utterance pauses frequency and duration in the original
segmentation provided by M-AILABS. In that case, models are
trained on audio clips that sometimes contain pauses longer than
1s, and thus reproduce that behavior during inference. On the
contrary, the re-segmentation processing avoids intra-silences
longer than 400ms, resulting in a more straight-forward synthe-
sis.

O O_g N N_g P P_g GT
85

90

95

100

M
e
a
n
 F

0
 (

s
e
m

it
o
n
e
s
)

** ** **

Figure 5: Mean fundamental frequency calculated on voiced
sections of each utterance of the test set. ** indicates a signifi-
cant effect of the gate loss correction (p < 0.05).
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Figure 6: Standard deviation of fundamental frequency calcu-
lated on each utterance of the test set. ** indicates a significant
effect of the gate loss correction (p < 0.05).

4.2.3. Pitch

As additional prosody measurements, we evaluate the pitch of
each model using the Praat software [29]. The mean fundamen-
tal frequency (F0) and standard deviation of F0 is measured on
voiced sections for every utterance of the test set. Results are
given in Fig. 5 and Fig. 6 respectively.

One-way ANOVA shows a statistical effect of the model
on both mean F0 and standard deviation of F0. Regarding mean
F0, Tukey-Kramer multiple comparisons show that all pairs dif-
fer significantly, except O/Pg , O/GT and Ng/P . As to standard
deviation of F0, only phonetic models P and Pg exhibit a sig-
nificant effect of the gate loss correction, while both P and Pg

are not statistically different from O and Og . N and Ng have
significantly lower standard deviation than all other models.

The new segmentation increases mean F0, but this effect is
partially compensated when training the model on mixed inputs
with gate loss correction. Similarly, the gate loss correction in-
duces a lower mean F0 when training on the original segmenta-
tion. None of the presented models show standard deviation of
F0 similar to GT , which might lead to less expressive synthetic
voices.

4.3. Subjective evaluation

In accordance with objective measurements presented in sec-
tion 4.2, 3 models were selected to evaluate the mean opinion
scores through a MUSHRA-like experiment [16]. We keep only
models that have been fine-tuned with gate loss correction, as
they generally exhibit the closest proximity with GT behavior.
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Figure 7: MUSHRA results. ** indicates a significant difference
between models (p < 0.05).

GT is added as high anchor for the MUSHRA. This perceptive
test was performed online using the webMUSHRA framework
[30]. Utterances containing less than 7 words and more than 23
words were excluded from this test to keep only the central 90%
of the test set length distribution. 60 utterances were randomly
selected in the remaining test set, with equivalent representa-
tion of utterance lengths in the selection. 13 of the selected
utterances contained one phonetic mistake (5 in Og , 3 in Pg ,
and 5 in all models), and were replaced before the experiment.
Participants were separated in 2 groups, each group listened to
30 out of the 60 selected utterances. For each utterance, par-
ticipants were given the original text input, and were asked to
evaluate the 4 given conditions (3 models + GT ) according to
the voice quality. No explicit reference was given during the lis-
tening. The experiment began with 5 minutes of training during
which participants listened to a variety of synthesis that they
were about to hear during the experiment and learned how to
use the webMUSHRA interface. Audio examples are available
online 5. 44 participants recruited on Prolific [31] and aged 18-
65 took part in the experiment. Participants were French native
speakers, and had little or no previous experience with listening
tests. Results of the MUSHRA are given in Fig.7

We compared the median score of each model using a
Wilcoxon rank sum test. Differences are significant if p < 0.05.
GT exhibits a significantly higher score than the 3 evaluated
models. Ng scores significantly lower than all other models.
No statistical differences are shown between Og and Pg .

4.4. Multidimensional analysis

Despite the differences on specific expressiveness clues mea-
sured in section 4.2, subjective evaluation performed in sec-
tion 4.3 does not exhibit a clear perceptive preference for one
of the models Og or Pg . To explore implicit dimensions of the
evaluation of the models, we use a multidimensional analysis
of the distances computed between each model and GT . These
distances are evaluated on both objective and subjective mea-
surements:

• Subjective distances: absolute score differences between
all possible condition pairs evaluated in the MUSHRA, av-
eraged across all participants and all utterances.

• Objective distances: MSE between all possible conditions
pairs computed on mel-spectrograms aligned by DTW [27].
Objective distances are averaged across all 903 utterances
of the test corpus.

5http://www.gipsa-lab.fr/~martin.lenglet/segmentation_impact/
index.html

(a) Objective MDS: MDSO (b) Subjective MDS: MDSS

Figure 8: Multidimensional scaling of distances between pairs
conditions. Left and right graphs show objective and subjective
distances respectively. Proportions of variance explained are
given for each component.

Table 3: Correlation coefficients between objective measure-
ments and components of MDS. * and ** indicate p < 0.1 and
p < 0.05 respectively. ASE: aligned spectrum error, SR: Speak-
ing rate, PD: pauses duration.

MDS Dim objective measurements
ASE SR PD mean F0 std F0

Obj 1 0.90** -0.47 0.44 -0.71* -0.06
2 0.63 -0.74* 0.89** -0.43 0.97**

Subj 1 0.89 -0.93* 0.96** -0.50 0.98**
2 0.97 -0.02 0.13 -0.83 -0.17

Then, we projected the two obtained distances matrices
in two independent 2-dimensions space using classical Multi-
dimensional scaling (MDS) [22]. To give a better idea of the
impact of the gate loss correction, both corrected and non-
corrected models were included in the objective MDS. Subjec-
tive and objective MDS (named MDSS and MDSO respectively
in the following) are given in Fig.8.

Correlations between objective measurements computed in
section 4.2 and the components of both MDS are estimated.
Correlations coefficients are given in Table 3. Note that GT
is not considered for correlation with aligned spectrum error
(ASE). Correlation coefficients indicate that prosodic clues like
pauses duration and standard deviation of F0 are closely re-
lated to the second component of MDSO , but to the first compo-
nent of MDSS . On the other hand, spectral accuracy measure-
ments ASE and mean F0 are correlated to the first component
of MDSO , and similarly for the second component of MDSS ,
even if this tendency is not significant. Two main dimensions
emerge in both evaluations: spectrum accuracy and expressive-
ness. The axis inversion (and associated portion of variance
explained) tends to show these dimensions are not given the
same importance in the perceptive judgement than in the ob-
jective measurement. As a result, the proximity of spectrum
quality observed between GT and models trained on new seg-
mentation on the first component of Fig.8a is downgraded to
the second component of Fig.8b. Respectively, expressiveness
is given more importance in the perceptive test than it is in the
objective measurements, resulting in Og being closer to GT in
the first component of Fig.8b. Fig.8a emphasizes the benefits of
the proposed gate loss correction, as all models annotated g are
closer to GT on the expressiveness dimension.
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5. Conclusions and Discussion
We have proposed a shorter segmentation of the French M-
AILABS corpus and compared the training of Tacotron2 on
both original and new datasets. Through multi dimensional
evaluation, we have shown that the way speech data are seg-
mented impacts both quality and expressiveness factors in op-
posite directions. Future works should elaborate on how to
combine the advantages of both segmentation with curriculum
training. An important contribution of this work is the addi-
tion of the gate loss correction as a fine tuning of the model,
which contributes to improve prosodic aspects of the synthe-
sized speech. The use of multidimensional analysis of mean
opinions scores introduces relevant nuances to the MUSHRA
results. The structuring of the subjective notation latent space,
as well as the prediction of positions in this space thanks to ob-
jective measurements should be the focus of future works.
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Abstract
In this paper, we propose a new approach to pathologi-

cal speech synthesis. Instead of using healthy speech as a
source, we customise an existing pathological speech sample
to a new speaker’s voice characteristics. This approach allevi-
ates the evaluation problem one normally has when converting
typical speech to pathological speech, as in our approach, the
voice conversion (VC) model does not need to be optimised
for speech degradation but only for the speaker change. This
change in the optimisation ensures that any degradation found
in naturalness is due to the conversion process and not due to the
model exaggerating characteristics of a speech pathology. To
show a proof of concept of this method, we convert dysarthric
speech using the UASpeech database and an autoencoder-based
VC technique. Subjective evaluation results show reasonable
naturalness for high intelligibility dysarthric speakers, though
lower intelligibility seems to introduce a marginal degradation
in naturalness scores for mid and low intelligibility speakers
compared to ground truth. Conversion of speaker characteris-
tics for low and high intelligibility speakers is successful, but
not for mid. Whether the differences in the results for the dif-
ferent intelligibility levels is due to the intelligibility levels or
due to the speakers needs to be further investigated.
Index Terms: voice conversion, pathological speech, varia-
tional autoencoder

1. Introduction
Data-driven speech synthesis has recently been reaching new
heights with the introduction of deep neural networks (DNNs).
However, the success of these techniques is subject to high qual-
ity data and a large quantity of data, either of which is not
available for many applications. Pathological speech synthe-
sis, where the goal is to synthesise natural, but pathologically
sounding samples, is such an application. Pathological speech
synthesis has several motivations, the most notable being the
data augmentation for automatic speech recognisers (ASRs),
where the goal is to generate more data in order to improve
recognition of pathological speech [1, 2, 3]. The second moti-
vation for the development of pathological speech synthesis is
that it could assist in informed decision making for the medical
conditions at the root of the pathology. For instance, oral can-
cer surgery results in changes to a speaker’s voice. The avail-
ability of a synthesis model that can generate how the voice
could sound after surgery could help the patients and clinicians

∗Equal contribution.

to make informed decisions about the surgery and alleviate the
stress of the patients [4, 5].

While there are many speech synthesis techniques for typi-
cal speech, not many of these are applicable if we wish to syn-
thesise highly natural pathological speech. Formant [6] and ar-
ticulatory synthesis [7] are lacking in naturalness compared to
DNN-based speech synthesis. Text-to-speech techniques (TTS)
lack both linguistic resources (i.e a pronunciation lexicon) and
the amount of data needed for these problems. The only promis-
ing method to synthesise pathological speech seems to be voice
conversion (VC), which only needs a relatively small amount of
data, compared to neural TTS.

However, synthesising pathological speech via VC is not
without challenges. Existing pathological speech corpora [8,
9, 5, 10] provide healthy control speakers, but healthy speech
recordings from the same pathological speaker are rarely avail-
able. This means that a successful pathological voice conver-
sion system needs to learn conversion of both, the voice and
pathological characteristics simultaneously, as suggested in pre-
vious work [4]. However, evaluation of such a setup is difficult.
This is because the VC system is directly optimised for speech
degradation in terms of the pathology, which would need the
listeners (the evaluators of these systems) to be able to rate the
success of generating the pathological characteristics and the
synthetic/natural aspects of the speech separately. As we will
show later in this paper, listeners struggle differentiating be-
tween speech severity and synthetic aspects of the speech. This
can result in two, counter-intuitive scenarios from the viewpoint
of typical VC: (1) a pathological VC system that is not able to
properly capture the characteristics of the pathological speech
could still receive better naturalness scores than the reference
pathological speech; (2) Conversely, a VC system that is able
to mimic the pathology, albeit exaggeratedly, could produce a
naturalness score that is a lot lower than that of the reference.

Therefore, we propose a new approach where instead of
using healthy speech as source for the VC, we use dysarthric
speech, which is already pathological, and the VC system only
has to customise it to a new (healthy/dysarthric) speaker’s voice
characteristics, i.e by using some representation of the speaker
(speaker embedding). This synthesis approach alleviates the
problem with naturalness ratings as the dysarthric-to-dysarthric
VC is not optimised directly for speech degradation, therefore
degradation is only due to the synthetic aspects compared to
the source pathological utterance. Our first goal is to assess
whether we can convert the voice characteristics of the patho-
logical speakers in this setup in a natural way, while simulta-
neously assessing how natural real pathological speech is per-
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ceived.
In order to perform the VC, an autoencoder-based method

will be used [11]. Autoencoder-based methods are of special
interest in clinical scenarios as they are non-parallel, thus allow
for incomplete data collection situations, while also being easier
to train than GAN-based methods due to well-defined conver-
gence criteria because they have only a single loss [12, 13, 14].
In this paper, we use HL-VQ-VAE-3 which is a type of varia-
tional autoencoder (VAE) using discrete representations. This
hierarchical design has recently shown to give better results for
VC [15] than the original VQ-VAE. Furthermore, by condition-
ing on speaker labels, the model allows to converting to/from
multiple speakers within one single model.

An important additional goal of this work is to investi-
gate whether standard VC techniques can be used for non-
standard speech. It is well known from other domains of
speech technology such as automatic speech recognition (ASR)
that standard ASR systems perform poorly on atypical speech
[16, 17, 18, 19, 20], making standard speech technology tech-
niques less accessible to people with atypical speech. Our paper
is thus also a preliminary investigation of a VQ-VAE-based VC
technique’s performance on converting a pathological source
utterance instead of a typical utterance from a non-dysarthric
speaker.

To summarise, in this paper we train a dysarthric-to-
dysarthric VC system to answer the following research ques-
tions: (RQ1) Can we convert the voice characteristics of a
pathological speaker to another pathological speaker of the
same severity with reasonable naturalness (where reasonable
means comparable to non-parallel VC methods on typical
speech)? In other words, is VC technology accessible to peo-
ple with pathological speech? (RQ2) How does (real) patho-
logical speech affect the mean opinion score (MOS)? In other
words, what is the maximum attainable naturalness of synthetic
pathological speech?

Section 2 will start with the discussion of the used
UASpeech dataset and the used VQ-VAE methods for the task,
and finally concluded by the experimental design to test the ap-
proach. The perceptual evaluation results are presented in Sec-
tion 3, followed by a discussion of the limitations of the pro-
posed method, and further comments on the accessibility of VC
to pathological speakers. Some of the samples are available at
https://pathologicalvc.github.io .

2. Design and methods
2.1. Description of the dataset and preprocessing

In this study we use the UASpeech corpus [8], which contains
isolated-word recordings of 15 speakers with dysarthria. These
recordings consist of 449 words which are divided into 3 blocks
of equal length (B1, B2 and B3). The speakers are divided into
four groups based on their intelligibility: very low, low, mid
and high, which correspond to 0-25%, 25-50%, 50-75% and 75-
100% human transcription word error rate (WER) of the record-
ings, respectively. The transcriptions were done by 5 American
English native speakers, who are non-expert listeners.

The vocoder used (see Section 2.2) is trained using the
VCTK dataset [21], which contains speech of 108 native En-
glish speakers with different accents. The preprocessing con-
sists of downsampling the tracks from 48 kHz to 24 kHz, which
is done with librosa [22].

The UASpeech data is preprocessed following [2]: station-
ary noise is removed using Noisereduce [23] and the silence
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speaker
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speaker
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Figure 1: Outline of our approach: the speech from a model
pathological speaker is converted into speech with the charac-
teristics of another pathological speaker. Red/orange colours
denote the identity of the speaker. The figure is further explained
in Section 2.

from the beginning and end of the clips is cut. Then, the audio
is resampled from 16 kHz to 24 kHz and normalised. Finally,
80-dimension mel-spectrograms (similar to [24]) are extracted
from the audio files and used to compute the mel-cepstrum,
which serves as input to our model.

2.2. Voice conversion model

The model is a 3-stage VQ-VAE. In the first stage, the input x to
the model is a mel-cepstrum that goes through the convolutional
encoder resulting in a hidden variable u1 and a latent variable
z1. The second stage is identical to the first stage, except instead
of x, now u1 is fed into another convolutional encoder, resulting
in u2 and z2. This is repeated for the third stage, feeding u2 to
obtain z3 and u3. This successive encoding serves to model the
features in the speech that are present on successively longer
temporal scales.

The variables zn are all quantised using a nearest neighbour
classifier with respect to the codebook’s codewords of the corre-
sponding stage. Then, we perform the decoding of the quantised
variables qn at each stage. The decoder is also convolutional
which is additionally conditioned on a speaker label. During
training, a speaker embedding table is learned from the train-
ing speakers, and during conversion/inference, this embedding
will correspond to the target speaker of the conversion, which
we can get by a table lookup. The decoding starts at the third
stage and goes back to the first stage. The input of the third
stage decoder is q3 while for the second and first level the qn
signal is concatenated with the output vn of the previous stage
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(the output v2 of the 3rd stage is fed to the 2nd and the output
v1 of the 2nd is fed to the 1st).

For the conversion, the trained model receives the input
mel-cepstrum from a source speaker which is encoded and
quantised in the same way as it is during training. Then, the
speaker embedding is used to condition the decoder on a target
speaker, so the source speaker quantised latent variables qn are
decoded conditioned on the target speaker embedding, which
results in the decoded mel-cepstrum. Finally, the mel-cepstrum
is resynthesised to the speech waveform using a Parallel Wave-
GAN vocoder1 [25].

2.3. Details of the experimental design

As a reminder, in this study, we customise pathological speech
to a different pathological speaker’s voice characteristics. How-
ever, the clinical application would need customisation to a
healthy speaker’s characteristics. In the top panel of Figure 1,
the application scenario is visualised, i.e., how the system could
be used in a clinical setting. In the bottom part, our proposed
evaluation scenario - the experiments that we do in the paper -
is illustrated.

Looking at the top panel, a source pathological speaker is
first selected from a large voice bank consisting of many sam-
ples of pathological speakers. Based on metadata, a clinical
team could decide the kind of pathological speech degradation
which is most likely for a patient. In this paper, we pair up
by severity, but in actual practice an appropriate source speaker
could be found matched by age, region, and type of treatment.
This leads to a selection of a source pathological speaker. Us-
ing a small amount of a new patient’s voice (target speaker), a
speaker embedding can be extracted using the VQ-VAE based
technique. Finally, we obtain the converted speech, which is
expected to be pathological, but with the new patient’s voice
characteristics. The problem is that for the UASpeech, we don’t
have parallel pre-pathology and post-pathology voices. There-
fore, a separate evaluation scheme has to be setup where we as-
sume that the pathological and the healthy speaker embeddings
should be unchanged for the same speaker, which is not always
true, we refer to further discussion about this in Section 3.3.

The evaluation scheme is explained in the bottom panel.
To circumvent the problem with the pre-pathology and post-
pathology, we change the conversion process for the evaluation
as follows. Instead of a new healthy speaker, we enroll a new
dysarthric speaker with a matched intelligibility of the speech
pathology from the UASpeech dataset because a ground truth
(GT) is available there. The converted speech can then be com-
pared to this GT to provide a proof of concept for the system.

Table 1: Speaker pairs used for the VC experiments and their
subjective WER differences.

Speaker A (WER%) Speaker B (WER%) ∆WER (%)
M04 (2%) M12 (7.4%) 5.4%
M05 (58%) M11 (62%) 4%
M08 (93%) M10 (93%) 0%

In our experiments, we convert the speech of three speaker
pairs in both directions The setup for the experiments is the fol-
lowing. We train the VC model with all B1 and B3 sets of words
of every dysarthric speaker to stay consistent with the standard
UASpeech train-test partitioning.

1https://github.com/kan-bayashi/ParallelWaveGAN

We perform VC on the speech from B2 between speak-
ers with a similar level of dysarthria. The selected dysarthric
speaker pairs along with their corresponding human transcrip-
tion error rates from UASpeech are summarised in Table 1. Un-
fortunately, it has not been possible to include females speak-
ers because all female speakers had a different severity in the
UASpeech dataset. We also refrained from controlling for the
type of dysarthria in our experimental design, as that would
have led to certain speaker pairs having excessive difference in
their intelligibility, which would contrive the aim of the paper.

2.4. Subjective evaluation experiments

In order to answer our research questions, we performed sub-
jective evaluation experiments. For RQ1 a subjective speaker
similarity experiment was carried out, while for RQ2 a sub-
jective naturalness experiment was carried out. The design
of these experiments (including the composition of different
stimuli) closely follow those of the VCC challenge standards
[26, 27]. These experiments were run on the Qualtrics platform,
and the participants (10 American English native listeners) were
recruited through Prolific. All participants were remunerated
justly (7.80 GBP per hour).

For the naturalness experiment, we used a mean opinion
score (MOS) naturalness test. We hypothesised that listeners
will not be able to distinguish between the distortions in the au-
dio and the pathological characteristics of the speech. In order
to account for this, we included GT stimuli in the naturalness
test, which allows direct comparison of naturalness with real
samples. The GT shows the maximum attainable naturalness
(second part of RQ2) and the differences of the GT and VC
scores show the reduction due to the synthetic aspects. To an-
swer the first part of RQ2, we included healthy, natural stimuli,
which allows us to measure the reduction in naturalness due to
the reduction intelligibility. Nevertheless, we encouraged lis-
teners to ignore the atypical aspects of the speech by adopt-
ing the naturalness question from the VCC2020 [26], which
was proposed for cross-lingual VC, where pronunciation errors
could appear, similar to pathological speech. For the speaker
similarity test, we used an AB test in which listeners were
asked to listen to two stimuli, and indicate if they thought they
came from the same speaker, and rate their confidence in this
decision. The question for the speaker similarity was directly
adopted from the VCC2016 challenge [27].

3. Results and discussion
3.1. Naturalness

The results of the naturalness experiments are presented in Fig-
ure 2, which shows the MOS score for each of the seven types
of speech tested, grouped by intelligibility, and with their 95%
confidence intervals indicated. For clarity, the actual MOS
scores are indicated on top of each bar.

We first focus on the question how GT pathological speech
affects the naturalness perceived by listeners which is measured
by the MOS score (our RQ2). Figure 2 shows that healthy
speech and GT high intelligibility dysarthric speech have a sim-
ilar MOS score. However, as intelligibility decreases, so does
the MOS score, indicating that the MOS score not only captures
naturalness but is influenced by the intelligibility of the speech.
These results show that naive listeners cannot separate sever-
ity of a pathology and unnaturalness when asked to judge the
naturalness of a speech sample. This also means that the GT
MOS results are an upper bound on the achievable naturalness
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of synthetic pathological samples.
Regarding the synthetic pathological speech, the perfor-

mance on the high (VC) samples is somewhat lower than the
performance of the HL-VQ-VAE-3 model on the VCC2020
challenge and identical to the performance of autoencoder-
based models (2.1) [15]. However, the type of stimuli is dif-
ferent, so the differences in MOS are not directly comparable.
The difference is most likely due to channel differences, the de-
creased intelligibility of the speech, and the different sampling
frequency (UASpeech is 16 kHz, while VCC2020 is 24 kHz).
When we compare the MOS scores for the converted speech of
the different intelligibility speakers, we observe a slight degra-
dation in naturalness with decreasing intelligibility. Compar-
ing the VC and GT results, however, we observe a large degra-
dation for the converted high intelligibility speech (Wilcoxon
signed-rank test: p ≤ 0.05). The difference in VC and GT
MOS scores for the mid and low intelligibility speakers is much
smaller (Wilcoxon signed-rank test: mid p ≤ 0.05, low p ≥
0.05). It is possible that the standard 5-point MOS does not
allow to express the nuances between mid and low samples ap-
propriately. Therefore, for future studies concerning naturalness
of pathological speech, we would recommend using a slightly
wider, 7-point scale. Returning to RQ1, we can conclude that
the synthetic speech of mid and low intelligibility pathologi-
cal speakers have a naturalness that is perceived similar to that
of real pathological speech, while synthetic high intelligibility
pathological speech is not perceived as being as natural as real
high intelligibility pathological speech.

To summarise, pathological speech is not perceived natural
according to the MOS scale by naive listeners. In the case of
mid and low intelligibility pathological speech, the perceived
naturalness is similar between that of synthetic and real patho-
logical speech. This is, however, not the case for high intelli-
gibility synthesised pathological speech which is rated as being
far less natural than real pathological speech. The performance
of the VC approach is comparable to the one observed with typ-
ical speakers, therefore the current method is accessible to typ-
ical speakers, however this does not mean that VC is accessible
to typical speakers (see Section 3.4).
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Figure 2: Mean opinion scores for naturalness grouped by intel-
ligibility with 95% confidence intervals. Blue denotes original,
while orange denotes VC samples.

3.2. Similarity

This section presents and discusses the results of the similar-
ity experiments in order to answer the question whether it is
possible to convert voice characteristics of pathological speak-
ers. The results are presented in Figure 3. In each of the 12

panels, we visualise the results of comparing a voice converted
(VC-D / VC-S) sample with the GT source (S) (Similarity to
source) or the GT target (Similarity to target). Also, the GT
samples are compared between them: S samples are compared
to S samples to know how recognisable the source speaker is, T
samples are compared to T samples to know how recognisable
the target speaker is and S samples are compared to T samples
in order to know how distinguishable is the source from the tar-
get speaker. Note that for each speaker pair in the top panel the
source speaker is the target one in the bottom panel and vice
versa, so this information appears repeated in Figure 3. Addi-
tionally letters in the case of the VC comparisons are used to
help interpretation of the figures: VC-D stands for VC-different
(i.e when converting M04 to M12, the converted should be dif-
ferent from M04), VC-S stands for VC-same (similarly, when
converting M04 to M12, the converted should be same as M12).

For the low intelligibility pair (left 2 columns of Figure 3),
the speakers seem reasonably distinguishable when looking at
the GT as there is a 100% of agreement that M04 samples are
produced by M04 and 90% for M12. For the speech samples
of speaker M04 converted to speaker M12 (top panels), 73.33%
of the converted samples were indicated as being from speaker
M12 (VC-S), meaning that the conversion is fairly successful
for that pair. For the speech samples of speaker M12 converted
to speaker M04 (bottom panels), 56.33% of the converted M12-
M04 samples (VC-S) were indicated as being from speaker
M04. The results show that for the M12-M04 conversion the
model is able to remove some of the source speaker (M12) char-
acteristics and add some of the target (M04) ones, although to
a lesser extent than in the M04-M12 conversion. Therefore, we
conclude that the voice characteristic conversions for the low
intelligibility speakers are successful.

For the mid intelligibility pair (middle four panels), the
M11 seems to be clearly recognisable as there is a 90% of
agreement that M11 samples are produced by M11, however lis-
teners have difficulties recognising the voice characteristics of
M05, i.e., only 20% of the trials where both samples were from
speaker M05 were judged as both being from M05. For M05-
M11 the VC performs poorly, which is indicated by 90% per-
ceiving it different from the target (VC-S result). For M05-M11
the VC-S reaches a 20% of absolutely sure agreement. Notice
that although it is a low score, it is the same that the GT samples
exhibit. The voice characteristic conversions for the mid intel-
ligibility speakers are thus inconclusive: while in one case the
VC fails, in the other participants fail to recognise the speaker
even from the GT samples. Further experimentation with more
speaker pairs is needed.

For the high intelligibility pairs (right 2 columns of Fig-
ure 3), the speakers seem reasonably distinguishable. We can
see that there is a 70% of agreement that M08 samples are pro-
duced by M08 and an 80% for M10. For M08-M10, there is
a 46.66% of agreement that the converted samples sound like
M10. For M10 to M08 VC, 75% of the listeners indicate that
the converted samples sound like M08. We can see that some
of the voice characteristics are successfully transferred for the
high intelligibility samples, however while on the conversions
M10 to M08 the result is similar to the GT samples, on the other
direction (M08 to M10) there is a gap of 33.33% with respect to
the GT. This behaviour is the same that we observed with low
intelligibility pair conversions: although the speakers from the
same pair are recognised with a similar agreement (100% and
90% for low intelligibility and 80% and 70% for the high intel-
ligibility) the conversions are more successful in one direction
than on the other.
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Figure 3: Results of the speaker similarity experiments grouped by intelligibility pairs. S stands for source, T for target, VC-D for voice
conversion different (VC samples should be different from source) and VC-S for voice conversion same (VC samples should be same as
target).

3.3. Limitations of the proposed approach

An assumption of the proposed approach is that the speaker
identity is not affected by the speech pathology, which is cer-
tainly untrue for speech pathologies which are dysphonic, i.e.
where the voice characteristics are known to be affected. By
performing AB testing with GT speakers, we have tried to ac-
count for these scenarios in the perceptual evaluations. From
the speaker similarity experiment, we have seen that in some
cases (i.e., M05) listeners had difficulties of recognising the
voice characteristics even in the GT. These results confirm that
the proposed approach cannot be used for all types of speech
pathologies. To solve this issue, we would need to have a deeper
understanding of what happens to the speaker characteristics
in these speech pathologies. For example, the speaker embed-
dings themselves could be used to predict the new pathological
speaker embeddings of the same speaker, transformed accord-
ing to the vocal pathology (i.e. type of dysphonia).

3.4. Accessibility of VC to atypical speakers

VC of atypical speech produced similar naturalness in the high
intelligibility case as typical speech on VQ-VAE based meth-
ods. Nevertheless, we see that there is room for improvement
compared to typical speech, as other studies employing cer-
tain non-parallel VC approaches can achieve human-like nat-
uralness. Unfortunately, these VC approaches cannot easily be
used for our task as they often leverage linguistic features or
ASR bottleneck features [28, 29]. The need for ASR features
is especially problematic as these features are extracted from
ASR systems, whose performance on atypical speech is gener-
ally much worse than that on typical speech, meaning that the
quality of these extracted features are also expected to be lower
for these speakers. Therefore, we conclude that accessibility to
VC is limited for atypical speakers, but this is because parallel
and ASR-based techniques can hardly be used by them.

4. Conclusions
In this paper, we propose a new approach to pathological speech
synthesis, by customising an existing pathological speech sam-

ple to a new speaker’s voice characteristics. In order to do
this pathological-to-pathological speech conversion, we use an
autoencoder-based voice conversion (VC) technique. When
comparing our results with the ones obtained in the VCC2020
challenge dataset [15], we can see that ours are somewhat lower,
which is most likely due to channel differences, the decrease
in the speech intelligibility and the different sampling rate. We
find that even real pathological speech seems to affect perceived
naturalness as shown by MOS scores, meaning that there is a
bound on achievable naturalness for pathological speech con-
version. Overall, we observe a decreasing trend in MOS with
decreasing intelligibility. Therefore, for low and mid intelligi-
bility, the difference in perceived naturalness between real and
VC is small. Conversion of voice characteristics for low intel-
ligibility speakers is successful, for high intelligibility it is also
possible to transfer the voice characteristics partially. However,
more experimentation is needed for the mid intelligibility with
more speakers: we experienced that in one case the VC failed,
and on the other participants fail to recognise the speaker even
from the real recordings. Whether the differences in the results
for the different intelligibility levels is due to the intelligibility
levels or due to other speech characteristics needs to be further
investigated. The question of pathological intergender (male
to female) and female VC also needs to be investigated. The
performance of the approach is comparable to the one observed
with typical speakers, therefore the current method is accessible
to atypical speakers. However, in the paper, we outlined some
issues such as the need for linguistic resources and parallel data,
as an obstacle for more natural VC for pathological speakers.
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Abstract

Text-to-Speech synthesis systems are generally evaluated using
Mean Opinion Score (MOS) tests, where listeners score sam-
ples of synthetic speech on a Likert scale. A major drawback
of MOS tests is that they only offer a general measure of over-
all quality—i.e., the naturalness of an utterance—and so can-
not tell us where exactly synthesis errors occur. This can make
evaluation of the appropriateness of prosodic variation within
utterances inconclusive. To address this, we propose a novel
evaluation method based on the Rapid Prosody Transcription
paradigm. This allows listeners to mark the locations of errors
in an utterance in real-time, providing a probabilistic represen-
tation of the perceptual errors that occur in the synthetic sig-
nal. We conduct experiments that confirm that the fine-grained
evaluation can be mapped to system rankings of standard MOS
tests, but the error marking gives a much more comprehensive
assessment of synthesized prosody. In particular, for standard
audiobook test set samples, we see that error marks consis-
tently cluster around words at major prosodic boundaries in-
dicated by punctuation. However, for question-answer based
stimuli, where we control information structure, we see differ-
ences emerge in the ability of neural TTS systems to generate
context-appropriate prosodic prominence.
Index Terms: Speech Synthesis, TTS, TTS Evaluation, MOS,
Prosody, Rapid Prosody Transcription, Speech Perception

1. Introduction
Modern text-to-speech (TTS) systems have attained a level of
naturalness that is approaching human parity for isolated ut-
terances [1]. This progress is in large part due to the rise of
neural network based machine learning methods, which have
drastically improved the overall quality of synthetic speech and
enabled researchers to focus more attention on generating natu-
ral sounding prosodic variation. In recent years, there has been
substantial research on achieving fine-grained control over syn-
thetic prosody [2, 3, 4]. New prosodic control mechanisms have
allowed TTS systems to produce more variable and expressive
speech [5]. However, there has been relatively little work de-
termining whether the prosody that is assigned to an utterance
is actually licensed by a given context [6, 7], and it is not clear
whether current subjective evaluation methods, such as Mean
Opinion Score (MOS) tests, provide enough information to de-
termine the contextual appropriateness [8].

The appropriatess of utterance prosody–which broadly in-
cludes pitch, energy, timing and other suprasegmental char-
acteristics of speech–can vary greatly depending on context.
In fact, prosodic differences can help disambiguate many as-
pects of discourse and dialogue structure [9, 10, 11, 12, 13].
Many studies have also shown the close relationship between

context-induced expectations about the prosodic form of ut-
terances and information structural notions like newness and
givenness [14, 15, 16]. Incorporating discourse relations has
been shown to improve the perceived naturalness of synthesized
speech [17], while incorporating information structure into gen-
erated speech has been shown to improve naturalness of auto-
mated task oriented dialogues [18]. As neural TTS models con-
tinue to improve in their ability to generate variable prosody, it
is important to note that not all variation is appropriate in all
contexts and increased variation within an utterance is not al-
ways perceived as natural [2].

In order to evalute how and where TTS systems are really
improving in terms of prosody, we need methods that give us
a clearer view of what sort of prosodic patterns they gener-
ate, and how their appropriateness changes with context. To
do this, we propose a new evaluation method that augments
traditional MOS-based listening tests with finer-grained error
annotations. Specifically, we draw on the Rapid Prosody Tran-
scription (RPT) framework [19, 20] to obtain information about
the location of perceived errors in the prosody of synthesized
speech. In RPT, non-expert listeners mark the presence of
prosodic phenomena (e.g. prominence or boundary placement)
in real time. This approach allows us to more precisely identify
contextual/linguistic sources of prosodic errors.

Much of the current work on TTS in context has focused
on monologue or narrative style generation, where informa-
tion structural relationships are generally unclear [6, 7], and
prosodic expectations may not be strong. To address this, we
created a schema for generating question-answer pairs with
well defined information structure, which in turn project clear
prosodic expectations for synthesized answers. Combined with
word-level error annotation, this allows us to identify cases of
contextually inappropriate prosodic variation.

In the following, we show that there is a strong nega-
tive correlation between measures based on error marking and
MOS, from which we can recreate MOS based system rank-
ings. Moreover, our question-answer stimuli can be used to
induce stronger expectations about prosody than classic audio-
book style test utterances, and so better highlights differences in
the system prosodies. In general, inspection of the distibution
of errors across systems for specific stimuli can lead to better
understanding of the sources of system differences, which may
otherwise be obscured by MOS alone.

2. Background
TTS researchers have developed a wide range of methods to
evaluate the quality of synthetic speech [8]. However, sub-
jective methods are still considered to be the gold standard in
TTS evaluation. These generally involve asking listeners to rate
speech samples on a specified dimension, usually naturalness
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(i.e., how ’humanlike’ synthesized speech sounds). The most
commonly used subjective evaluation type is the Mean Opinion
Score (MOS) test: listeners are presented with a synthetic stim-
ulus and asked about their overall impression of it, scoring the
stimulus on a (usually 5-point) Likert scale [21].

Some of the advantages of MOS tests are that they are
straightforward to set up, they are quicker and less cognitively
taxing than ranking tasks like MUSHRA, and MOS test design
choices have been well extensively investigated [6, 22]. Re-
cent work has expanded to evaluation beyond the single sen-
tence [6, 7]. However, these studies generally focus on holistic
evaluations over multi-utterances segments, rather than the parts
of utterances that may change listener perception. Meanwhile,
the relationship between linguistic context and sub-utterance
prosody has been extensively studied, particularly in English,
in terms of information structure [15, 16, 23], i.e. how informa-
tion is organised in an utterance. This is usually cast in terms
of given/new information (similarly topic/focus). These con-
straints are usually demonstrated using question-answer con-
structions: For example, ‘ALEX ate the brownies’ is an appro-
priate answer to ‘Who ate the brownies?’ because ‘Alex’ is the
new information, while ‘Alex ate the BROWNIES’ is infelic-
itous because ’brownies’ is contextually given. Thus, use of
stimuli with clear information structure provides a precise way
of probing whether prosody is context appropriate or not.

Though Information Structure theory can give us an idea
of prosodic expectations, prosody perception is known for high
inter-listener variability [19, 20] even with expert training [24].
So, the fact that the RPT framework was specifically developed
to capture variability in prosody perception from non-expert lis-
teners makes it a natural choice for exploring the perception
of synthesized speech. In RPT, the perceptual salience of a
prosodic features (e.g. prominence) is determined by the num-
ber of listeners who mark a specific segment (e.g. word) with
that feature. Because RPT is a task that is conducted in real-
time, responses are more sensitive to subtle local changes in
quality than offline ones [21, 25].

While RPT has been extensively used to study perception
of prosody in human speech [26], there has been little empirical
work investigating within utterance prosody for TTS. The clos-
est related work is Edlund et al.’s Audience Response System
[27], where a group of listeners judged a synthetic sample si-
multaneously, pressing a button whenever they hear ‘oddities’.
This was used to identify common error regions and find the av-
erage response latency of listeners when marking errors. How-
ever, the definition of a perceptual error was left (deliberately)
unclear. Edlund et al. used a single long-form stimulus of about
3 minutes in length. In contrast, our study compares different
types of stimuli across multiple TTS systems and focuses on
prosody.

3. Experimental Setup
3.1. Experiments and Hypotheses

We perform three listening tests to probe the usefulness of our
proposed evaluation method. Experiment condition 1 (E1) is
a standard MOS test, while Experiment condition 2 (E2) is a
MOS test augmented with the RPT-based error marking task.
We compare the results of these two tests to see whether orient-
ing the evaluation to prosody and adding the error marking task
affects MOS results.

In E1 and E2 listeners rate single utterances taken from
the widely used LibriTTS test set [28]. In Experiment condi-

tion 3 (E3), listeners completed the augmented MOS test on
question-answer stimuli designed to evoke specific information
structural expectations. The goal here was to determine if the
error marking would bring out listener expectations about utter-
ance prosody, and hence allow us to distinguish between the ap-
propriateness of prosodic renditions more precisely. This also
allows us compare the types of error marks between the two
types of test data (audiobook vs dialogue).

3.2. TTS systems

In each of the 3 listening tests, we compare three TTS systems:
the Festival [29], Ophelia [30], and FastPitch [31].

Festival is a standard toolkit for building synthetic voices
with unit selection. For these experiments, the ‘SLT’ voice dis-
tributed by FestVox was used, i.e. a female voice with a General
American accent, built from the Arctic A corpus. We note that
this voice is far from the current state-of-the-art in TTS, and so
we use it as a baseline to see if listeners would ignore other sig-
nal naturalness issues when asked to attend to prosodic errors.

We use two neural TTS models as representative of the cur-
rent state of the art in TTS. These were both trained on the Linda
Johnson (LJ) Speech dataset [32], which consists of 13,100
recorded utterances from 7 non-fiction books. Ophelia models
were trained using the default recipe (500 epochs for Text2Mel,
250 epoch for SSRN). FastPitch stimuli were synthesised using
character (rather than phone) inputs via a pre-trained sequence-
to-sequence model that was trained for 1000 epochs.

3.3. Stimuli

For E1 and E2, 30 sentences were sampled randomly from the
evaluation set of the LibriTTS corpus [28], a popular audio-
book corpus specially designed for TTS research. The maxi-
mum stimulus length was controlled to be 15 words to mitigate
listener boredom and fatigue.

For E3, contexts and stimuli were generated in a similar
manner to those used by [16] for their study of the acoustic
correlates of information structure. We used a template-based
approach, involving simple Subject Verb Object sentences, gen-
erating two types of question-answer pairs:

• Informational Focus: SVO
e.g., Q: What did Mary eat?

A: Mary ate the cake.

• Corrective Focus: No, SVO
e.g. Q: Did Mary buy the cookies?

A: No, John bought the cookies.

Questions were generated to change which constituent rep-
resented the new information/correction in the answer, which
in English determines the appropriate prominence placement in
the response stimuli. We created 10 stimuli per prominence po-
sition. Since there were two stimulus structures, this resulted in
10×3×2=60 stimuli in total.

3.4. Evaluation Tasks

The experiments were designed and distributed remotely using
a customized version of the Language Markup and Experimen-
tal Design Software (LMEDS) [33]. Each stimulus was pre-
sented on its own page as follows.

For the standard MOS test (E1), a transcript of the audio
stimulus was presented with a ‘Play’ button. Participants were
asked to answer the question ‘How natural does the speaker
sound?’ on a 5-point Likert scale via a scale slider (MOS).
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Figure 1: Distribution of Mean Opinion Scores per experiment
(boxplots and means with 95% confidence intervals in black).

The augmented MOS tests (E2, E3) included the additional
RPT-based error marking task, the MOS slider, and a further
error type survey. The error marking task appeared first: par-
ticipants were asked to listen to the stimulus and to click on
any words in the transcript where the intonation did not sound
correct (possibly none), highlighting them in red. For E3, par-
ticipants were told to read the context question before marking
errors on the answer stimulus. Participants were allowed to re-
play the stimulus up to 3 times and change their error marks.
The MOS slider was positioned after the error marking task,
rating ’How natural is the speaker’s intonation?’ on a 5-point
scale (PMOS). Finally, participants were asked to select which
error types they noticed out of: ‘Abrupt change in pitch’, ‘Awk-
ward pause’, ‘Unexpected intonation’ and ‘Lacking intonation’.
These choices were based on our initial impressions of poten-
tially common errors. Participants also had access to an ‘Other’
box to enter additional comments or a custom response. In E2
and E3, participants were initially shown 3 examples of stimuli
with prosodic errors along with an explanations of why they
were considered odd or unnatural. Once this familiarisation
phase was complete, participants moved on to the main task.
In all three experiments, the audio stimuli were presented in a
random order.

3.5. Participants and Groups

English-speaking participants were recruited with the crowd
sourcing platform Prolific Academic.1 Each participant was
paid £2 for their participation in the study.

Participants were assigned a random group via Prolific and
directed to a listening test based on a Latin square design for
each evaluation condition (E1, E2: 3 groups of 10, E3: 6 groups
of 10). Participants evaluated stimuli from every system, but did
not evaluate the same text stimulus more than once.

After consenting to participate in the study, participants
were instructed to wear headphones for best audio quality, to
ensure they had a stable connection to the server, and to focus
their attention on the evaluation task. A brief explanation of
what was meant by intonation was also given for E2 and E3.
Each participant rated 30 stimuli via the LMEDS interface de-
scribed above. The standard MOS (E1) test took 8 minutes to
complete on average, while the augmented MOS tests (E2, E3)
took 15 minutes.2

4. Results
Figure 1 shows the distribution of mean Likert scale ratings per
stimuli for the three experimental conditions. For E1 this is

1https://www.prolific.co
2Further details/stimuli: http://sweb.inf.ed.ac.uk/clai/tts-rpt

Table 1: Mean / IQR per stimulus mean MOS

System E1 (MOS) E2 (PMOS) E3 (PMOS)
Festival 1.33 / 0.30 1.98 / 0.49 1.90 / 0.60
Ophelia 2.47 / 0.75 3.29 / 0.88 3.54 / 1.03
FastPitch 3.90 / 0.50 3.61 / 0.70 3.38 / 0.70

Figure 2: Distribution of mean error rates (per stimulus).

the classic ’naturalness’ (MOS), while for E2 and E3 this is a
prosodic naturalness rating (PMOS). Comparing the results for
E1 and E2 (LibriTTS), we see that the MOS and PMOS scores
show the same overall ranking of systems. However, the ab-
solute difference between the system means is reduced in E2,
with a marked increase for the scores for Festival and Ophelia.
Table 1 shows the means and Interquartile ranges (IQR) for the
3 tests (IQR is reported as a measure of dispersion for consis-
tency instead of standard deviation as system distributions were
skewed). The overall mean MOS is significantly different for all
systems in E1 (paired t-test, p < 0.01 with Bonferroni correc-
tion), resulting in the ranking Fastpitch > Ophelia > Festival.
However, in the PMOS conditions (E2, E3), the difference be-
tween FastPitch and Ophelia is no longer significant at the same
level (i.e, p > 0.01). Ratings of Ophelia-produced stimuli were
the most variable for all conditions, with the greatest dispersion
shown for the question-answer condition.

These distributional differences indicate that shifting par-
ticipants focus to prosodic errors changed how they rated the
stimuli. This also suggests that lower ratings for Festival and
Ophelia in E1 were due to non-prosodic issues. Conversely,
the higher ratings for FastPitch are for overall better synthesis
quality, but not necessarily for more natural prosodic realiza-
tion. As we shift to test stimuli with clearer prosodic expecta-
tions, the gap between systems in terms of prosodic naturalness
is reduced and sometimes reversed relative to what we’d expect
given only a standard MOS naturalness test.

To see how the error marking task relates to PMOS, we cal-
culated the error marking rate (number errors/number of words)
per stimuli and participant. Figure 2 shows the distribution of
the mean error rate per stimuli (shown as 1-mean error rate to
mirror PMOS ranking). We see that the overall system rankings
are the same as that shown in Figure 1 for PMOS. Unsurpris-
ingly, the correlation between stimulus PMOS and error rate
is strongly negative when we pool data across all conditions
(Pearson’s R = −0.75). All differences in mean error rate are
significant (paired t-tests, p < 0.01, Bonferroni correction) ex-
cept between Ophelia and FastPitch in E2, i.e. when we look
at the word level errors in for question-answer stimuli Ophelia
performs significantly better than FastPitch. This indicates that
the fine-grained evaluation has better ability to differentiate the
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Figure 3: Counts of error types per system for E2, E3.

Test set system α αp Np

LibriTTS festival 0.12 0.18 7.67
ophelia 0.16 0.26 5.60
fastpitch 0.24 0.28 4.90

Question-Answer festival 0.10 0.24 6.53
ophelia 0.28 0.18 3.90
fastpitch 0.18 0.24 5.20

Table 2: Mean interannotator agreement: Krippendorff’s α,
Krippendorff’s α restricted to participants that marked at least
one error in the stimulus (αp), the number of participants who
marked an error in a stimulus (Np, max 10).

system prosody when prosodic expectations are designed to be
stronger (E3), but this difference may not be apparent for classic
narrative style test sets.

Figure 3 shows the distribution of error types selected
per experimental condition. This again supports the idea
that prosodic expectations had a larger role when evaluating
question-answer pairs. Overall, we see a lower number of er-
ror types selected for the LibriTTS set than the question-answer
set. In particular, participants seemed less likely to detect abrupt
pitch changes in FastPitch compared to Ophelia in the LibriTTS
stimuli. However, we see a marked increase in unexpected into-
nation errors for the FastPitch question-answer set. In contrast,
FastPitch garnered slightly less ‘lacking intonation’ errors than
Ophelia for the question-answer stimuli. This suggests that is-
sues with FastPitch came from an excess of prosodic variation,
which was more salient for the question-answer set.

We originally expected that the question-answer pairs
would lead to greater interannotator agreement on error loca-
tions compared to the LibriTTS data due to stronger prosodic
expectations. To investigate this, Krippendorff’s α [34] was
calculated across the annotations for each stimulus in E2 and
E3. We used the coding error=1, no error=0 for the annotation.
Since participants could mark no errors in a stimulus, we added
an additional ‘word’ to each annotation marked 1 if the partici-
pant marked no other errors, and 0 otherwise. This ensured that
‘no error’ annotations would be counted as agreeing. To see
more clearly if errors tended to be marked on the same words,
we also calculated agreement per stimulus discarding annota-
tions with no error marks (αp). We also count the number of
participants who marked any error in a stimulus (Np).

Figure 4: Error Heatmap (Libri16), PMOS: Festival=1.7,
Ophelia=3.6, Fastpitch=2.90.

System E2: LibriTTS E3: Question-Answer
Festival 0.50 0.52
Ophelia 0.67 0.45
FastPitch 0.73 0.60

Table 3: Proportion of time the most error marked word in a
stimulus preceded punctuation. Note, LibriTTS includes much
more within utterances punctuation and punctuation variation
than the Question-Answer set.

Agreement statistics are shown in Table 2. The LibriTTS
results were as expected: as the lowest quality system, Festi-
val, displays the lowest inter-annotator agreement, while Ophe-
lia and FastPitch exhibit greater agreement for both α and αp.
The mean values forNp also align with the PMOS ranking. For
the question-answer test set, α and Np also reflects the PMOS
ranking. However, αp, is higher for Festival and FastPitch, in-
dicating that, while there was less agreement on whether there
was an error in a stimuli: when participants marked an error
they were more likely to choose the same word in the FastPitch
and Festival cases. However, we note that both types of α value
are still in the low agreement range, so other types of errors
likely came into play (cf. Figure 3).

A benefit of the error annotation is that we can visualize the
distribution of errors across systems to direct further investiga-
tion. For example, Figure 4 shows the error heatmap for a Lib-
riTTS stimulus where FastPitch was rated lower than Ophelia
in PMOS. This shows that error markings for FastPitch tended
to occur on words attached to punctuation marks. To check
whether this occurred more generally, we calculated the pro-
portion of times that the most error marked word per stimulus
preceded punctuation. The results in Table 3 indicate that punc-
tuation was a more salient issue for FastPitch than for Ophelia.

Figure 5 shows F0 contours corresponding to the heatmap
in Figure 4. Out of the 11 error types checked for the Fast-
Pitch version, 5 were for ‘awkward pause’, 2 for ‘abrupt pitch’
and 4 for ‘unexpected prosody’, while for Ophelia 3/5 votes
were for ‘lacking intonation’. On the FastPitch version we ob-
serve unexpected H* like pitch accents on ‘honoured,’ and ‘ex-
tended.’, while the Ophelia rendition has a continuation rise on
‘honoured,’ and a fall to low pitch through ‘extended’. This
supports the idea that punctuation produces specific prosodic
expectations which were violated by the high level of prosodic
variability (i.e., expressiveness) of FastPitch.

Similarly, Figure 6 shows error distributions for a con-
trastive focus example. Figure 7 indicates the error marks on
‘cupcakes’ in the FastPitch version are due to an unexpected
pitch accent: ‘cupcakes’ is given relative to the context ques-
tion and so should be deaccented. Interestingly, pitch tracking
for the Ophelia version fails on ‘cupcakes’ due to issues in the
signal quality, resulting in creaky-sounding (i.e., low pitched)
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Figure 5: F0 differences for Libri16: FastPitch has unexpected
pitch accents on before punctuation.

Figure 6: Error Heatmap (focus16); PMOS: Festival=1.5 Fast-
pitch=3.2 Ophelia=3.0

voice. This is in line with information structure expectations
but still may have reduced overall stimuli PMOS. We can also
see that the large pitch excursion on the FastPitch ‘No’ was per-
ceived as an error. While this doesn’t produce an information
structural clash, it does present an unexpected level of emphasis
without further contextual information to justify it.

5. Discussion
Our results indicate that error markings are consistent with
rankings from MOS tests. However, differences between
systems changed when participants were primed to focus on
prosodic issues rather than naturalness in general. This means
that the large lead FastPitch had over Ophelia in the natural-
ness (E1) is likely due to improvements in speech quality sepa-
rate to prosody. It appears participants did separate out prosody
and other quality issues, even for Festival which exhibited much
lower naturalness than our neural TTS models. In fact, the er-
ror rate measure was better than PMOS at discriminating sys-
tem prosody when combined with the question-answer test set,
where prosodic expectations are more constrained.

It’s important to note that neither FastPitch or Ophelia take
into account preceding context in their generation processes.
The lower ranking of FastPitch in the question-answer test is
likely due to overly-variable (unexpected) prosody, rather than
Ophelia being intrinsically better in context. MOS scores for
Ophelia were generally more variable, especially in E3. So, it
is likely that Ophelia generates a more typical ‘reading style’
intonation, which works well for some question-answer pairs,
but not for others.

Default ‘reading’ intonation can work well for narrative-
style (e.g., LibriTTS), but can be problematic when prosodic
expectations are stronger, such as in task-oriented dialogues.
This motivates more design and use of context sensitive stim-

Figure 7: F0 differences (focus16): FastPitch produces an extra
prominence on ’cupcakes’ (cf. Figure 6)

uli, where factors contributing to prosodic expectations are well
understood. A key factor for English prosody is information
structure, but other factors will likely be important for other
languages. In general, there are many paths which might lead
listeners to give similar a (P)MOS, especially if the stimuli
contains other types of errors (cf. relatively low interannota-
tor agreement). This indicates that simply asking more specific
MOS questions isn’t enough to pinpoint differences in systems.
The results of the current study support the case for more fine-
grained error analysis.

The real-time marking used in this study can help TTS
researchers and designers understand what non-expert listen-
ers pay attention to when they evaluate and perceive synthetic
speech. For example, our study suggests that listeners have spe-
cific expectations about what should happen around prosodic
boundaries signalled by punctuation. Similarly, the results from
the question-answer testset provide evidence for an expectation-
driven view of prosody perception [16, 23]. Further analysis of
the acoustic properties around error marks will help improve our
understanding of these expectations in future work. Similarly,
this method may shed light on cases where additional context
actually allows for greater prosodic variability than in the iso-
lated case [6].

While we have not done a comprehensive usability study
of this method, many participants reported in the post-survey
feedback form that they didn’t find the experiment tiring and
were even entertained by the experiment. This feedback sug-
gests that the methodology is feasible and may help mitigate
loss of attention in evaluating long-form TTS [35]. The fact
that non-expert listeners can be used for the evaluation means
that the methodology is scalable and gives a more realistic ac-
count of how a synthetic voice is perceived than a method using
expert prosodic labelling.

6. Conclusion
This study introduced a novel evaluation paradigm that aug-
ments the standard MOS test with an RPT-based error mark-
ing task. Our experiments showed how this fine-grained error
marking can uncover differences in systems in prosody genera-
tion. We confirmed that our error marking method can be used
to distinguish prosodic quality of different TTS systems with a
greater degree of precision than MOS-only tests. The experi-
ments highlighted the usefulness of including question-answer
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test materials, and more generally stimuli which induce clear
prosodic expectations. This new test set provided evidence for
an expectation-driven model of prosody perception in TTS. This
highlighted the fact that the high prosodic variability, often as-
sociated with expressive TTS, may be perceived as errors when
it doesn’t match prosodic expectations induced by the context.

Future work will involve a more detailed study of the acous-
tic properties of the error markings, and the priming effect of
RPT-based error marking on PMOS scores. We would also like
to extend this work to evaluate other long-form synthesis, e.g.
narrative and conversational TTS, to better understand when
contexts admits prosodic variation. We would also like to ex-
tend the paradigm to evaluate, for example, speaker intent and
speaker stance.

Acknowledgements. This work was supported in part by:
ANID, Becas Chile, nº 72190135.

7. References
[1] Z. Malisz, G. E. Henter, C. Valentini-Botinhao, O. Watts,

J. Beskow, and J. Gustafson, “Modern speech synthesis for pho-
netic sciences: A discussion and an evaluation,” in Proceedings of
ICPhS 2019, 2019.

[2] O. Watts, Z. Wu, and S. King, “Sentence-level control vectors
for deep neural network speech synthesis,” in Proceedings Inter-
speech 2015, 2015.

[3] Z. Hodari, C. Lai, and S. King, “Perception of prosodic variation
for speech synthesis using an unsupervised discrete representation
of F0,” in Proceedings of Speech Prosody 2020, 2020.

[4] Y. Lee and T. Kim, “Robust and fine-grained prosody control of
end-to-end speech synthesis,” in Proceedings of ICASSP 2019.
IEEE, 2019.

[5] Z. Hodari, O. Watts, and S. King, “Using generative modelling to
produce varied intonation for speech synthesis,” in Proceedings of
SSW 2019, 2019.

[6] R. Clark, H. Silen, T. Kenter, and R. Leith, “Evaluating Long-
form Text-to-Speech: Comparing the Ratings of Sentences and
Paragraphs Rob,” in Proceedings of SSW 2019, 2019.

[7] S. Tyagi, M. Nicolis, J. Rohnke, T. Drugman, and J. Lorenzo-
Trueba, “Dynamic prosody generation for speech synthesis using
linguistics-driven acoustic embedding selection,” in Interspeech,
H. Meng, B. Xu, and T. F. Zheng, Eds. Shanghai, China: ISCA,
2020, pp. 4407–4411.

[8] P. Wagner, J. Beskow, S. Betz, J. Edlund, J. Gustafson,
G. Eje Henter, S. Le Maguer, Z. Malisz, E. Szekely, C. Tannander,
and J. Vosse, “Speech Synthesis Evaluation — State-of-the-Art
Assessment and Suggestion for a Novel Research Program,” pp.
105–110, 2019.
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Abstract

Articulatory information has been shown to be effective in im-
proving the performance of HMM-based and DNN-based text-
to-speech synthesis. Speech synthesis research focuses tradi-
tionally on text-to-speech conversion, when the input is text or
an estimated linguistic representation, and the target is synthe-
sized speech. However, a research field that has risen in the
last decade is articulation-to-speech synthesis (with a target ap-
plication of a Silent Speech Interface, SSI), when the goal is
to synthesize speech from some representation of the move-
ment of the articulatory organs. In this paper, we extend tra-
ditional (vocoder-based) DNN-TTS with articulatory input, es-
timated from ultrasound tongue images. We compare text-only,
ultrasound-only, and combined inputs. Using data from eight
speakers, we show that that the combined text and articulatory
input can have advantages in limited-data scenarios, namely, it
may increase the naturalness of synthesized speech compared
to single text input. Besides, we analyze the ultrasound tongue
recordings of several speakers, and show that misalignments in
the ultrasound transducer positioning can have a negative effect
on the final synthesis performance.
Index Terms: articulation-to-speech, ultrasound, DNN-TTS

1. Introduction
Speech synthesis has the goal of generating human-like speech
from some a specific input representation. Traditionally, this
research focuses on text-to-speech synthesis, when the input
is text or an estimated linguistic representation. However, a
research field that has risen in the last decade is articulation-
to-speech synthesis (more frequently called as articulatory-to-
acoustic mapping, AAM), when the goal is to synthesize speech
from some representation of the movement of the articula-
tory organs, without having direct access to the textual con-
tents [1, 2]. With the advent of neural vocoders, DNN-based
text-to-speech synthesis has reached a mature level, i.e. if there
is a large speech database (tens of hours) available, the final
synthesized speech can reach the naturalness of human com-
munication. However, such a large database is not always avail-
able, especially when other biosignals are recorded in paral-
lel with speech. Therefore, in limited data scenarios, DNN-
TTS systems with traditional vocoders can be used. In case
of articulation-to-speech mapping, there is a lack of such large
databases, mainly because of the limited possibilities for record-
ing articulatory movement in parallel with speech. Most of the

articulatory recording equipment becomes highly uncomfort-
able for the speaker after roughly an hour. For example, record-
ing Ultrasound Tongue Image (UTI) data requires wearing a
headset, while for Electromagnetic Articulatory (EMA) record-
ings, cables are glued onto the tongue of the speaker. Therefore,
it is worth dealing with traditional (not end-to-end) DNN-TTS
methods, in case we have speech and related biosignals to pro-
cess. With recent methods like WORLD [3], MagPhase [4],
or our Continuous vocoder [5], speech analysis and generation
in statistical parametric speech synthesis has reached a mature
level.

1.1. Articulatory-to-Acoustic Mapping

Speech sounds result from a coordinated movement of articu-
lation organs (vocal cords, tongue, lips, etc.). The relationship
between articulation and the resulting speech signal has been
studied recently by machine learning tools as well. One of the
research fields investigating such relationship is articulatory-to-
acoustic (forward) mapping, when the input is a speech-related
biosignal (e.g. tongue or lip movement), and the target is syn-
thesized speech. AAM can contribute to the development of
’Silent Speech Interface’ systems (SSI [1, 2]). The essence of
SSI is recording the articulation organs while the user of the de-
vice actually does not make a sound, but yet the machine system
can synthesize speech based on the movement of the organs. In
the long-term, this potential application can contribute to the
creation of a communication tool for speech-impaired people
(e.g. those who lost voice after laryngectomy). Voice assistants
are getting popular lately, but they are still not in every home.
One of the reasons is privacy concerns; some people do not feel
comfortable if they have to speak loud, having others around –
but an SSI equipment can be a solution for that.

For AAM, one potential biosignal is ultrasound tongue
imaging [6, 7, 8, 9]. For the articulatory-to-acoustic conversion,
typically, traditional [8] or neural vocoders [9] are used, which
synthesize speech from the spectral parameters predicted by the
DNNs from the articulatory input.

1.2. Ultrasound tongue imaging

Ultrasound tongue imaging (UTI) is a technique suitable for
the acquisition of articulatory data. Phonetic research has em-
ployed 2D ultrasound for a number of years for investigating
tongue movements during speech [10]. Stone summarized the
typical methodology of investigating speech production using
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Figure 1: Block diagram of the proposed approach.

ultrasound [11]. Usually, when the subject is speaking, the ul-
trasound transducer is placed below the chin, resulting in mid-
sagittal images of the tongue movement. Coronal images can
also be acquired, depending on the orientation of the trans-
ducer. The typical result of 2D ultrasound recordings is a se-
ries of gray-scale images in which the tongue surface contour
has a greater brightness than the surrounding tissue and air.
Compared to other articulatory acquisition methods (e.g. EMA,
X-ray, XRMB, and vocal tract MRI), UTI has the advantage
that the tongue surface is fully visible, and ultrasound can be
recorded in a non-invasive way [11, 8, 12]. An ultrasound de-
vice is easy to handle and move, since it is small and light, and
thus it is suitable for fieldworks, as well. Besides, it is a signif-
icantly less expensive piece of equipment than the above men-
tioned devices. Because of these advantages, in our study, we
are using ultrasound as the articulatory information.

1.3. TTS extended with articulatory data

Articulatory information has been shown to be effective in im-
proving the performance of HMM-based and DNN-based text-
to-speech synthesis – in an overview, Richmond and his col-
leagues summarize the use of articulatory data in speech syn-
thesis applications [13]. Ling et al. tested several ways of in-
tegrating EMA-based features into HMM-TTS [14]. They esti-
mated the joint distribution of acoustic and articulatory features
during training, by applying model clustering, state synchrony
and cross-stream feature dependency. According to the results,
the accuracy of acoustic parameter prediction and the natural-
ness of synthesized speech could be improved. Next, vowel
creation [15] and articulatory control was added to HMM-
TTS [16]: with an appropriate articulatory feature sequence,
new vowels can be generated even when they do not exist in
the training set, without using acoustic samples. The results
have been also integrated into the MAGE framework [17]. Cao
et al. proposed a solution to integrate EMA-based articulatory
data to DNN-TTS [18]. The integration was done in two ways:
1) articulatory and acoustic features were both the target of the
DNN, 2) an additional DNN represented the articulatory-to-
acoustic mapping. Both naturalness and speaker identity was
improved, compared to a baseline system without articulatory
data.

As shown above, integrating articulatory data to text-to-
speech synthesis can improve the vocoding quality by providing
more information about the vocal tract, but there is few research
on this. Articulatory features derived from medical imaging
data (e.g. ultrasound or MRI) have not been used before for
additional input of HMM-TTS or DNN-TTS.

1.4. Contributions of this paper

In this paper, we extend traditional (vocoder-based) DNN-TTS
with articulatory input, estimated from ultrasound tongue im-
ages. We show on the data of several speakers that this can have

advantages in limited-data scenarios, in increasing the natural-
ness of synthesized speech compared to text input.

2. Methods
2.1. Data

We experimented with four English male (03mn, 04me,
05ms, 07me) and four female subjects (01fi, 02fe, 06fe,
and 09fe) from the UltraSuite-TaL80 database [19] (https:
//ultrasuite.github.io/data/tal_corpus/). In
parallel with speech (digitized at 48 kHz), the tongue movement
was recorded in midsagittal orientation using the “Micro” ultra-
sound system of Articulate Instruments Ltd. at 81.5 fps. Lip
video was also recorded in UltraSuite-TaL80, but we did not use
that information in the current study. The ultrasound data and
the audio signals were synchronized using the tools provided by
Articulate Instruments Ltd. Each speaker read roughly 200 sen-
tences – the duration of the recordings was about 15 minutes,
which we partitioned into training, validation and test sets in a
85-10-5 ratio.

2.2. Processing the ultrasound data

In our experiments, articulatory features estimated from the raw
scanline data of the ultrasound (i.e., echo-returns) were used as
additional input of the text-to-acoustic prediction networks. We
resized the 64×842 pixel images to 64×128 pixels using bicu-
bic interpolation, and calculated PCA coefficients, similarly to
EigenTongues [20]. While calculating the PCA, we aimed at
keeping the 70% of the variance of the original images, thus
having 128 coefficients. To be in synchrony with the acoustic
features (frame shift of 5 ms), the ultrasound data was resam-
pled to 200 Hz.

2.3. DNN-TTS framework and DNN training

Fig. 1 illustrates the proposed approach, i.e. the combined ar-
ticulatory and text input for the acoustic feature prediction
using a DNN. The experiments were conducted in the Mer-
lin DNN-TTS framework [21] (https://github.com/
CSTR-Edinburgh/merlin). Textual / phonetic parameters
are first converted to a sequence of linguistic features as input
(based on a decision tree), which are extended with the PCA-
compressed version of the ultrasound tongue images. Next,
neural networks are employed to predict acoustic and exci-
tation features as output for synthesizing speech, at a 5 ms
frame step with the WORLD vocoder (60-dimensional MGC, 5-
dimensional BAP, and 1-dimensional LF0, with delta and delta-
delta features). The DNN used here is a feed-forward multi-
layer perceptron architecture (six hidden layers, 1024 neurons
in each). We applied tangent hyperbolic activation function,
SGD optimizer, and a batch size of 256. The input features
had min-max normalization, while output acoustic features had
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mean-variance normalization. We trained the networks for 25
epochs with a warm-up of 10 epochs, applying early stopping,
and a learning rate of 0.002 after that with exponential decay.
We only trained an acoustic model, and the durations were not
modeled.

For baseline, we created two systems: one with text-only
input, and another one with ultrasound-only input. The text-
only input follows the standard Merlin recipe. The ultrasound-
only input was achieved in a way that the decision tree which
calculates the linguistic features was replaced with an empty
tree. This way, all the remaining parameters of the training are
the same in the three systems, and only the input of the networks
is different.

3. Experimental Results
To measure the validation and test error, we calculated both
spectral prediction error (Mel-Cepstral Distortion, MCD), and
excitation related errors (BAP, F0-RMSE, F0-correlation, and
F0-VUV). As we only trained acoustic models, and the dura-
tions were not modeled, warping the acoustic features in time
was not necessary for calculating the error measures. Several
synthesized samples can be found at http://smartlab.
tmit.bme.hu/ssw11_txt-ult2wav.

Table 1 summarizes the MCD results. For all speakers, the
’ult2wav’ (articulatory-to-speech synthesis) system achieved
the highest MCD errors (between 6.9–8.4 dB), indicating that
these are relative different from the original natural utterances.
The ’txt2wav’ (text-to-speech synthesis) system can achieve
significantly lower MCD errors, which are typically in the
range of DNN-TTS with limited data (5.7–6.4 dB). Finally, the
’txt+ult2wav’ (text-to-speech synthesis extended with articula-
tory input) system resulted in the lowest MCD scores (in the
range of 5.5–6.2 dB). According to this, adding the ultrasound-
based articulatory information could enhance the prediction of
the spectral features.

The results of the excitation features are summarized in Ta-
bles 2, 3, 4, and 5. In case of BAP (being an error difference
calculated on the ban aperiodicities), the tendencies are similar
as in the case of MCD: ’ult2wav’ > ’txt2wav’ > ’txt+ult2wav’.
However, in case of the F0-related measures (RMSE, CORR,
and VUV), the results are less straightforward. In terms of F0-
RMSE, the additional articulatory input could not help during
text-to-F0 prediction – but the F0 errors with all three systems
are in similar range, indicating that ultrasound itself contains
some information, of which the F0 can be predicted. This is in
accordance with our earlier ultrasound-to-F0 prediction experi-
ments [22, 23]. F0-CORR, on the other hand, is similar to MCD
and BAP: here, adding the articulatory information was helpful,
compared to text-only input. Interestingly, with some speakers
(04me and 09fe), ’ult2wav’ achieved higher correlations than
’txt2wav’. Finally, as can be seen in Table 5, voicing can be es-
timated very poorly from ultrasound-only input, and adding the
articulatory information to the text input did not help to improve
the voiced/unvoiced decision.

Overall, we found that adding ultrasound-related articula-
tory information besides the textual input was useful for the
spectral and BAP prediction, and in some of the F0 measures.
However, there is strong speaker dependency in the results.

Table 1: MCD errors on the dev/test set.

MCD
Spkr ult2wav txt2wav txt+ult2wav
01fi 8.005 / 8.094 5.720 / 5.636 5.639 / 5.565
02fe 7.674 / 7.585 5.974 / 5.625 5.767 / 5.564
03mn 7.328 / 7.153 5.703 / 5.652 5.523 / 5.442
04me 7.300 / 7.126 5.797 / 5.864 5.634 / 5.635
05ms 8.037 / 8.239 5.777 / 5.741 5.651 / 5.661
06fe 6.997 / 7.050 5.652 / 5.447 5.490 / 5.236
07me 8.426 / 8.396 5.989 / 5.943 5.851 / 5.928
09fe 7.818 / 8.351 6.351 / 6.566 6.230 / 6.439

Table 2: BAP errors on the dev/test set.

BAP
Spkr ult2wav txt2wav txt+ult2wav
01fi 0.433 / 0.428 0.291 / 0.269 0.290 / 0.276
02fe 0.311 / 0.311 0.246 / 0.247 0.241 / 0.254
03mn 0.426 / 0.402 0.319 / 0.322 0.317 / 0.323
04me 0.338 / 0.346 0.285 / 0.262 0.270 / 0.265
05ms 0.385 / 0.400 0.302 / 0.283 0.287 / 0.276
06fe 0.521 / 0.560 0.373 / 0.391 0.386 / 0.392
07me 0.689 / 0.764 0.437 / 0.450 0.454 / 0.464
09fe 0.458 / 0.511 0.350 / 0.397 0.343 / 0.394

Table 3: F0-RMSE errors on the dev/test set.

F0-RMSE
Spkr ult2wav txt2wav txt+ult2wav
01fi 22.333 / 22.062 21.301 / 19.837 22.987 / 20.087
02fe 27.742 / 35.703 25.833 / 33.186 27.461 / 33.504
03mn 11.269 / 10.094 10.036 / 9.582 10.200 / 9.330
04me 17.809 / 23.491 21.672 / 28.472 15.955 / 22.793
05ms 11.786 / 11.892 11.569 / 13.208 10.855 / 10.724
06fe 51.407 / 40.897 40.784 / 39.614 42.861 / 39.871
07me 24.407 / 27.420 20.767 / 26.082 20.561 / 24.422
09fe 54.811 / 61.934 48.048 / 51.004 54.527 / 54.714

Table 4: F0-CORR errors on the dev/test set.

F0-CORR
Spkr ult2wav txt2wav txt+ult2wav
01fi 0.528 / 0.602 0.627 / 0.702 0.634 / 0.701
02fe 0.347 / 0.265 0.400 / 0.470 0.360 / 0.477
03mn 0.255 / 0.303 0.548 / 0.468 0.498 / 0.470
04me 0.715 / 0.741 0.523 / 0.423 0.782 / 0.745
05ms 0.550 / 0.590 0.565 / 0.560 0.649 / 0.734
06fe 0.425 / 0.657 0.672 / 0.649 0.631 / 0.652
07me 0.415 / 0.377 0.624 / 0.448 0.631 / 0.499
09fe 0.551 / 0.448 0.528 / 0.646 0.562 / 0.594
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Table 5: F0-VUV errors on the dev/test set.

F0-VUV
Spkr ult2wav txt2wav txt+ult2wav
01fi 27.162 / 28.483 9.122 / 7.411 9.381 / 7.972
02fe 24.228 / 19.541 10.763 / 8.063 9.927 / 8.092
03mn 18.959 / 16.357 6.833 / 6.828 7.142 / 7.674
04me 21.597 / 22.342 11.602 / 9.717 11.320 / 10.239
05ms 26.693 / 30.381 11.560 / 12.669 12.202 / 12.929
06fe 24.201 / 21.477 12.217 / 7.514 13.079 / 8.352
07me 24.598 / 25.851 11.191 / 9.870 11.394 / 10.566
09fe 22.161 / 27.173 8.608 / 11.318 9.867 / 11.700

4. Effect of ultrasound transducer position
Next, we further investigate the strongly speaker-dependent re-
sults found in Section 3. The articulatory tracking devices (like
the ultrasound used in this study) are obviously highly sensi-
tive to the speaker and the position of the device. A source of
variance comes from the possible misalignment of the recording
equipment. For example, for ultrasound recordings, the probe
fixing headset has to be mounted onto the speaker before use,
and in practice it is impossible to mount it onto exactly the same
spot as before. Therefore, such recordings are not directly com-
parable. Ultrasound-based SSI systems might not turn out to be
robust against slight changes in probe positioning, which can
cause shifts and rotations in the image used as input.

4.1. Ultrasound transducer positioning and misalignment

In order to fix head movement during the ultrasound record-
ings, various solutions have been proposed, e.g. the HATS sys-
tem aimed to provide reliable tongue motion recordings by head
immobilization and positioning the transducer in a known rela-
tionship to the head [24]. The metal headset of Articulate In-
struments Ltd. is a popular and well designed solution which
was used in a number of studies (e.g. articulatory-to-acoustic
mapping [8, 23]). Recently, a non-metallic system by [25] and
UltraFit by [26] are lightweight headsets to record ultrasound
and EMA data. During the recording of UltraSuite-TaL [19]),
the UltraFit headset was used.

Despite these substantial efforts, it is still a question
whether the use of a headset itself is enough to ensure that
the transducer is not moving during the recordings. Even if a
transducer fixing system is used, large jaw movements during
speech production (or drinking, swallowing) can cause the ul-
trasound transducer to move, and misalignment or full displace-
ment might occur. Besides, the subjects, having discomfort due
to the fixing system, sometimes readjust the headset. This way
the recordings from the same session will not be directly com-
parable, which can be a serious issue during analysis of tongue
contours. Although there exist methods for non-speech ultra-
sound transducer misalignment detection [27, 28], they cannot
be directly used in speech production research.

In our earlier work [29, 30], we presented an initial idea
for analyzing such misalignment. The method employs Mean
Square Error (MSE) distance to identify the relative displace-
ment between the chin and the transducer. We visualized
these measures as a function of the timestamp of the utter-
ances. Experiments were conducted on various ultrasound
tongue datasets (UltraSuite, and recordings of Hungarian chil-
dren and adults). The results suggested that extreme values of
MSE indicate corruptions or issues during the data recordings,

which can either be caused by transducer misalignment, lack of
gel, or missing contact between the skin and the transducer.

4.2. Measuring ultrasound transducer misalignment

The speaker-by-speaker differences of the ultrasound-to-speech
conversion of the current study might also be explained with the
issues of the ultrasound tongue image representation. In order
to quantify the amount of misalignment, we used the MSE cal-
culation method from our earlier study [29, 30]. We compared
all utterances of the eight speakers from UltraSuite-TaL with
each other in the order in which they were recorded . First, for a
given speaker and given session, we go through all of the ultra-
sound recordings (utterances), and calculate the pixel by pixel
mean image (across time) of each utterance (see Fig. 1 in [30]).
Next, we compare these mean images: we measure the Mean
Square Error (MSE) between the UTI pixels ([0-255] grayscale
values). MSE is an error measure, therefore the lower numbers
indicate higher similarity across images. For a session with n
consecutive utterances, all compared with each other, the result
is an n× n matrix (see Fig. 2 in [30]). We assume that if there
is misalignment in the ultrasound transducer, than the matrix of
measures would show this. The full details of the method, in-
cluding two more similarity measures were introduced in [29].

The results of the ultrasound transducer misalignment MSE
are shown in Fig. 2. For each speaker, the first 85% of the
data was used for training, the next 10% for development, and
the remaining 5% for testing. On the MSE matrices of Fig. 2,
the bottom left corner (or the top right corner, because the er-
ror is symmetric) indicates the differences in the positioning of
the ultrasound transducer, between the training and the devel-
opment/test data. If the color is yellowish, it means a higher
MSE difference, i.e. larger misalignment of the transducer. For
some of the speakers, the test utterances are clearly far away (in
terms of average ultrasound image) from the training utterances.
For speakers 01fi, 04me, 05ms, and 07me this tendency is vis-
ible, and comparing the MSE figures (Fig. 2) with the MCD
results on the development/test set (Table 1), we can observe
higher errors for them than for the remaining speakers. In case
of speaker 06fe, the MSE matrix in Fig. 2 is relatively homoge-
nous, and his MCD in Table 1 is the lowest. Quantifying the
exact relation between the ultrasound transducer misalignment
and the acoustic / excitation errors remains future work. Also, it
might be possible to auto-rotate the ultrasound images to com-
pensate such misalignments, by comparing the actual image to
an average tongue shape.

5. Discussion and Conclusions
In Sec. 1.3, we summarized the earlier approaches that extended
TTS systems with articulatory data. Most of these studies were
conducted with HMMs [14, 16, 17], but the ideas could be ap-
plied similarly using deep neural networks, as in our experi-
ments. All of these previous works are applying EMA as ar-
ticulatory data, which is a point tracking equipment, and there-
fore processing that data is significantly different from the ul-
trasound signal that we used here. Also, the previous studies
differ in the way how they include the articulatory information:
it might be the input [18], or the target of the machine learn-
ing method [14, 15, 16], or also an internal representation [18].
Besides, there are many examples for DNN-based articulatory-
to-acoustic mapping applying ultrasound as input, but without
using the textual information [8, 9, 22, 23, 31]. Although the
system proposed in the current study is not suitable for direct
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Figure 2: Ultrasound transducer misalignment as a function
of the utterance number within the recording session. MSE:
lower values (blue colors) indicate smaller misalignment. The
diagonals contain NaN values.

TTS or for a Silent Speech Interface, as for the combined map-
ping, both text and articulatory input are required, our methods
are a kind of scientific exploration, and the text-to-speech and
ultrasound-to-speech results shown above might be useful for
other modalities having similar properties (e.g. rtMRI and lip
images).

In this paper, we extended traditional (vocoder-based)
DNN-TTS with articulatory input. The articulatory input was
estimated from ultrasound tongue images, with a PCA-based
compression to 128 dimensions. We have shown on the data
of eight speakers from the UltraSuite-TaL dataset that this can
have advantages in limited-data scenarios (e.g. when the train-
ing data is in the range of 200 sentences for each speaker), in
increasing the naturalness of synthesized speech compared to
text-only or ultrasound-only input. During our experiments, we
were training speaker-dependent DNNs. Creating an average
voice, and adapting to a specific speaker remains future work,
as it is not a trivial task. For speaker-independent training, the
challenge will be to find a suitable representation of the ultra-
sound images, as the PCA trained on the articulatory data of
one speaker is not transferable for other speakers. In the future,
we plan to investigate extending DNN-TTS with other types of
biosignals (e.g. MRI or video of the lips).

The implementations are accessible at https:
//github.com/BME-SmartLab/txt-ult2wav.
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Abstract
In this work, we explore multiple architectures and training pro-
cedures for developing a multi-speaker and multi-lingual neural
TTS system with the goals of a) improving the quality when
the available data in the target language is limited and b) en-
abling cross-lingual synthesis. We report results from a large
experiment using 30 speakers in 8 different languages across 15
different locales. The system is trained on the same amount of
data per speaker. Compared to a single-speaker model, when
the suggested system is fine tuned to a speaker, it produces sig-
nificantly better quality in most of the cases while it only uses
less than 40% of the speaker’s data used to build the single-
speaker model. In cross-lingual synthesis, on average, the gen-
erated quality is within 80% of native single-speaker models, in
terms of Mean Opinion Score.
Index Terms: multi-speaker synthesis, multilingual synthesis,
fine-tuning, neural speech synthesis

1. Introduction
The quality of synthetic speech has improved dramatically since
the development of methods based on neural networks, [1, 2].
However, using this technology requires high computational ca-
pacity and large amounts of training data. Several researchers
have shown that unlike unit-selection text-to-speech (USEL),
neural TTS can compensate for the lack of speech data from
the target speaker by adding data from other speakers. Most of
the research published in this respect has used support speakers
in the same language as the target. However, the most com-
mon case when developing TTS voices for a new language is
that there are no additional supporting speakers in that new lan-
guage. In that context, the only available options are to record
more speakers and/or to use support speakers from different lan-
guages.

In this paper, we show the results of applying the latter ap-
proach on a large-scale experiment involving 30 target speaker
in 8 languages across 15 different locales. Our goal was to ad-
dress the following questions: a) how effective is it to combine
speakers from different languages compared with just training
only on the data of the target speaker; b) what type of model
architecture and training protocol yields the best quality when
using multilingual data; and c) to which extent can the voices
created in this way speak some of the other languages included
in the training data?

In addition to the standard numerical results, we also show
the analysis of the most common errors pointed out by the eval-
uation subjects. We believe that the results of these experiments
will be useful for researchers and practitioners developing syn-
thetic voices.

The structure of the paper is as follows. Section 2 reviews
the recent literature on using data from other speakers to create
new voices and on the application of this method to create poly-
glot voices. Section 3 describes the architecture of the models

used in the experiment as well as the way in which these mod-
els were trained. Section 4 describes the conditions and results
of our experiments. It also shows the analysis of most com-
monly mentioned mistakes for each of the systems. Section 5
discusses some of the results and suggests some possible future
directions. Finally, in section 6 conclusions are drawn.1.

2. Related work
The idea of using data from other speakers to improve the qual-
ity of synthetic speech has been explored extensively [3, 4, 5].
Although there has been some work in training multi-speaker
text-to-wave models [6], most of the recent work has been in
phone-to-spectrogram. For instance, in [7] the effect of reduc-
ing the amount of data from the target speaker and compensat-
ing for it with data from other speakers was studied. The effect
of having imbalanced training data was further analized in [8].
Even more extreme examples were presented in [9], where only
5 minutes of speech were used to get high quality or even in [10]
where a single utterance is used. When there are not sufficient
support speakers, some authors have suggested to artificially ex-
pand the number of training speakers [11] or making use of low
quality data [12].

Mixing languages has also been widely studied, although in
most cases with the goal of creating polyglot voices. Within the
sequence-to-sequence framework, [14] and [15] introduced sev-
eral modifications to allow training polyglot voices using only
monolingual speakers. A non sequence-to-sequence model was
proposed in [13].

Even without aiming to create polyglot voices, using com-
pensatory data from speakers in other languages is also a po-
tential solution to the lack of data. However, this option has
received less attention. An architecture inspired by the speaker
and language factorisation (SLF) approach [16] but within the
DNN/LSTM framework was proposed in [17]. Other authors
have also shown that mixing data from multiple speakers and
languages can yield equal or even better quality than single
speaker models [18, 19]. Finally, in [20], 8 Indian languages
were combined directly in a very similar way to the one we
suggest here but using a DeepVoice3 [21] architecture.

3. Model training
3.1. Model architecture

The basic architecture of our models is Tacotron2 [2]. The main
input is a sequence of phones and punctuation marks and the
output is a sequence of 80-dimensional mel-spectrogram fea-
tures. These are computed from speech signals with a sampling
rate of 24kHz, using a 25ms analysis window and the Mel filter-
bank generated using Librosa Toolkit [22]. An end-pointing flag

1Samples can be found in https://apple.github.io/
ml-polyglot_tacotron2_finetuning-samples
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Figure 1: Model architectures. The rhombi indicate concatena-
tion. The dotted line linking the postnet output to the pre-net
input is used only at inference time

was also concatenated with the mel-spectrogram vector to make
the final 81-dimensional output vectors.

The encoder consists of a look-up table that converts the se-
quence of phone-IDs into a sequence of 512-dimensional vec-
tors, three 1D-CNNs and one bi-LSTM layers. The attention
is a stepwise monotonic attention [23]. On the decoder side,
the pre-net consists of two fully connected (FF) layers. The de-
coder itself is formed by two LSTMs followed by one FF layer
to decode the mel-spectrograms and another one to generate the
end-pointing signal. These mel-spectrograms are finally passed
through a post-net module consisting of 5 1D-CNNs. The train-
ing loss combines the L1 for the end-pointing and the output of
the decoder, and an L2 for the output of the post-net. For each
output step, two output vectors were generated.

On top of that standard architecture, two variants were
built, as depicted in fig. 1 The first variant (in green) consists
of adding a 16-dimensional residual variational auto-encoder
(resVAE) following [14]. The main goal of the resVAE is to
normalise differences between the utterances that cannot be de-
scribed from the input. The resVAE consists of 6 2D-CNN lay-
ers, each followed by batch normalisation, a GRU, a common
FF layer and 2 additional FF layers, one for the mean and an-
other for the covariance diagonal. A sample from this single
Gaussian distribution is then concatenated at the input of the
decoder. As usual, an additional loss factor for the KLD w.r.t
a diagonal Gaussian was added. During inference the resVAE
network is bypassed and a constant 0-vector is used instead.

The second variant (in red) is the addition of speaker and
language embeddings. The speaker embedding (SE) consists of
a 128 dimensional d-vector obtained from a speaker verification
model [12]. One advantage of using speaker embeddings versus
one-hot is that we can have different values for each utterance.
Unfortunately, the SE of each utterance also contains informa-
tion about the acoustics of that utterance [24]. To avoid this
and simulate something akin to a VAE, a single Gaussian model
of the embeddings of each speaker was computed and sampled
during training. At inference, the mean of the Gaussian was
used. The language embeddings (LE) are 32 dimensional vec-
tors obtained from a one hot encoding of the locale associated
with each speaker.

We experimented with different ways of adding SE and LE.
For SE, we found that the best option is to insert it both at the in-
put of the decoder, concatenated with the output of the attention
and with the output of the pre-net as in [25]. This configura-
tion yields the best results in terms of quality, voice similarity

Table 1: Evaluated models

System Fine Tuned (FT) resVAE SE+LE #total steps
FT Yes No No 3x106

FTres Yes Yes No 3x106

FTresSE Yes Yes Yes 3x106

resSE No Yes Yes 4.5x106

to the target speaker and voice consistency when synthesising
mix-lingual sentences. For LE, the best option was to concate-
nate it with the output of the encoder before the attention. Con-
catenating LE at the beginning of the encoder or after the atten-
tion made the models’ training unstable. In any case, the effect
of LE was almost negligible, presumably because the phonetic
sequence itself already contains enough information about the
language.

Previous internal evaluations on models with SE but with-
out fine tuning showed a preference for adding the resVAE. For
that reason, all our models with SE also include resVAE. In
some initial models we also included a domain adversarial NN
(DANN) loss against the identification of the speaker from the
encoder outputs as suggested in [14]. Although DANN pro-
vided some good results when mixing only 2-3 languages with
at least 4 speakers each [24], it introduced instability when we
added languages for which only two speakers were available.

3.2. Training procedure

Models that do not include any speaker information need to be
fine-tuned in order to get a stable voice. Models that include SE
can be used either directly, as in [7], or they can also be fine-
tuned. All the base models were trained on exactly the same
data. For the fine-tuning to each target speaker we used exactly
the same utterances of that speaker that were used as part of the
base-model training. We didn’t consider experiments in which
an existing model was fine-tuned to an unseen speaker because
if the data for the new speaker is available, it can always be
mixed with the existing speakers to create a new base model.

All models were trained on a single GPU with a batch size
of 16. We used the Adam optimiser [26] with 0.9 and 0.999 for
beta1 and beta2, respectively, an initial learning rate of 0.001,
4000 warm-up steps and “Noam decay scheme” [27]. The seed
models were trained for 2.5 million steps and then fine-tuned for
another 0.5 million steps. The non fine-tuned seed model with
speaker embeddings was further trained up to 4.5 million steps.
The systems that were finally evaluated are shown in Table 1 .

3.3. Normalisation of the phonetic transcriptions

We normalised the transcriptions across all locales to share
a single unified language-agnostic set of phones based on
XSAMPA [28]. Previous experiments had shown that in
crosslingual synthesis complex phones such as diphthongs,
nasalized vowels, syllabic consonants and affricates, tend to get
confused and the synthesis only produces half of the phone. To
avoid this problem, we split such complex phones. In this way,
diphthongs were split into two vowels, affricates into a closure
with no audible release plus a fricative, syllabic consonants into
the consonant preceded by schwa, and nasalized vowels into a
vowel followed by a velar nasal consonant.

Syllabic stress marks were also added to the vowels of the
stressed syllables for all languages. It should be noted that for
inlingual synthesis, (in which the spoken language is the same
language as that of the target voices) most languages do not
need explicit stress marks, especially those languages for which
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stress is not phonemic. However, we found that in crosslin-
gual synthesis, (which is when the synthesised utterances were
in a language other than that of the target voices) the lack of
stress marks caused serious intelligibility problems, even in lan-
guages which are supposed to have no phonemic stress, such as
French. In crosslingual synthesis, the voices tended to apply the
stress pattern of its own language, e.g., Spanish voices speaking
French tended to put the stress in the penultimate syllable. Such
changes of the stress patterns made the parsing of the prosodic
words very difficult and thus, affected the intelligibility of the
utterances.

4. Experiments
We ran two subjective evaluations, one for inlingual synthesis
and another for crosslingual synthesis. All the evaluations were
5 points mean opinion score (MOS) tests conducted via crowd-
source on each respective locale. The question asked was “How
do you rate the overall quality of the voice?”. Each utterance
was evaluated by 15 different subjects and no subject was al-
lowed to judge more than 360 samples. With these settings,
the total number of listeners per voice was around 120 for the
inlingual experiments and 140 for the crosslingual one.

For each evaluation, raw scores were normalized by z-
scoring by subject. Mixed effects linear regression models
were fitted to the data with subjects and items (sample con-
tent/sentence) as random effects and the synthesis method/voice
as the fixed effect. T-tests for pairwise contrasts for each pair
of voices/systems provided estimated p-values (with Bonferroni
correction for the number of contrasts).

4.1. Data

The models were trained on 30 proprietary voices consisting of
two speakers for 15 different locales in 8 languages: Australia,
India, Ireland, South Africa, UK and US for English; Mexico
and Spain for Spanish; Canada and France for French, Brazil for
Portuguese, and Denmark, Germany, Italy and The Netherlands
for their respective main languages. From each speaker we used
8500 utterances randomly selected from the total corpus, which
on average corresponds to 7.73 hours/speaker. This amount of
data corresponds on average to 37% of the data used to train the
single speaker (SingSpkr) models.

4.2. Vocoder

In all the experiments, we used speaker-dependent waveRNN
neural vocoders [29]. The same vocoder trained on all the data
was used for each voice across all the models. The reasons for
this are: a) we only wanted to evaluate differences in the acous-
tic model and, b) there exist proposals for universal waveRNN
that work for both seen and unseen speakers [30, 31]

4.3. Inlingual synthesis

For each of the 15 locales, 150 utterances were evaluated with
each of the 2 speakers’ voices. In addition to the systems de-
scribed in Table 1, we also evaluated SingSpkr models with the
same architecture of FT models, trained from scratch on all the
available data of each speaker. The sentences were the same
for all the systems but not necessarily the same for both speak-
ers. In order to provide anchors, each evaluation included 50
recorded utterances from each of the target voice talents as the
high anchor and the same 150 evaluation sentences2 generated

2For 1 of the 15 locales we used 75 instead of 150 USEL utterances

Recording USEL SingSpkr FT FTres FTresSE resSE
Systems

1

2

3

4

5

M
O

S

4.39

3.47

4.04 4.13 4.14 4.15 4.03

Figure 2: MOS scores across all voices for inlingual synthesis

Table 2: Number of voices significantly different from SingSpkr
models in inlingual synthesis.

USEL FT FTres FTresSE resSE
better 1 11 14 14 4
equal 1 18 14 15 15
worse 28 1 2 1 11

by a hybrid unit selection system (USEL) [32] as the lower one.
Figure 2 shows the box plot with the summary of the results

across all voices. On average, all the fine-tuned models outper-
formed the SingSpkr models. The average difference between
the models is around 0.1 MOS scores. Note that this is by using
less than 40% of the target speaker data of the SingSpkr mod-
els. Obviously, there are variations depending on the voice. A
voice-by-voice analysis is provided in Table 2. This result con-
firms that for most voices any of the fine-tuned models perform
equal or better than the SingSpkr models. By contrast, resSe
was found to be significantly worse than SingSpkr for 11 voices
and only better for 4, even though both systems appear to be
identical in fig. 2. Our results confirm those reported in [20] for
premium voices with 15+ hours of data. Finally, we did not find
any significant differences among the 3 fine-tune approaches,
although both FTres and FTresSE seem to be marginally better
than FT, presumably due to their higher capacity.

4.4. Crosslingual synthesis and evaluation

Our main purpose was to create a base model from which new
voices for new languages can be created rapidly. However,
given that the seed models are trained on multiple languages,
we were curious to know to which extent the fine-tuned mod-
els still retained some multilingual capacity. Evaluating each of
the 30 voices over the 7 non-native languages would have been
ideal, but also very costly. For that reason, we evaluated only
the non-native voices when synthesising 4 different foreign lan-
guages, American English (en-US), Mexican Spanish (es-MX),
France French (fr-FR) and Germany German (de-DE). For each
target language 50 utterances from each of the non-native voices
were evaluated. Voices in the same main language but from a
different locale were not considered. To avoid conflating the
differences between native/non-native speakers with those be-
tween synthetic/natural speech, we only included as upper an-
chor 50 utterances generated by the native SingSpkr voice in
the target language. These SingSpkr voices are the same as the
ones described in Sec. 4.3. To reduce the number of different
voices/systems in a single evaluation, the stimuli were split into
two groups: one for the voices with the lower median funda-
mental frequency (F0) and another for the voices with higher
median F0 from each locale. This yields a total of 8 indepen-
dent MOS evaluations. In total, the number of individual voices
evaluated on each experiment were 10 for English, 14 for Span-
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Table 3: Number of model comparisons across the 8 crosslin-
gual evaluations in which the MOS difference was significant

Systems #1st better #2nd better #No diff.
resSE vs. FT 1 0 7

resSE vs. FTres 1 0 7
resSE vs. FTresSE 1 0 7

FT vs. FTres 0 3 5
FT vs. FTresSE 2 6 0

FTres vs. FTresSE 2 2 4

ish and French and 15 for German. Subjects were not warned
that they were going to listen to foreign accented speech.

Table 3 shows for how many of the 8 evaluations the MOS
difference between models were significant, and Table 4 reports
the average MOS for each combination of target-language and
voice-locale. In general, all systems’ performance is very sim-
ilar. For most voices the non fine-tuned system resVAE is usu-
ally better than the fine-tuned ones. This result is not surprising
since fine-tuned models tend to “forget” previous knowledge.
However, with the exception of the low-pitch voices in French
those differences were not significant. Among the fine-tuned
models, FTres and FTresSE were better than FT on average,
probably because of the higher capacity introduced by the addi-
tional resVAE. However, the addition of the speaker embedding
does not seem to provide any advantage when the model is fine-
tuned.

Despite these differences, the combination of voice and tar-
get language has a much stronger impact over the speech quality
than the model type. As shown in Table 4, some combinations
achieve scores around 4.0 while others fall below 3.0.

4.5. Analysis of the comments

In inlingual synthesis, the main problems noted were in terms of
pauses (either misplaced or too few), pace (usually too fast), un-
natural intonation, and audio quality deterioration. These prob-
lems seem to affect more the resSE model. Word stress also
seems to be sometimes slightly misplaced in some languages.
In the resSE model, some non-phonemic distinctions are also
less accurately predicted, e.g., the Italian trill is sometimes cho-
sen instead of the flap.

In crosslingual synthesis, the foreign accent of a voice is
usually well identified, but in some cases deemed too pro-
nounced to the extent of impeding intelligibility, especially
when in combination with insufficient pausing and fast pace.
We also notice a degraded audio quality, affecting some voices
more than others, with some occasional “blabber”. Intonation
contours are sometimes incorrect and sometimes deemed as
monotone. In terms of pronunciation, the model without fine
tuning seems to retain less accent and produces a more accu-
rate approximation of the target language phones. This effect is
notable, for example, with the American English rhotic and the
French voices: the model without fine tuning being the closer
to the English alveolar approximant (although getting inaudible
in word final position or pre-consonantical position), and other
models having a pronunciation closer or identical to the French
rhotic. For most voices, lexical stress seems to be placed cor-
rectly.

In some language pairs, some phonemic distinctions are
lost. For example, the Spanish trill/flap pair is not always
maintained when synthesising with French, English, or German
voices. The English phone /h/ is often dropped in the synthesis
with the French voices. Actually, human French speakers often
do drop that phoneme. However, it contributes to the impression

Table 4: Crosslingual MOS per locale. The numbers in the tar-
get language column are the average MOS of the two ‘Native
SingSpkr’ voices in that language.

Target
language

Speaker
locale FT FTres FTresSE resSE

American
English

4.2

da-DK 3.77 3.84 3.78 3.7
de-DE 3.88 3.88 3.96 4.01
es-ES 3.66 3.74 3.77 3.78
es-MX 3.81 3.82 3.81 3.93
fr-CA 3.75 3.82 3.81 3.93
fr-FR 3.62 3.69 3.72 3.79
it-IT 3.72 3.69 3.76 3.76
nl-NL 3.84 3.87 3.85 3.9
pt-BR 3.68 3.71 3.81 3.88

France
French

4.35

da-DK 3.08 3.25 3.26 3.34
de-DE 3.77 3.84 3.84 3.86
en-AU 3.08 3.11 3.2 3.42
en-GB 3.28 3.33 3.3 3.51
en-IE 3.29 3.32 3.49 3.46
en-IN 3.46 3.43 3.5 3.7
en-US 3.27 3.29 3.29 3.57
en-ZA 3.25 3.47 3.47 3.69
es-ES 3.37 3.46 3.48 3.67
es-MX 3.55 3.53 3.58 3.7
it-IT 3.62 3.54 3.66 3.81
nl-NL 3.18 3.52 3.32 3.66
pt-BR 3.27 3.4 3.56 3.72

Mexican
Spanish

4.45

da-DK 2.88 3.08 2.87 2.67
de-DE 3.3 3.35 3.18 3.38
en-AU 2.94 2.91 2.9 3.04
en-GB 3.15 2.93 3.02 3.13
en-IE 3.03 2.98 3.07 3.21
en-IN 3.34 3.45 3.15 3.32
en-US 3.24 3.14 3.12 3.14
en-ZA 2.95 3.08 3.07 3.2
fr-CA 3.23 3.05 3.09 3.46
fr-FR 3.41 3.45 3.37 3.47
it-IT 3.95 4 3.92 3.95
nl-NL 3.03 3.08 2.85 3.08
pt-BR 3.63 3.62 3.61 3.64

Germany
German

3.96

da-DK 3.27 3.32 3.3 3.3
en-AU 3.47 3.58 3.57 3.63
en-GB 3.51 3.51 3.55 3.66
en-IE 3.57 3.7 3.66 3.82
en-IN 3.6 3.67 3.6 3.77
en-US 3.62 3.66 3.52 3.66
en-ZA 3.66 3.75 3.69 3.8
es-ES 2.88 3.12 3.09 3.44
es-MX 3.2 3.29 3.46 3.55
fr-CA 3.16 3.25 3.28 3.67
fr-FR 3.34 3.4 3.42 3.59
it-IT 3.16 3.18 3.12 3.57
nl-NL 3.43 3.55 3.51 3.65
pt-BR 2.8 2.97 3.27 3.55

Total 3.39 3.44 3.44 3.57

of strong foreign accent as more proficient speakers would tend
to realise it. Another factor contributing to the impression of
strong foreign accent is that intonation and some phonological
phenomena are ported to the target language. For instance, word
final rhotic is dropped by British English voices, and sometimes
French voices insert liaison in Spanish. It is also interesting to
note that some American English subjects expected a genuine
non-native accent. For example, they expected /t/ or /d/ instead
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Figure 3: Average crosslingual MOS per voice w.r.t average
phonetic distance between voice and language

of flaps in the French, Portuguese and German voices.

5. Discussion
5.1. Differences by language

There are two interesting observations from the crosslingual
evaluation. The first one is the large variation in the MOS de-
pending on the combination of target voice/language as shown
in Table 4. One possible explanation for this is that the pho-
netic differences between the voice’s language and the target
language matters. Figure 3 shows the average MOS3 of the
voices/systems in the crosslingual evaluation with respect to the
average phonetic distance between the speaker data and the test
sentence of the target computed as

AvgPhoneDist =
∑

∀t∈T

P (t|T ) min
∀s∈S

dist(et, es) (1)

where T and S are the sets of unique phones in the test utter-
ances of the target language and in the target speaker data, re-
spectively; et and es denote the phone embeddings for t and s
taken from the look-up-table of the resSE model, and dist is the
cosine similarity function. Note that for all t ∈ S the minimum
distance is 0.

Figure 3 shows that the impact of the phonetic distance de-
pends on the target language. For instance, Mexican subjects
penalised foreign accented voices heavily, even when the av-
erage phonetic distance is small. On the contrary, for French
subjects other factors seem to be more important. For example,
for the British, Australian and Irish English voices, the factors
that produce the most negative impact are very unnatural and
strongly pronounced intonation, unnatural parsing of groups of
words and pace which generally affected intelligibility. For the
British English voices, the intelligibility is also affected by the
porting of the non-rhotic character of British English to French:
final /r/ are often dropped and the quality and length of the
previous vowel is modified. The pronunciation of French di-
aeresis also seems problematic in terms of intelligibility, be-
ing realised as a diphthong (as in ”pays” for instance). On the
other hand, German, Italian, Portuguese, and Spanish voices
were preferred in terms of general intelligibility, even though
the intonation was found too monotone, the pauses sometimes
incorrectly placed or missing, and the foreign accent too strong.

For American English, MOS is also strongly correlated
with the average phonetic distance, but mainly due to the
smaller dispersion. Otherwise, the curves are flatter than for
German or Spanish. This links with the second observation

3The MOS values have been shifted so that the average MOS across
all the samples of the two evaluation groups of each target language are
the same

which is that the average MOS for American English is higher
than for the other languages. One explanation of that higher
score is that an average of 7% of the 8500 training utterances
of the non-English voices were in English, with another 13%
having at least one English word. The English proficiency of
the voice talents varied greatly, from fully bilingual to very ac-
cented. Moreover, the English utterances in the training data of
many voices were transcribed using the phones of the voice’s
language, which might be the reason for the relatively larger
phonetic distances for en-US. Still, that English data seems to
have contributed to improve the synthesis of English utterances
with non-English voices. Another possible explanation for the
higher MOS for American English may be that subjects in that
locale (and to some extent in France French too) are more used
to listening to foreign accents than their Mexican or German
counterparts and therefore, have a larger tolerance for them.
Further experiments are needed to confirm which hypothesis is
correct.

5.2. Pauses

One of the most commented problems for inlingual synthesis
was errors with pausing. Since the model does not include any
explicit pause predictor, or part-of-speech tagging, the pause
prediction depends entirely on the phonetic transcription and
punctuation marks. In single-language models, the network
might be able to perform some level of syntactic parsing, for
example identify the most common function words. In a mul-
tilingual framework, this is harder because the same phonetic
sequence might also correspond to a content word in a differ-
ent language. But also, different languages have different rules
regarding the punctuation. So, whereas in some languages it
is used mostly to indicate pausing, in others they have a more
grammatical function. These kinds of differences are hard to
disambiguate by just looking at the phone sequence. Includ-
ing a LE was expected to help with such language-dependent
issues. However, simply concatenating a global LE at the input
of the attention didn’t work.

6. Conclusions
This paper confirms that data from speakers in other languages
can be used to compensate for the lack of target speaker data.
We have presented a large-scale experiment on building neural
TTS models by mixing speech from 30 speakers of 15 different
locales in 8 different languages. The results show that for the
vast majority of voices, fine-tuning a multi-lingual and multi-
speaker model produces equal or better quality than single-
speaker models trained with more than 2.5 times the amount
of speaker-specific data.

An evaluation of these models synthesizing speech in a lan-
guage different from that of the target speaker has confirmed
that the models also preserve good multilingual capability. On
average, the MOS on these models in a crosslingual scenario is
around 80% of the MOS obtained by inlingual single-speaker
native voices. Although this may not be enough for a gen-
eral stand-alone voice in that language, it is sufficient for code-
switching. Our results showed that although non fine-tuned
voices are marginally better for crosslingual synthesis, for in-
lingual synthesis they are generally significantly worse than the
fine-tuned ones. Finally, we have presented a qualitative analy-
sis of the main problems identified by subjects during the inlin-
gual and crosslingual evaluations.
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Abstract 

A slower speaking rate of human or synthetic speech is often 

requested by for example language learners or people with 

aphasia or dementia. Slow speech produced by human speakers 

typically contain a larger number of pauses, and both pauses 

and speech have longer segment durations than speech 

produced at a standard or fast speaking rate. 

This paper presents several methods of prolonging speech. 

Two speech chunks of about 30 seconds each, read by a 

professional voice talent at a very slow speaking rate, were used 

as reference. Seven pairs of stimuli containing the same word 

sequences were produced, one by the same professional, 

reading at her standard speaking rate and six by a moderately 

slow synthetic voice trained on the same human voice. 

Different combinations of pause insertions and stretching were 

used to match the total length of the corresponding reference 

stimulus. Stretching was applied in different proportions to 

speech and non-speech, and pauses were inserted at 

punctuations, at certain phrase boundaries, between each word, 

or by copying the pause locations of the reference reading. 

128 crowdsourced listeners evaluated the 16 stimuli. The 

results show that all manipulated readings are less consistent 

with expectations of slow speech than the reference, but that the 

synthesised readings are comparable to stretched human 

speech. Key factors are the relation between speech and silence 

and the duration of talkspurts. 

1. Introduction 

Language learners and people with cognitive impairments (e.g. 

aphasia or dementia) often prefer a slower speaking rate when 

listening to longer texts read aloud. A number of studies have 

attempted to find a balance between speaking rate and 

comprehension among aphasics (see for example [2]–[4]). 

The most obvious method to produce read speech with a 

slow speaking rate is to instruct a voice talent to read very 

slowly, but to create books or other long texts at different 

speaking rates with human readings would be prohibitively 

expensive. Using slow speech synthesis trained on or adapted 

to very slow speech materials is another option, but again, this 

may not always be practicable. 

In this study, we investigate several methods to create very 

slow speech using existing speech materials. The results are 

evaluated against human reference readings at a very slow 

speaking rate by a professional voice talent, and a stretched 

human reading in a listening experiment with 128 crowd 

sourced listeners.  

 

2. Background 

Talking books 

We are mainly concerned, here, with texts read aloud for people 

with vision impairments or reading difficulties: societal 

information, news, and so-called talking books. The difference 

between an audiobook and a talking book varies somewhat in 

different countries, but is often present and similar in meaning. 

The Swedish Agency for Accessible Media (MTM) states that 

a talking book “is intended for persons with a permanent or 

temporary print disability”, that they are “produced with public 

funds and in accordance with Section 17 of the Copyright Act”, 

and that the “the recording of a talking book must conform with 

the original, which must be a published work” [1]. In other 

words, the option to simplify or otherwise change the written 

text to make it easier to understand is available. 

Speaking rate 

The speed at which speech is produced can be measured in 

different ways. Speaking rate is defined as the rate at which a 

certain idealised (e.g. phonological or orthographic) unit is 

produced per total speech and non-speech (silences, breath etc.) 

duration [5]. Articulation rate, on the other hand, is the number 

of actual speech units (e.g. phonemes) divided by the duration 

of the actual speech, non-speech such as silences and breathings 

excluded [6]. In speech science, speech rate is sometimes used 

with the same meaning as speaking rate, and sometimes as a 

metric more closely tied to the acoustic signal and its variations. 

Both speaking and articulation rate can be measured in 

different ways, for example the number of syllables per time 

unit, such as syllables per second [5], [7], [8], syllables per 

minute [9] or average syllable duration [10]. Another common 

metric of speaking rate is words per minute (wpm). Since word 

length differ between languages and speaking situations, wpm 

can be a too rough metric in many situations. In research, wpm 

is often presented alongside metrics that reflect the 

pronunciation of the words and data about average syllables per 

word [9]. 

Measuring speaking rate is not trivial and even if 

researchers use the same metrics, the counting of words, 

syllables or phones can differ. There is no obvious unified way 

to count phones or other speech units, for example glottal stops, 

affricates, diphthongs or syllabic consonants [11]. Also, the 

number of phones or syllables can be differentiated into the 

intended number of speech units and the number of units that 

are actually realized. It has been shown that listener’s 

perception of speaking rate reflects both the intended and 

realized speaking rates [12]. 
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Slow speech 

Slow speech is characterised by a larger number of pauses, 

longer pause durations and longer phone durations [5]. [6] 

found that the articulation rate makes up only a small part of the 

changes in speaking rate, and the largest change was the total 

pause durations. Other things affect speaking rate as well. There 

is evidence of regional variations in articulation rate [7], [13], 

and the number of pauses inserted in read speech can depend on 

text genre (e.g. news reports and novels) [14]. Pauses tend to be 

longer the more syllables there are in the utterance [14]–[16]. 

The purpose of a recording can also be seen in speech 

characteristics. TTS recordings, for example, have been 

characterized as having low speaking rate as well as low mean 

pitch and standard deviation of energy [17], and spontaneous 

speech as faster than read speech, with a greater variance [11]. 

Simply stretching speech while maintaining F0 and other 

characteristics is, unsurprisingly, not consistent with human 

speech. In humans, a slower speaking rate correlates with a 

lower F0 [18], hyperarticulated speech is characterized by a 

slower speaking rate, a higher number of pauses, more 

syllables, which altogether result in a longer total duration of 

speech and non-speech [8]. Perceived speaking rate is also 

affected by non-durational characteristics: [19] found that high, 

fairly monotonous speech segments lead to a higher perceived 

speaking rate. 

Typical speaking rate 

In British English, the speaking rate vary between 140 (lecture) 

to 210 wpm (conversation), with corresponding syllables per 

second of 190 and 260 [9]. Similarly, a summary of different 

acoustic features among different English speech corpora 

shows that the lowest speaking rate was found in audiobooks, 

followed by recordings for TTS and broadcast news, while 

corpora consisting of conversational speech show a higher 

speaking rate [17]. Proficiency matters, too. A study 

investigating pausing among English language learners 

reported that native speakers pause 7.15 times per hundred 

words (phw), while the learners pause much more frequently, 

between 10.76 to 14.43 phw, depending on proficiency. 

[20] reported that a Swedish professional speaker had a 

speaking rate of 130 wpm in normal mode, 111 in slow mode 

and 106 wpm in distinctive mode (146 in fast mode). These 

variations were mainly associated with total pause durations 

(longer pauses and a larger number of pauses). At a slow 

speaking rate, the sum of the pause durations was almost 50% 

longer than at a normal speaking rate, while the phoneme 

durations differed only by 4%. 

Controlling speaking rate in speech synthesis 

Modern, unsupervised methods for training speech synthesis 

often capture prosody well. It does so behind the scenes, leaving 

limited room for investigation or control for the researcher. 

Control of prosody, or the lack thereof, is a well-known issue 

and an active research area, and in some cases, the investigation 

of prosody is the very reason for creating a synthetic voice. [21] 

controlled expressiveness and sentence wise speaking rate 

without losing quality and naturalness. [22] facilitated the 

independent control of pitch, pitch range, phone durations, 

energy and spectral tilt by including these in their model, but 

their evaluation showed a significant decrease in MOS score 

when slowing down or speeding up the voice. This may have 

been a result of an overly generic evaluation question, 

confounding for example a dispreference for slow speech with 

a poor quality rating for slow speech. 

3. Method 

Participants 

Listeners were recruited through Prolific, a subject pool for 

online experiments [23]. At the time of the experiment, Prolific 

had 815 active subjects between the ages of 18 and 67 reporting 

as fluent in Swedish. We recruited 64 of these for each of two 

utterances, totalling 128 sessions, and paid marginally above 

the recommended fee. Each test took between 5 and 6 minutes 

to complete and listeners were rewarded £0.8. Listeners were 

allowed to take part in both studies, but only once in each. 

Experiment platform 

A prototype listening test platform at the Swedish national 

research infrastructure Språkbanken Tal was used. The 

platform is fully WCAG 2.1 [24] compliant and presents a 

single stimuli (sound file) per page. Listeners were guided 

through their test and then returned to the Prolific web site. Only 

a very small number of listeners (<3%) timed out or returned 

their task undone. 

Texts and reference stimuli 

Two Swedish texts, TEXT1 and TEXT2, each containing two 

sentences from a campaign concerning covid-19 information, 

were used, see Table 1. A recording of the texts was already 

available in a typical speaking rate, and the same voice talent 

was employed to rerecord the sentences at a very slow speaking 

rate. The results of these slow recordings were used as 

references (REF1 and REF2). 

Table 1. Number of sentences, words, syllables and 

minor delimiters in the two texts. 

Text Sentences Words Syllables Minor 

delimiters 

  

TEXT1 2 31 57 1   
TEXT2 2 33 66 2   

Stimuli 

The human stimuli were based on the human recordings reading 
TEXT1 and TEXT2 at a typical speaking rate and at a slow 

speaking rate. The duration and articulation rates of these files 

are shown in Table 2. To illustrate the temporal aspects of the 

texts using the synthetic voice used in the stimuli creation,  the 

data from a synthesised reading with pauses at major and minor 

delimiters is included in the table. 

Table 2. Duration (seconds) and articulation rate 

(syllables/second) for the human recordings and 

synthesis (with pauses at major and minor delimiters). 

 TEXT1 TEXT2 

  Dur. Art. rate Dur. Art. rate 

Human normal 17 2,08 18,7 1,97 

Human slow (REF) 30,5 3,90 32,5 3,58 

TTS 20,4 3,13 22,7 2,97 
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Table 3. A description of the eight stimuli used in the study: pause placements, prolongation (STRETCHED means the 

stretching of the whole file, PAUSES the prolongation of non-specch and BOTH combines PAUSES and STRETCHED), Number of 

pauses, proportions of non-speech, and average pause durations for both texts.  
Pause  

placements 

Pro-

longation 

Number of 

pauses 

Non-speech  

(%) 

Avg. pause 

duration 
TEXT1 TEXT2 TEXT1 TEXT2 TEXT1 TEXT2 

REF HUMSLOW NONE 16 15 19,67 20,62 330 381 
HUMSTRETCHED HUMAN  STRETCHED 6 7 11,80 14,15 457 507 
TTSSTRETCHED ORTHOGRAPHIC  STRETCHED 2 4 10,16 13,85 925 792 
TTSORTHOPAUSES ORTHOGRAPHIC  PAUSES 2 4 35,08 38,46 4933 2895 
TTSDESIGNEDPAUSES DESIGNED PAUSES 8 7 43,93 40,31 1600 1736 
TTSWORDPAUSES WORD PAUSES 30 32 37,05 34,46 342 309 
TTSHUMPAUSES HUMSLOW PAUSES 16 15 40,00 39,08 710 781 
TTSHUMPAUSESSTRETCHED HUMSLOW BOTH 16 15 22,95 21,54 360 382 
 

 

REF1 and REF2 were of about 30 seconds duration each, and in 

order to eliminate effects of durational variation in the 

evaluation, all manipulated stimuli were made to match these 

durations. HUMSTRETCHED1 and HUMSTRETCHED2 were created 

by stretching the typical human recordings to the same duration 

as the slow readings.  

For the synthesized stimuli, we trained a voice with 

Nvidia’s PyTorch implementation of Tacotron and WaveGlow 

on  nearly 18 hours of female speech data from the same voice 
talent as the recorded data in REF1 and REF2, originally 

recorded for unit selection synthesis [25][26]. The words in the 

training data were split into five relative speaking rate 

categories. To ensure there were enough speech data in each 

category, they were balanced to contain approximately the same 

number of words (27 000). Each word was prepended with its 

speaking rate category in the training. This makes it possible to 

synthesize at five different speaking rates, by inserting the 

speaking rate category before each word in the input to the 

synthesizer. The slowest speaking rate, along with hyper-

articulated phonemic transcriptions, was used for all 

synthetizations in this study. Note that the slow synthetic data 

created in this manner is not nearly as slow as REF1 and REF2, 

simply because the voice is not trained on deliberately slow 

speech (see Table 2).All stimuli are available at 

http://www.sprakbanken.speech.kth.se/surveys/slow/. 

Four different pause placements were used: ORTHOGRAPHIC 

pauses were inserted at major and minor delimiters in the 
orthography (e.g. commas and stops); DESIGNED pauses were 

inserted at selected syntactic boundaries aiming for equally-

sized speech chunks (other policies are possible); WORD, where 

pauses were inserted between all words; and finally HUMANSLOW, 

where we copied the locations of perceptual pauses (>120 ms 
of non-speech [27]) in the REF1 and REF2. The initial pause 

durations  were what came out of the synthesis, and all versions 

were still shorter than the corresponding REF1 and REF2.  

The stimuli were synthesized with pauses in the locations 

described, and the duration of each pause was manually 

manipulated by inserting (or sometimes deleting) silence copied 

from the same file. For the pause locations in 

TTSORTHOPAUSES, TTSDESIGNEDPAUSES and TTSHUMPAUSES 

the pause durations were altered to match the proportion of the 
same pause location in the REF files. For  TTSWORDPAUSES, we 

kept the original pause durations between each word from the 

synthetization, and manipulated the pause locations that also 

occurred in the REF files proportionally, to end up at the file 

durations of the REF files. Finally, TTSHUMPAUSESSTRETCHED 

were first given the same pause durations as the REF files, then 

the entire files were stretched to the required durations. The 

details of the resulting stimuli are presented in Table 3, and a 

visualization of the speech/non-speech patterns of the readings 

of TEXT1 is shown in Figure 1. 

 
REF1    HUMSTRETCHED1    TTSSTRETCHED1    TTSORTHOPAUSES1    TTSDESIGNEDPAUSES1    TTSWORDPAUSES1 

 
 

REF1      TTSHUMPAUSES1      TTSHUMPAUSESSTRETCHED1 

 
 

Figure 1. Chronogram of speech (black segments) and non-speech (grey segments) for Text1.First section from top to 

bottom: REF1, HUMSTRETCHED1, TTSSTRETCHED1, TTSORTHOPAUSES1, TTSDESIGNEDPAUSES1, TTSWORDPAUSES1.  

Second section: REF1 (repeated), TTSHUMPAUSES, TTSHUMPAUSESSTRETCHED. 
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Procedure 

In order to avoid overly long sessions and listening fatigue, we 

divided the stimuli in two different tests, each containing all 8 

versions of one of the two texts. For each test, the order of the 

stimuli was varied systematically. A single listener could 

participate in both tests, but only once per test. For each 

stimulus, they were presented with the framing sentence 

“Imagine that you have requested a short text to be read for you 

very slowly.” and the question “How well does this reading 

match your expectations?”. The response alternatives were a 

five-grade scale with the option “Matches very well”, “Matches 

well”, “Matches neither well nor poorly”, “Matches poorly” 
and “Matches very poorly”. We use ACCEPTANCE for this 

variable. 

4. Analysis &  results 

102 recruits started the listening study. 3 did not finish, and the 

experiment was stopped when 8 recruits had responded to each 

test set in each systematically varied order. The listening times 

varied between 5 and 6 minutes. 29 listeners participated in both 

studies (i.e. judged both texts once) and 70 took part in one 

study only. 

A one-way ANOVA showed statistically-significant 

difference in ACCEPTANCE by stimuli identity (f(15)=12.088, p < 

0.001). Pairwise comparisons showed no significant difference 

within any pair of the same stimuli type but different texts. This 

let us combine  TEXT1 and TEXT2, so that we considered only 

stimuli type – the manner in which the stimulus was created. 

One-way ANOVA again showed statistically-significant 

difference in ACCEPTANCE by stimuli type (f(7)=22.664, p < 

0.001). 

Post-hoc pairwise t-tests using the Bonferroni correction 

were performed across all pairs of stimuli types. There was a 

significant difference between REF and all other stimuli types. 

In all, 14 pairs were significant. These pairs and the effect sizes 

are presented in Table 4. 

For good measure, the difference between the two human 
readings (REF and HUMSTRECTCHED) and the other stimuli were 

verified with Dunnett's test for comparing several treatments 

with a control. All synthesized stimuli were significantly 
different than REF at the 0.001 level, and only TTSORTHOPAUSES 

was differed from HUMSTRETCHED, again at the .001 level. 

Finally, we performed a Tukey’s test for all pairs of stimuli 

type. This singled out the same 14 pairs as significantly 

different, at the same levels as the repeated t-tests with 

Bonferroni correction. 

The literature, our intuition from listening to the stimuli, 

and the initial results all hint at a combination of the duration of 

talkspurts and their frequency as being key to slow speech (note 

that the speech/pause ratio and other similar metrics can be 

derived from these two measures). As talkspurts can clearly be 

both too long and too short, and their frequency too high or too 

low, quadratic polynomials we fitted to their averages 

(AVTSDUR and AVTSFREQ) for all stimuli. As expected, both 

significantly predict ACCEPTANCE, and there are interaction 

effects. The additive model’s F statistic is  18.181*** (df = 4; 

1019), and the corresponding multiplicative model yields 

14.561*** (df = 8; 1015). Adjusted R2 is 0.063 and 0.096, 

respectively. 

 

 

Table 4. Each row describes the stimuli listed in the 

leftmost column, starting with the number of 

judgements, the average, and the standard deviation. 

The last three columns contain the significant pairwise 
comparisons, with (1) representing REF, (2) 

representing TTSORTHOPAUSES, and (3) 

TTSDESIGNEDPAUSES. Each cell shows effect size and 

significance (0,05=*, 0.01=**, 

0.005=***,0.001=****) 
 

N Avg SD 
   

REF (1) 128 4,2 1,0 (1) (2) (3) 

HUMSTRETCHED 128 3,1 1,4 -0.9 (L) 

 **** 

0.50 (M)  

** 

- 

TTSSTRETCHED 128 3,2 1,3 -0.91 (L)  

**** 

0.61 (M) 

**** 

- 

TTSORTHOPAUSES  

(2) 
128 2,4 1,2 -1.6 (L)  

**** 
n/a - 

TTSDESIGNEDPAUSES 

(3) 
128 2,8 1,2 -1.3 (L)  

**** 

- n/a 

TTSWORDPAUSES 128 3,3 1,2 -0.85 (L) 

**** 

0.69 (M) 

**** 

0.41 (S)  

* 
TTSHUMPAUSES 128 3,2 1,1 -0.96 (L) 

**** 
0.66 (M) 

**** 
- 

TTSHUMPAUSES 

STRETCHED 
128 3,4 1,2 -0.75 (M) 

**** 
0.80 (M) 

**** 
0.51 (M) 

 ** 

5. Discussion 

The reference readings score higher than all other readings on 

the question of how well it corresponds to expectations of a very 

slow reading. This is to be expected, not only because it is read 

by a human professional who has been instructed to read very 

slowly, but because none of the other readings are designed, 

originally, to create very slow speech.  

Compared to the typically-paced and stretched human 

reading HUMSTRETCHED, only two of the TTS varieties perform 

significantly worse: TTSORTHOPAUSES, in which only the very 

few orthographic pauses (commas and full stops) are extended 

to reach the duration of the reference utterances. These readings 

were included in part as a test case to see that the crowd workers 

behaved as could be expected, and in part to  highlight the fact 

that pause lengthening has an upper bound. TTSORTHOPAUSES 

is judged as significantly worse than 6 out of the 7 other 

readings. Finally the reading with pauses inserted between 

constituents at regular intervals, TTSDESIGNEDPAUSES, fares 

poorly against the two highest ranked TTS readings, but the 

effect is small. 

Turning to the average scores, the reference utterances 

stand out with a 4.2 average, as does TTSORTHOPAUSES with 

2.4. The rest of the readings receive scores slightly above 3, 

with the stretched human voice ending up somewhere in the 

middle. Having listened to the stimuli, we propose that with the 

exception of TTSORTHOPAUSES, the stimuli are designed to be 

as pleasant to listen to as possible. The one other exception, 
perhaps, is TTSWORDPAUSES, with a pause between every single 

word. We did not expect this to be a viable solution, but having 

listened to the result ourselves, it really does not sound bad.  
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6. Conclusions & future work 

The goal of this study has been to see if acceptable slow speech 

can be created with relatively simple means, without 

rerecording databases. Out of six different methods of 

prolonging synthesised utterances to match, in duration, very 

slow human speech, five achieved the same rating as original 

human speech that had been stretched. This is promising. 

The results suggest that the relation between speech and 

non-speech play a role: about 10% of the variation in 
ACCEPTANCE is explained by a regression model based on these 

factors, in spite of the materials being highly varied in nature 

and not at all varied systematically in terms of speech/non-

speech relation. As mentioned in the discussion, the literature 

supports this finding, and the very poor acceptance of 

TTSORTHOPAUSES is perhaps related to the uncomfortable 

pauses Sacks et al call “lapse”[28], the minimum duration of 

which Jefferson and others have approximated to 1 second [29].  

We believe that we now have the tools to create workable 

very slow speech using only moderately slow speech synthesis, 

by manipulating the placement and durations of pauses, and the 

next step is a structured study of the relation between talkspurt 

durations and pause durations.  
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Abstract
Studies on human-human interactions have shown that that the
fluency of a speaker influences the perception of personality.
Adding fillers and discourse markers can make the speaker seem
uncertain, more casual and spontaneous. With recent TTS de-
velopments it is now possible to investigate if the same holds
for artificial speakers. In a previous experiment, it was shown
that local insertion of fillers in a regular TTS voice influenced
the perceived personality. In the current study we extend that
work in two ways: Firstly, we recreate the English experiment
adding a voice trained on spontaneous speech, where adding
fillers also has a global effect on the synthesized speech. We
also add Swedish read and spontaneous voices. Secondly, for
the Swedish voices, we investigate the effect of using a multi-
speaker model mixing a read speech voice and a spontaneous
speech voice when generating disfluent synthetic speech.
Index Terms: spontaneous speech synthesis, personality traits,
speaking styles, fillers

1. Introduction
The way people speak in conversation is dependent both on ex-
tralinguistic factors like age, gender, dialect and personality, and
on situation-dependent factors, like affective state, cognitive
load and feedback from the listener. Hence, the actual realiza-
tion of a spoken utterance influences how listeners perceive the
speaker, both in terms of personality and cognitive state. Filler
words like filled pauses (“uh”) and discourse markers ( “you
know”) play an important role in communicating these in spon-
taneous speech. Filled pauses have been viewed in three ways
[1]: as a floor-holding signal [2], as interjections [3], where
.e.g. “um” has been found to announce a longer delay in the
upcoming speech than “uh” [4], and as symptoms to a planning
problem [5]. Thus, filled pauses appear to be useful for the lis-
tener in conversations: as a turn-handling cue [6], to improve
comprehension [7, 8] and to understand the speaker’s certainty
of what they are saying [9]. The usage patterns of filled pauses
have been found to vary with nationality, age, gender and socio-
economic class [10]. Filled pauses have been found to influence
the perception of personality traits like neuroticism, and exten-
sive use of filled pauses have been rated negatively as unpre-
pared, unsophisticated, and insecure [11].

Discourse markers are often used to indicate the speaker’s
stance. Depending on the speaker, context and prosodic realisa-
tion “you know” and “I think” can express both confidence and
uncertainty, seeking confirmation of understanding from the lis-
tener [12]. “I mean” and “like” have been found to act as fillers,
as hedging devices to what is being said [13] and to mark mod-
ification of what was previously said [14]. Discourse markers
such as “like” are more common for younger speakers and in
loose talk, where it is produced in the middle of fast and fluent
speech [15]. They have been found to be markers of conscien-

tiousness [16], as well as casualness, solidarity, politeness and
spontaneity [17, 15, 18].

Prosodic features like pitch and speaking rate also influ-
ence the perception of personality [19]. Extraversion is associ-
ated with fast speaking rate and a wide pitch range, while in-
troversion is perceived in slow, soft, deep and monotone voices
[20]. Speaking rate influences the perception of several speaker
traits, where slower speech is perceived as older in age [21]
and more introvert [22], while faster speech is associated with
higher knowledge and social attractiveness [23], greater persua-
siveness [24], and higher competence and dominance [25]. In
the current study, we aim to investigate how fillers and speaking
style influence the perception of personality in read and sponta-
neous speech synthesis.

2. Related work
There have been several investigations in making read speech
synthesis more spontaneous and expressive by automatically in-
serting fillers in its text input [26, 27, 28]. In order to make a
diphone unit selection synthesizer more suitable for generating
fillers, spontaneous speech utterances have been supplemented
to its read speech training corpus [29]. Recently, [30] intro-
duced a spontaneous speech synthesizer trained on a conversa-
tional podcast corpus, that could automatically insert and syn-
thesize natural sounding fillers.

There have been some previous efforts in synthesizing
voices with personality: a diphone synthesis voice was made
more extrovert by providing it with the stereotypical extro-
vert features: high loudness, increased pitch, a great frequency
range and a fast speaking rate [31]. In a project that developed
voices for a speech-enabled computer game that features fairy-
tale characters with different personalities, both speaking rate
modifications and insertions of fillers was used [32].

The current paper builds on a previous study by Wester et
al., where filled pauses where added to a read speech unit se-
lection synthesizer in order to alter the perceived personality of
the voice [33]. The authors found that adding fillers makes the
artificial voice sound more neurotic, less open, less extrovert
and less conscientious. In a follow-up study, they also inves-
tigated the effect of synthesis method and voice quality on the
perceived personality and naturalness [34]. The result showed
that increased voice quality enhances the personality the text
conveyed, but it does not alter it to another personality. In this
study we extend their work by using a state-of-the-art neural
sequence-to-sequence speech synthesizer built from a sponta-
neous speech corpus. The main contributions of this work are
that we extend their perceptual experiment on read speech to
spontaneous speech synthesis, and that we investigate the per-
ceptual effect of training a multi-speaker model, that allows us
to mix between a read speech voice and a spontaneous speech
voice when generating disfluent synthetic speech.
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3. Speech synthesizers
In this paper we carry out studies on read and spontaneous
speech synthesis in English and Swedish. For the English read
speech synthesis we use the female Scottish CereVoice unit
selection synthesis voice Heather. The English spontaneous
speech voice and both Swedish voices are built using a PyTorch
implementation1 of Tacotron 2 [35]. The voices were trained us-
ing transfer learning for 200k iterations on top of a pre-trained
model trained on large (ca. 20 hours) read speech corpora in En-
glish and Swedish. For vocoding, we fine-tuned the pre-trained
universal model of WaveGlow to the English and Swedish con-
versational corpora [36].

The English spontaneous speech corpus is created from the
audio recordings of the Trinity Speech-Gesture Dataset (TSGD)
[37], which is comprised of 25 impromptu monologues by a
male Irish actor. In each session (ca 10 minutes long) the actor
tells a listener in the room about his hobbies, daily activities,
and interests. The Swedish spontaneous speech corpus consist
of 6 hours of speech extracted from a conversational podcast
recorded by a male Swedish comedian. In the podcast, the co-
median makes sandwiches and tell stories to his co-host. The
data is very spontaneous and includes a lot of laughter and over-
lapping speech, which had to be removed from the TTS corpus
before training the voice. Both spontaneous corpora were tran-
scribed using ASR and subsequently manually corrected, to en-
sure that all fillers are transcribed accurately. Segmentation was
done automatically into breath groups (stretches of speech de-
lineated by breath events) using a deep learning-based breath
detector described in [38]. The Swedish read speech corpus is
an open source TTS corpus from the Norwegian Språkbanken 2.
The 11-hour speech corpus consists of 5200 sentences read by
a professional speaker. In the current study, we make use of a
version of the Swedish synthesizer where both voices have been
trained at the same time in a multi-speaker version of Tacotron-
2 [35], with a speaker embedding concatenated to the encoder
outputs at every token as in [39]. For training a multi-speaker
model, an 8 dimensional speaker embedding is appended to a
pre-trained single speaker Tacotron-2 model built on sponta-
neous speech, with the weights of the additional nodes initial-
ized at 0. This setup implies that interpolating between speaker
vectors changes speaker identity and speaking style simultane-
ously, since the read speech and the spontaneous speech corpora
were recorded by two different people.

The English read speech samples were taken from the study
by Wester and colleagues [33]. In order to make disfluent ver-
sions of the synthesized prompts, the authors spliced in spon-
taneous fillers from the voice actor they used to train the TTS
voice. The English and Swedish spontaneous voices described
above both contain spontaneous fillers in the training corpus
and could thus be generated at the same time as the linguistic
content of the prompt. The Swedish read speech voice did not
contain fillers in the training corpus, but as the multi-speaker
model was trained together with the spontaneous voice, it was
possible to produce fillers even when the read speaker’s iden-
tity vector was applied at inference. In order to assess to what
extent this affected the quality of speech with fillers, we also
investigated the perceived personality trait of disfluent speech
at different interpolation points between the two speaker id vec-
tors. The English spontaneous speech and all Swedish samples
in the evaluations below are available online 3.

1https://github.com/NVIDIA/tacotron2
2https://www.nb.no/sprakbanken/en/resource-catalogue/
3http://www.speech.kth.se/tts-demos/ssw2021personality

4. Experiments
In these experiments, our aim is to study how the way a
speech synthesizer reads a text influences the perceived per-
sonality using the Big-Five model: Extraversion (Enthusiasm,
Assertiveness); Neuroticism (Volatility, Withdrawal); Conscien-
tiousness (Industriousness, Orderliness); Agreeableness (Com-
passion, Politeness) and Openness (Intellect, Openness). [40].
In order to measure the perceived personality traits, we used
the ten Newcastle Personality Assessor (NPA) Questions, as in
the original study (Appendix). We also used the same texts as
the original study [33], which were designed to elicit different
personality traits. They include a person’s view of their working
environment and a speed dating utterances with negative or pos-
itive emotions. They were translated to Swedish (Appendix).

4.1. Experiment 1: perceived personality depending on
speaking style and fluency

The first study examined to what extent the perception of per-
sonality of synthesized speech depends on whether it is trained
on read or spontaneous speech and if the input text contains
fillers. We investigated this both in English and in Swedish,
where all texts were synthesized in 4 versions: read fluent
(Eng-Read-Flu, Swe-Read-Flu) , read disfluent (Eng-Read-Dis,
Swe-Read-Dis), spontaneous fluent (Eng-Spon-Flu, Swe-Spon-
Flu) and spontaneous disfluent (Eng-Spon-Dis, Swed-Spon-
Dis). For each language we recruited 60 participants via Pro-
lific. During the test, each synthesis file was presented at the
top of a web page, with the 10 personality questions/statements
below, where the subjects had to score each on a Likert scale
from “Very Unlikely” to “Very Likely”. For both languages all
sound files were assessed by 30 subjects each.

4.2. Experiment 2: perceived personality depending on the
mix of read and spontaneous speaking style

The aim of the second evaluation is to study the extent to which
the perception of personality of synthesized speech depends on
to which degree the voice speaks with a read or spontaneous
speaking style. Using the multi-speaker model, 5 variants of the
13 prompts were generated, where the read/spontaneous speech
ratios, set by interpolation between the two speaker identity vec-
tors at inference, were 100/0 90/10, 50/50, 10/90 and 0/100. In
the perceptual test, we focused on the personality traits where
there was a difference in judgment of speaking style in the
Swedish part of Experiment 1: Extraversion, Conscientiousness
and Openness. Furthermore, since the ratings of these did not
depend on fluency we only used the prompts with inserted fillers
A total of 40 participants were recruited via Prolific to take part
in a MUSHRA-like side by side assessment of how well the 5
variants agreed with the personality questions/statements.

4.3. Experiment 3: perceived spontaneity depending on
speaking style and fluency

The third study, we investigated to what extent the perception
of spontaneity depends on the insertion of fillers on the input
text, and on whether the voice was trained on read speech or
conversational podcast data. In Experiment 3 we used 10/90 and
90/10 speaker ratios, since they where less extreme in speaking
rates, and we only included the 10 shortest of the 13 prompts.
A total of 40 participants were recruited via Prolific to take part
in an A/B test where they could listen to two version of the
same prompt that differed either in fluency or speaking style,
and select which one they thought sounded more spontaneous.
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5. Results
5.1. Results 1: perceived personality depending on speak-
ing style and fluency

Mean scores for the personality judgements in English and
Swedish can be seen in Figure 1. A one-way ANOVA and
a post-hoc Tukey multiple comparison test identified the fol-
lowing significant differences between the voices. For English,
the spontaneous voice was perceived as significantly more ex-
trovert than the read one, both for fluent and disfluent styles
(p < 0.001). A similar pattern was seen for openness, however
less strong when comparing the fluent styles (p = 0.02). For
the read voice, the fluent style was more open than the disflu-
ent style (p < 0.001). For neuroticism, the disfluent read voice
was more neurotic than the fluent one (p < 0.001) but this re-
lation did carry over to the spontaneous voice. The disfluent
read voice was also more neurotic than the disfluent sponta-
neous voice (p < 0.001). For conscientiousness, the fluent read
voice scored higher than the disfluent read voice.

For Swedish, the spontaneous voice was rated as more ex-
trovert than the read voice (p < 0.001), while the read voice
was rated as more open and (p < 0.001) and conscientious
(p < 0.001). There were no significant differences in personal-
ity between the fluent and disfluent styles of the Swedish voices.

5.2. Results 2: perceived personality depending on the mix
of read and spontaneous speaking style

Mean scores of the personality judgement for the Swedish
voices on the continuum from 100%spontaneous to read speech
(or 0% spontaneous) can be seen in figure 2 (left). A one-
way ANOVA and a post-hoc Tukey multiple comparison test
identified the following significant differences: For extraver-
sion, there were significant differences (p < 0.001) between
all voices except the extremes (100% vs 90% and 10% vs 0%),
where more spontaneous was rated more extrovert. Regard-
ing both openness and conscientiousness, the less spontaneous
styles (50%, 10% and 0%) was rated significantly higher than
the spontaneous ones (p < 0.001).

5.3. Results 3: perceived spontaneity depending on speak-
ing style and fluency

Results from the pairwise comparisons of Swedish voices with
respect to spontaneity can be seen in Figure 2 (right). The spon-
taneous voices were judged more spontaneous than the read
voices, and the disfluent voices were judged more spontaneous
than the fluent. All differences were significant (p < 0.001).

6. Discussion
The results of Experiment 1 show that there is a larger effect
on the personality rating of adding fillers to the read speech
samples that in the spontaneous speech. Adding fillers to read
speech makes the voice significantly more neurotic and less
open and less conscientious. This is consistent with the original
study where adding fillers to read speech also made it less extro-
vert. For the Swedish voices, the inserted fillers had no signifi-
cant effect on the personality ratings. The reason might be that
the fillers inserted in the English unit selection synthesis were
prosodically different than the surrounding speech, and thus
more prominent. In the spontaneous English voice and both
Swedish voices, fillers where treated as any word in the TTS,
which meant that the prosodic realization of both the fillers and
the surrounding speech where generated cohesively.

For both Swedish and English the spontaneous voices were
rated significantly more extrovert than the read speech voices
regardless of fluency. This is consistent with previous find-
ings that extroversion is associated with greater pitch range and
faster speaking rate. For the English samples with fillers, the
spontaneous ones were rated as significantly more open and
less neurotic than the read speech versions. For Swedish, the
spontaneous samples were rated less open and less conscien-
tious than the read speech versions. According to previous psy-
chological studies, speakers with great prosodic variability are
perceived as “competent” and “knowledgable”, thus they should
rate high on conscientiousness. At the same time, this trait
is also described as “organized”, “thorough”, and “reliable”,
which matches speaking style of professional radio speakers,
which is a slow and low pitched voice [41]. In our case the
read speech voice is recorded with a professional low pitched
speaker, which might explain the results.

In Experiment 2 we studied the effect of mixing speaking
styles through different interpolations between speaker ids in a
multi-speaker model. For openness and conscientiousness the
difference between read and spontaneous speech was not very
large. For extroversion the difference was quite large and the
50/50 mix is rated in the middle of the ratings for read and
spontaneous speech. Overall the speaking rate and pitch range
increases with more spontaneous speech in the mix, and this is
reflected in the personality ratings. What we could find was that
adding 10% spontaneous speech into the read speech voice im-
proved the way it realized the fillers, and by adding 10% read
speech into the spontaneous voice made it slightly slower and
more articulated. At the same time, these small modifications
did not have a significant effect on the personality ratings.

In Experiment 3, we decided to investigate how the 10/90
and 90/10 mixes of read and spontaneous speech voices were
rated in terms on perceived spontaneity. Regardless of fluency,
the voice with the weight mainly towards conversational speech
was almost always rated as more spontaneous than the one
with weight towards read speech. Regardless of speaking style,
adding fillers makes a voice sound significantly more sponta-
neous.

7. Conclusions

In this paper we investigated the impact of speaking style and
the addition of fillers on perceived personality traits and spon-
taneity. We confirmed the results of Wester et al. [33], that
adding spontaneous fillers into read English speech synthesis
makes it significantly more neurotic and less open and less con-
scientious, but in our listening tests, only slightly less extrovert.
For English spontaneous speech synthesis adding fillers only
had a significant difference for extraversion and openness. For
Swedish, fillers did not change the perceived personality, but is
changed the perceived spontaneity. These results are promising
because it means that we can insert fillers in a voice in cases
where it needs to sound more spontaneous, without changing
the portrayed personality. We also found that it is beneficial
both for a read speech voice and a spontaneous speech voice to
co-train it with a voice with another speaking style, even if they
differ in voice quality. It gives the possibility to either slightly
adjust the speaking style and handling of fillers, or to create a
voice style that exhibits characteristics halfway between read
speech and spontaneous speech.
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10. Appendix
Newcastle Personality Assessor Questions/statements: Start a
conversation with a stranger? (Ext); Make sure others are com-
fortable and happy? (Agr); Use difficult words? (Ope); Pre-
pare for things in advance? (Con); Feel blue or depressed?
(Neu); Plan parties or social events? (Ext) Insult people? (-
Agr) Think about philosophical questions? (Ope); Let things
get into a mess? (-Con); Feel stressed or worried? (Neu)
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ID Sentences

A1

I like to bring order to everything I do (YOU KNOW).
I think the details and facts are often missed by others
and (UM) I like to work based on concrete result. If
faced by a problem I like to look at it logically and
(LIKE) make a decision based on the specific problems
at hand.

A2

(I MEAN) I’m good at encouraging others to work
with each other and cooperate effectively. I think that
if you look after and help colleagues you (UH) get the
best out of them.(I MEAN)If you do good work then the
people around you will also become more motivated.

A3

I’m great at getting people to work with each other and
(I MEAN) sorting out misunderstandings and conflict.
If you concentrate on the common ideas and values you
all share (YOU KNOW) you can find real insight and
discover new possibilities.

A4

I like to plan provide direction and (UM) make sure
everyone knows what their responsibilities are. I think
its very important to be a good example to others
(LIKE) to be committed and to work hard on doing
things the right way to achieve your goals.

A5
I’m good at encouraging others to contribute (UM)
effectively. I think its important to enjoy your work
and to be enthusiastic about what you do(YOU KNOW)

A6

I’m great at helping others plan and (LIKE) cooperate
to get things done. Its important to work out what
can be done and (UH) the best way to do it. (I MEAN)
I like to work with others and help everyone come
together behind a project.

A7

I’m good at developing new strategies and approaches
to a problem and I think (UM) being committed to
what you do is very important. I love innovation
and overcoming challenges (YOU KNOW)

N1

I’m from West London ; which is a part of town
I really dislike (YOU KNOW). it was a real pain
it the arse to get here (I CAN TELL YOU) ; I
used to like film until Hollywood (LIKE)
ruined them all.

N2

What a mess this place is (I MEAN) I’m sure the
organiser has got it in for me.I’ve always had
problems with people either because they are stupid
or (UH) jealous of me.

N3
(UM) you don’t seem to have made much effort though
given the losers here (LIKE) I’m not surprised you’d
probably be happier (UM) um watching TV at home.

P1

I’m from a lovely little suburb with (UM) lots
of trees and parks. The train is very quick and it
was no (LIKE) trouble to get here. I love going to
the beach and (LIKE) spending time with my friends.

P2

They’ve done a brilliant job at redecorating this bar
(YOU KNOW) The people running it have been
(UM) really nice to me. I always get on with people
(I MEAN) we have so much to share with each other.

P3

(I MEAN) I must say you are looking very nice tonight
Everyone is very nicely dressed and (LIKE) seem so
successful (UM) I expect you are looking forward to
coming again.

Table 1: The prompts from Wester et al 2015 [33]. About Myself
(A) Speed Dating Negative (N) and Speed Dating Positive (P)

ID Sentences

A1

Jag gillar och ha ordning på allt jag gör(SKULLE JAG SÄGA)
Jag tycker att detaljerna och fakta ofta saknas i det andra gör
och (EH) Jag gillar att arbeta baserat på konkreta resultat.
Om jag ställs inför ett problem vill jag angripa det logisk
och (TYP) fatta ett beslut baserat på det specifika problemet .

A2

(JAG ANSER ATT) jag är bra på att uppmuntra andra att
arbeta med varandra och samarbeta effektivt. Jag tycker att
om du tar hand om och hjälper kollegor så får du (EH) ut det
bästa av dem. (DET ÄR JU SÅ ATT) om du gör bra arbete
då kommer folk omkring dig också att bli mer motiverade.

A3

Jag är bra på att få människor att arbeta med varandra
(LIKSOM) och reda ut missförstånd och konflikter. Om du
koncentrerar dig på de gemensamma idéerna och värderingarna
(ALLTSÅ) så kan du komma till verklig insikt och upptäcka
nya möjligheter.

A4

Jag gillar att planera ge vägledning och (EH) se till att alla
vet vad deras ansvar är. Jag tycker att det är mycket viktigt
att man är ett bra exempel för andra (LIKSOM) att man är
engagerad och arbetar hårt för att göra saker på rätt sätt
för att uppnå sina mål.

A5
Jag är bra på att uppmuntra andra att bidra (EH) effektivt.
Jag tycker att det är viktigt att man njuter av sitt arbete och
att man är entusiastisk över det man gör (SÅ ATT SÄGA)

A6

Jag är bra på att hjälpa andra att planera och (LIKSOM)
samarbeta för att få saker gjorda. Det är viktigt att ta reda
på vad som kan göras och (EH) det bästa sättet att göra det.
(JAG MENAR) jag gillar att arbeta med andra och hjälpa
alla att känna sig delaktiga i ett projekt.

A7

Jag är bra på att utveckla nya strategier och tillvägagångssätt
för att lösa problem och jag tycker att det är mycket
viktigt (EHM) att man är engagerad i det man gör. Jag älskar
innovation och att övervinna utmaningar (SÅ ATT SÄGA)

N1

Jag är från västra London som är en del av staden som jag
verkligen ogillar (SKULLE JAG SÄGA). Det var ett jäkla
sjå att komma hit (SÅ ATT SÄGA). Jag brukade gilla film
tills Hollywood förstörde dem alla.

N2

Vilken röra det är på det här stället (JAG MENAR) jag
är säker på att arrangören inte gillar mig Jag har alltid
haft problem med folk antingen för att de är dumma eller
(EH) avundsjuka på mig.

N3

(EH) du verkar inte ha gjort stora ansträngningar men med
tanke på förlorarna här (LIKSOM) är jag inte förvånad
du skulle förmodligen vara lyckligare (EHM) om du var
hemma och kollade på tv

P1

Jag kommer från en härlig liten förort med (EH) massor
av träd och parker. Tågresan var mycket kort och det var
(TYP) inga problem att ta sig hit. Jag älskar att åka
till stranden och (LIKSOM) spendera tid med mina vänner.

P2

Dom har gjort ett fantastiskt jobb med att renovera den här
baren (ALLTSÅ), Dom som driver det har varit riktigt
(EH) trevliga mot mig. Jag kommer alltid väl överrens med folk
(JAG MENAR) vi har så mycket att dela med oss av till varandra.

P3

(JAG MENAR) jag måste säga att du ser väldigt bra ut ikväll.
Alla är väldigt snyggt klädda och verkar (LIKSOM) så
framgångsrika. (EH) Jag förväntar mig att du ser fram
emot att komma tillbaka.

Table 2: The Swedish translation of the texts. About Myself (A)
Speed Dating Negative (N) and Speed Dating Positive (P)
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Abstract
For articulatory-to-acoustic mapping, typically only limited
parallel training data is available, making it impossible to apply
fully end-to-end solutions like Tacotron2. In this paper, we ex-
perimented with transfer learning and adaptation of a Tacotron2
text-to-speech model to improve the final synthesis quality of
ultrasound-based articulatory-to-acoustic mapping with a lim-
ited database. We use a multi-speaker pre-trained Tacotron2
TTS model and a pre-trained WaveGlow neural vocoder. The
articulatory-to-acoustic conversion contains three steps: 1) from
a sequence of ultrasound tongue image recordings, a 3D con-
volutional neural network predicts the inputs of the pre-trained
Tacotron2 model, 2) the Tacotron2 model converts this inter-
mediate representation to an 80-dimensional mel-spectrogram,
and 3) the WaveGlow model is applied for final inference. This
generated speech contains the timing of the original articulatory
data from the ultrasound recording, but the F0 contour and the
spectral information is predicted by the Tacotron2 model. The
F0 values are independent of the original ultrasound images, but
represent the target speaker, as they are inferred from the pre-
trained Tacotron2 model. In our experiments, we demonstrated
that the synthesized speech quality is more natural with the pro-
posed solutions than with our earlier model.
Index Terms: articulation-to-speech, ultrasound, DNN-TTS

1. Introduction
Articulatory-to-acoustic mapping (AAM) methods aim to syn-
thesize the speech signal directly from articulatory input, as op-
posed to text-to-speech, when speech is synthesized from the
textual input. AAM applies the theory that articulatory move-
ments are directly linked with the acoustic speech signal in
the speech production process. A recent potential application
of this mapping is a “Silent Speech Interface” (SSI [1, 2, 3]),
which has the main idea of recording the soundless articula-
tory movement, and automatically generating speech from the
movement information, while the subject does not produce any
sound. Such an SSI system can be highly useful for the speak-
ing impaired (e.g. after laryngectomy or elderly people), and
for scenarios where regular speech is not feasible, but the infor-
mation should be transmitted from the speaker (e.g. extremely
noisy environments or military applications).

For the articulatory-to-acoustic mapping, the typical input

can be electromagnetic articulography (EMA) [4, 5], ultrasound
tongue imaging (UTI) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19], permanent magnetic articulography (PMA) [20, 21],
surface electromyography (sEMG) [22, 23], Non-Audible Mur-
mur (NAM) [24], electro-optical stomatography [25], impulse
radio ultra-wide band (IR-UWB) [26], radar [27] or video of
the lip movements [7, 28, 29]. From another aspect, there are
two distinct ways of SSI solutions, namely ‘direct synthesis’
and ‘recognition-and-synthesis’ [2]. In the first case, the speech
signal is generated without an intermediate step, directly from
the articulatory data [4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 20, 22,
23, 24, 28]. In the second case, silent speech recognition (SSR)
is applied on the biosignal which extracts the content spoken by
the person (i.e. the result of this step is text); this step is then fol-
lowed by text-to-speech (TTS) synthesis [7, 10, 13, 25, 29, 30].
In the SSR+TTS approach, any information related to speech
prosody is lost, whereas it may be kept with direct synthesis.
Also, the smaller delay by the direct synthesis approach might
enable conversational use.

For the direct conversion, typically, vocoders are used,
which synthesize speech from the spectral parameters predicted
by the DNNs from the articulatory input. One of the spectral
representations that was found to be useful earlier for statisti-
cal parametric speech synthesis is Mel-Generalized Cepstrum
in Line Spectral Pair form (MGC-LSP) [31, 32]. Since the in-
troduction of WaveNet in 2016 [33], neural vocoders can gener-
ate highly natural raw samples of speech, conditioned on mel-
spectrogram or other input. One of the most recent types of neu-
ral vocoders, WaveGlow [34] is a flow-based network capable
of generating high-quality speech from mel-spectrograms. The
advantage of the WaveGlow model is that it is relatively simple,
yet the synthesis can be done faster than real-time. In [17], we
integrated the WaveGlow neural vocoder into ultrasound-based
articulatory-to-acoustic conversion.

In the latest years, most TTS solutions apply end-to-end
methods, by operating directly on character or phoneme input
sequences and producing raw speech signal outputs. One of
the most widely used solutions is Tacotron2 [35], which applies
a recurrent sequence-to-sequence feature prediction network
that maps character embeddings to mel-scale spectrograms, fol-
lowed by a neural vocoder. The encoder-decoder network, using
the attention mechanism, encodes a specific attribute of speech
and maps sequences of differing length. In [35], the input char-
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Figure 1: Sample ultrasound images from the five sessions.

acters are represented with a learned 512-dimensional embed-
ding, which ensures that traditional text processing is not nec-
essary on the input.

In the field of AAM, according to our knowledge, only a
few studies have used fully end-to-end / sequence-to-sequence
solutions [36, 37]. Zhang and his colleagues introduced TaL-
Net, which is based on an encoder-decoder architecture, using
the attention mechanism. Both ultrasound and lip are used as
the input of AAM, from English speakers of the UltraSuite-TaL
database [38]. First, a Tacotron2 model is trained with a large
amount of speech data, and after that, transfer learning is ap-
plied with the articulatory input. The presented approach was
found to be significantly better than earlier baselines. In the
study, they also checked the contribution of each articulatory
input, and found that the weakest results could be achieved with
the lip-only system, followed by ultrasound-only. The combi-
nation of ultrasound and lip (TaLNet) was found to be the best,
suggesting that these two modalities complement each other
well. In another study, by Mira and his colleagues, end-to-end
video-to-speech synthesis was proposed, using GANs [37]. The
video of the face is translated directly to speech, without an in-
termediate representation, applying an encoder-decoder archi-
tecture. They experimented on various databases and show that
the choice of adversarial loss is a key for realistic results.

In this paper, we experiment with transfer learning and
adaptation of a Tacotron2 text-to-speech model to improve
the final synthesis quality of ultrasound-based articulatory-to-
acoustic mapping with a limited database.

2. Methods
2.1. Data

For Tacotron2 and WaveGlow training, we chose 5 male and 6
female Hungarian speakers (altogether 23k sentences, roughly
22 hours) from the PPSD database [39]. This data served as the
acoustic-only training material required for the encoder-decoder
architecture and the neural vocoder.

For the articulatory data, we used the Hungarian parallel
ultrasound and speech dataset that we recorded for earlier stud-
ies [16, 17, 40]. We selected a female speaker (speaker048),
who was recorded in five sessions (once 209 sentences, and four
times 59 sentences). The tongue movement was recorded in
midsagittal orientation using the “Micro” ultrasound system of
Articulate Instruments Ltd. at 81.67 fps. The speech signal was
recorded with a Beyerdynamic TG H56c tan omnidirectional
condenser microphone. The ultrasound data and the audio sig-
nals were synchronized using the tools provided by Articulate
Instruments Ltd. In our experiments, the raw scanline data of
the ultrasound was used as input of the networks, after being re-
sized to 64×128 pixels using bicubic interpolation (see samples
in Fig. 1), as we found earlier that this reduction does not cause

Figure 2: The layers of the 3D CNNs in the Keras implementa-
tion, along with their most important parameters. Left: base-
line 3D CNN for melspectrogram prediction, right: proposed
3D CNN for symbol prediction.

significant information loss [41].
For the Tacotron2 speaker adaptation, speaker048’s data

was used (train: 318 sentences, and validation: 40 sentences).

2.2. Ultrasound-to-Melspectrogram using 3D-CNN
(baseline)

When we are dealing with image processing as input data, then
convolutional neural networks are one of the most popular and
effective methods which can extract complex features from data
by adding deep layers [42]. In Silent Speech Interface, when we
have ultrasound data as input, our input is not only just images
but sequences of images which could be considered as a video.
Standard CNN considers 2D images to extract features by con-
volving 2D filters over images. Therefore, to model temporal
information, a third dimension has to be considered [43, 44].
Recurrent Neural Networks such as Long Short Term Mem-
ory (LSTM) are good examples of combining features extracted
from both temporal and spatial parts of data [44]. Using LSTM
networks have some drawbacks such as training difficulties,
while some variants of these networks were proposed to miti-
gate this problem, such as quasi-recurrent neural networks [45].

Here we use another variation by adding a third dimension
as (2+1)D CNN which shows good performance in video ac-
tion recognition task [46]. It shows good results when used
with ultrasound images and it could be considered as a substi-
tute of CNN+LSTM [18]. In the baseline system of the current
study, we apply the same 3D CNN which was used in [18] for
predicting 80-dimensional melspectrogram features from ultra-
sound tongue image input.

This network processed 5 frames of video that were 6
frames apart (6 is the stride parameter of the convolution along
the time axis) [18]. Following the concept of (2+1)D convo-
lution, the five frames were first processed only spatially, and
then got combined along the time axis just below the uppermost
dense layer. Fig. 2 left shows the actual network configura-
tion. The training was performed using the SGD optimizer with
0.06 starting learning rate. It was reduced when a validation
MSE has stopped improving by factor 0.5. The batch size was
128. The training objective function was the mean squared error
(MSE).

2.3. Ultrasound-to-Symbol using 3D-CNN

In the proposed system, we use the same structure of the 3D
CNN as in the baseline system. The difference is in the tar-
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get of the network: we predict symbols of Tacotron2 internal
representation, having 93 dimensions. At first, we trained with
the same methods as the baseline model, but the model was not
applicable. We fine-tuned the optimizer, batch size, and other
hyperparameters but the model still did not train. Sometimes
the accuracy was zero or it learned only the silent symbol and
predicted it everywhere. Finally, transfer learning was success-
ful. We reused the baseline 3D-CNN model’s weights at the
convolutional layers. All convolutional layers were frozen and
only the last two FC layers (with 1000 and 93 neurons) were
trained. The weights of these two layers were initialized ran-
domly. Here, cross-entropy is used as the loss function. Be-
cause the classes of symbols were not balanced, we used a spe-
cific loss function: the loss was weighted with the occurrence
of the symbols. We used Adam optimizer and accuracy as a
metric. The other parameters of the CNN are the same as the
baseline, see Fig. 2 right.

2.3.1. Accuracy and the confusion matrix

The Ultrasound-to-Symbol 3D-CNN model reached 0.68 vali-
dation accuracy after 20 epochs (train acc.: 0.83). Early stop-
ping was used with a patience parameter of 7. To improve our
Tacotron2 model, the confusion matrix was used to generate
augmented training data (see later in Sec. 2.4.3). Fig. 3 shows
a simplified version of the confusion matrix (for visualization
purposes only – the full matrix involves all 93 symbols: for this
figure, we removed the symbols which were not used in the cur-
rent models and pooled together the short and long versions of
the symbols). The values are normalized by rows (target sym-
bols) and converted to percentage values. The first row (on the
top) is the most accurate symbol, and the last row (on the bot-
tom) is the least accurate symbol. We expected that the errors
are related to articulation, but in Fig. 3 it seems mainly noise-
like. The symbols with lower accuracies were some vowels and
nasals (e,a,ee,n,m in the figure, /E,O,e:,n,m/ in IPA). The sym-
bols with higher accuracies were some less frequent consonants
(z,ty,cs,zs in the figure, /Z,tS,c,z/ in IPA).

2.4. Symbol-to-melspectrogram using Tacotron2

We used a multi-speaker Tacotron2 model [35] based
on the NVIDIA implementation (https://github.com/
NVIDIA/tacotron2). The speakers’ IDs are coded as a
one-hot vector and added to the inputs of the LSTM cells both
in the encoder and decoder. The model was trained by all 11
speakers of the PPSD database [39] at the same time. The or-
der of all speakers’ sentences was randomized. The input of the
Tacotron2 is a sequence of symbols. Because Hungarian is an
almost phonetic language, we used a mixed collection of let-
ters and phonemes. The symbols of the input sequence follow
the phonemes of the sentences, but we did not use allophones
or other detailed discrimination. Only the long–short property
is used to encode durational differences. The phonemes are
represented with their approximate letter: the lowercase letters
show the short phonemes, the capital letters indicate the long
phonemes.

This multi-speaker model was trained during 156k itera-
tions on a single NVIDIA Titan Xp. The sample rate of the
sound was 22 050 Hz, the window size was 1024 and the hop
length was 256. We used 80 mel channels between 0 Hz and
8000 Hz to keep compatibility with the WaveGlow model. The
encoder’s symbols embedding and embedding dimension was
also 512. The decoder’s RNN dimensions were 1024.

Our goal was to use our pre-trained Tacotron2 model (orig-

Figure 3: Simplified confusion matrix of the proposed
Ultrasound-to-Symbol 3D-CNN. The values are normalized and
showed in percentages. Rows: target, columns: predicted.

inally developed for TTS) without modification, therefore we
made only some fine-tuning for AAM purposes. The ultrasound
image sequence does not contain F0-related information, but it
contains the timing of speech. Basically, the Tacotron2 does not
handle timing information of a sentence, it can generate that via
an attention mechanism. Fig. 4 top shows an example for the
connection between the steps of the encoder and decoder with
this initial Tacotron2 system. This sentence encoder contains
16 symbols plus two padding symbols at the borders of the sen-
tence. The model generated 134 decoder frames. In this model,
one frame is about 11.6ms, so this sentence was about 1.6s long.
Clearly, the timings are not modeled well here.

2.4.1. Time-synchronous Tacotron2 system

In order to use the proper timing of the input sequence, we gen-
erated a new training set from the original 11 speakers’ dataset.
The input symbols were repeated accordingly to the real dura-
tion of a phone. The repeating number was calculated from the
ultrasound frame rate (81.67 fps). For example, at a 98ms long
phone, the symbol was repeated 8 times. The attention mecha-
nism adapted to the synchronized input during the fine-tuning.
It required 7.5k iterations.

2.4.2. Proposed system #1

The speaker in the ultrasound dataset (speaker048) is indepen-
dent of the 11 speakers of the training set of Tacotron2. The
next step was fine-tuning to the new speaker. We chose a fe-
male speaker from the 11 others, and at the tuning, her speak-
erID one-hot vector was used. At this step, 84 iterations resulted
in the smallest validation error. In the first proposed system,
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Figure 4: Examples for the connection between the steps of the
encoder and decoder. Top: Tacotron2 without timing informa-
tion. Middle: Tacotron2 with timing information (Proposed #1).
Bottom: Tacotron2 with timing information and with data aug-
mentation (Proposed #2).

this model was used. Fig. 4 middle shows the proper timing of
the generated speech. The input of that sentence contains 237
symbols, and the system generated 246 output frames. The dif-
ference comes from the uncertainty of the end decision of the
decoder. The figure also shows the Tacotron2 can tolerate some
symbol errors, i.e. the line is not perfectly straight; there are
some small steps, where the decoder ignores some input sym-
bols.

2.4.3. Proposed system #2

Our experience was that Tacotron2 can tolerate some mistakes
in the prediction of the 3D-CNN model (Sec. 2.3), but these
mistakes cause audible distortion during the final synthesis. The
distribution of the wrong predictions can be characterized by the
confusion matrix (Sec. 2.3.1) of the 3D-CNN network. It is not
accurate because it does not contain the position information of
the mistakes, but it is suitable to generate similar training data
for fine-tuning the Tacotron2 model. With the distribution of the
symbol’s error, we modified the 11 speakers training set. The
symbol changing was based on the distribution but it was ran-
domized. For every sentence, 20 different versions were gen-
erated. The output mel-spectrograms were not changed. 4.3k

iterations provided the lowest validation error. Fig. 4 bottom
shows the tuned model’s connection between the encoder and
decoder. There are two differences compared to the middle sub-
figure. The number of the encoder steps remained the same, but
there are fewer decoder steps. The decoder learned to ignore
the different types of silence symbols (pad, sil, start sil, end sil)
which were mixed in the predicted symbol sequence. The other
difference is that the line is smoother. It shows that a decoder
step connects more encoder steps and the model can combine
the information of good and bad symbols.

After that we also repeated the tuning to the speaker from
the ultrasound dataset. Here we also generate modified training
data with the phoneme errors. The procedure was the same as at
the multi-speaker case. At this second step, 182 iterations were
required. We used this model in the second proposed system.

2.5. Melspectrogram-to-speech with a neural vocoder

Similarly to the original WaveGlow paper [34], 80 bins were
used for mel-spectrogram using librosa mel-filter defaults (i.e.
each bin is normalized by the filter length and the scale is the
same as in HTK, Hidden Markov Model Toolkit). FFT size and
window size were both 1024 samples. For hop size, we use
the base 256 samples. This 80-dimensional mel-spectrogram
served as the training target of the Tacotron2 network. A Wave-
Glow model was trained with the Hungarian data (WaveGlow-
HU). This latter training was done on a server with eight V100
GPUs, altogether for 635k iterations. In the synthesis phase,
an interpolation in time was not necessary, different from [17].
The ultrasound frame rate was 270 samples, but the differences
were compensated by the Tacotron2 model, the output frame
rate of the model was 256 samples which is the same as the
WaveGlow’s hop size. Finally, the synthesized speech is the
result of the inference with the trained WaveGlow-HU model
conditioned on the mel-spectrogram input [34].

3. Experiments and Results
After training the above models, we synthesized sentences from
the test part of the ultrasound dataset. These sentences have not
been used during the training process, neither in the Ultrasound-
to-Symbol model, nor in the Tacotron2 training and tuning pro-
cess. The domain of the texts is also independent of the training
and validation dataset: it contains the Hungarian version of ’The
North Wind and the Sun’.

3.1. Subjective listening test

In order to determine which proposed version is closer to nat-
ural speech, we conducted an online MUSHRA-like test [47].
Our aim was to compare the natural sentences with the synthe-
sized sentences of the baseline, the proposed approaches and a
lower anchor system (the latter having constant F0 and 2D CNN
predicted MGC-LSP, from [17]). In the test, the listeners had to
rate the naturalness of each stimulus in a randomized order rel-
ative to the reference (which was the natural sentence), from 0
(very unnatural) to 100 (very natural). We chose nine sentences
from the test set of the target speaker. The variants appeared in
randomized order (different for each listener). The samples can
be found at http://smartlab.tmit.bme.hu/ssw11_
tacotron2.

Each sentence was rated by 23 native Hungarian speakers
(11 females, 12 males; 14–47 years old), in a silent environ-
ment. On average, the test took 10 minutes to complete. Fig. 5
shows the average naturalness scores for the tested approaches.
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Figure 5: Results of the subjective evaluation with respect to
naturalness. The error bars show the 95% confidence intervals.

The lower anchor received the weakest scores, followed by the
baseline, and the proposed approaches. To check the statistical
significances, we conducted Mann-Whitney-Wilcoxon ranksum
tests with a 95% confidence level. Based on this, both proposed
variants were evaluated as significantly more natural than the
baseline. The listeners noted the difference between the two
proposed versions: proposed#1, the one with standard training
(Sec. 2.4.2) was rated as 40%, while proposed #2, the one with
additional error training (Sec. 2.4.3) was rated as 43% – but this
difference is not statistically significant.

As a summary of the listening test, we can conclude that
splitting the ultrasound-to-speech prediction task into three
parts increased the naturalness, mostly because of the Tacotron2
component which could be trained with a large amount of
speech data, and transfer learning / adaptation was possible to
the target speaker.

4. Discussion
In Sec. 1, we noted that currently only a few sequence-
to-sequence / fully end-to-end solutions are available for
articulatory-to-acoustic mapping [36, 37]. Our proposed solu-
tion has the following similarities and differences. Mira and
his colleagues use the video of the face as input [37], Zhang
and his colleagues use both ultrasound and lip video input [36],
whereas in our study we use ultrasound tongue image input. As
the three studies apply different databases, the results are not
directly comparable. In [37], GANs are used with specific ad-
versarial loss, whereas we apply 3D CNN to model the spatial
and temporal dependencies of the articulatory and acoustic data.
Similarly to [36], we apply Tacotron2 as the encoder-decoder
network, but we extend the basic training with additional data
augmentation, which includes the wrong predictions from the
confusion matrix of the UTI-to-symbol prediction network. By
using the symbols as intermediate representation, our solution
is closer to the ’recognition-and-synthesis’ type of SSIs.

5. Conclusions
In this paper, we experimented with transfer learning and adap-
tation of a Tacotron2 text-to-speech model to improve the final
synthesis quality of ultrasound-based articulatory-to-acoustic
mapping with a limited database (roughly 200 sentences).
We used a Hungarian multi-speaker pre-trained Tacotron2
TTS model and a pre-trained WaveGlow neural vocoder (both
trained on 11 speakers’s data, altogether 23k sentences, roughly
22 hours of speech). The proposed articulatory-to-acoustic

conversion framework is a fully end-to-end solution, including
an encoder-decoder architecture and attention mechanism, and
contains three steps: 1) from a sequence of ultrasound tongue
image recordings, a 3D convolution neural network predicts the
93-dimensional embedding inputs of the pre-trained Tacotron2
model, 2) the Tacotron2 model converts this intermediate rep-
resentation to a 80-dimensional mel-spectrogram, and 3) the
WaveGlow model is applied for final inference. We demon-
strated that the synthesized speech quality is significantly more
natural with the proposed solutions than with our earlier model.

The code is accessible at https://github.com/
BME-SmartLab/UTI-to-STFT-Tacotron2.
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A. Markó, “Optimizing the Ultrasound Tongue Image Represen-
tation for Residual Network-based Articulatory-to-Acoustic Map-
ping,” submitted to Multimedia Tools and Applications, 2021.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[43] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural net-
works for human action recognition,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 35, no. 1, pp. 221–
231, 2012.

[44] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, nov 1997.

[45] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-recurrent
neural networks,” arXiv preprint arXiv:1611.01576, 2016.

[46] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
“A closer look at spatiotemporal convolutions for action recogni-
tion,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2018, pp. 6450–6459.

[47] “ITU-R Recommendation BS.1534: Method for the subjective as-
sessment of intermediate audio quality,” 2001.

59



Improving Emotional TTS with an Emotion Intensity Input
from Unsupervised Extraction

Bastian Schnell1,2, Philip N. Garner1

1Idiap Research Institute, Switzerland
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Abstract
We aim to provide controls for emotion in synthetic speech.
Many emotions are not displayed continuously in an otherwise
emotional utterance; rather, the intensity varies with time. We
show that an emotion recogniser is capable of producing a mea-
sure of emotion intensity via attention or saliency; this measure
is appropriate to label utterances subsequently used to train a
speech synthesiser. We evaluate novel and published means to
do this showing that, whilst it is no longer state of the art for
emotion recognition, attention is a good way to indicate emo-
tion intensity for speech synthesis.
Index Terms: Emotional Speech Synthesis, TTS, Emotion
Recognition, Saliency Mapping

1. Introduction
When text to speech synthesis (TTS) is used in a non-trivial ap-
plication, it is desirable that the resulting synthetic speech con-
veys context-awareness using affect. For instance, in a speech
to speech translation application, if the input speech (in L1)
sounds, e.g., emphatic or angry, then the resulting speech (in
L2) should convey the same qualities. In a dialogue applica-
tion, the dialogue manager should be able to emphasise words
that it wishes to clarify, and should respond to, say, frustration
with empathy. Of course, this not only requires a suitably in-
telligent dialogue manager, but also a TTS system with controls
for the appropriate affect variables. In this paper we are con-
cerned with providing such controls for emotion.

While TTS systems have mastered human performance for
neutral speech, emotional speech synthesis is still a challenge.
For neutral speech large and high quality databases exist, but
emotional databases are rare and mostly of low quality. It is cer-
tainly possible to record large amounts of a specific emotion and
train the same systems as used for neutral speech. However, the
range of emotions, varying intensities, the amount of languages,
speaker variations, and the need to label each recording with the
perceived emotion of multiple listeners makes recording alone
a nearly infeasible task in terms of time and money. Modern
emotional TTS research has identified three possible directions
to solve these problems: 1) Increase the generalisability of the
architectures on low data regimes; 2) increase the quantity of
emotional data by voice or emotion conversion; and 3) increase
the quality of the data. In the following we will highlight some
recent work for each direction.

Databases with more expressive speech exist, especially au-
dio books. Those databases cover a wider range of styles, but
lack annotation of the expressed emotion or style. The lack
of these annotations spawned a range of recent works focusing
on increased model generalisability by utilising unsupervised
methods to extract style embeddings from reference audio on

a global [1, 2], clustered [3], or frame level [4, 5]. Some at-
tempted controlling the expressiveness [1, 6]. However, con-
trollability remains limited, especially for global embeddings.

Some work targets increasing the quantity of the expressive
data. Huybrechts et al. [7] have used voice conversion to con-
vert expressive recordings to the target speaker. In our recent
work [8] we have converted neutral to emotional speech. The
artificial data can then be used to train a TTS system.

We found limited work which attempts to increase the qual-
ity of the emotional data. Emotional databases usually have a
single emotion label for every recording. We argue that this
generalisation is misleading and that the emotion is localised
within the utterance. This kind of annotation can lead to dif-
ferent emotion labels on words with lower emotional strength
like conjunctions, while their acoustic features only marginally
differ. Obviously, this impedes the learning of the model.

In this work we propose to add a frame-level emotion in-
tensity to every sample, which is used as additional input to
the TTS model. We present two methods to extract it from the
recordings with pre-trained emotion recognisers. The simpler
model contains a single attention layer, which allows use of the
attention weights as emotion intensities. The other is a modern
transformer model, where we exploit saliency maps to extract
the intensity. The closest work to ours is that of Lei et al. [9].
They use relative attributes [10] to assign a level of emotional
strength to each sample. In more recent work [11] they extended
their method to phoneme level emotional strength.

We present our two methods for emotion intensity extrac-
tion as well as the method of attribute ranks of [11] in Section 2.
We compare all three methods and a baseline without intensity
input on the task of emotional TTS in Section 3. In this work we
leave out the problem of generating the emotion intensity from
text or extraction from a reference sample. Possible research
directions to attack this problem are listed in the conclusions in
Section 4.

2. Emotion intensity extraction
2.1. Attention LSTM

We use a simple emotion recogniser mostly resembling previ-
ous research [12] (Figure 1 left). It consists of a feature ex-
traction part of 3 fully-connected layers with 256 neurons and
a bidirectional LSTM (BiLSTM) with 128 neurons per direc-
tion. We apply dropout with a probability of 0.1 after each
layer. Additionally, it contains an attention block with a single
BiLSTM with 128 neurons per direction and a fully-connected
layer without bias with a single output neuron. Its output respre-
sents the unnormalised attention weights. As in previous work
[12] we use a sigmoid activation, instead of the usual softmax,
to obtain normalised attention weights. A sigmoid activation
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ensures high activation levels over many frames, which leads to
overall smoother attentions. This is especially desirable for our
downstream task of emotional TTS. We use the predicted atten-
tion weights to compute a weighted sum over the outputs of the
feature extraction part to create a single utterance level embed-
ding of size 256. We pass this vector through a single fully-
connected layer with as many neurons as emotion classes. All
parameters are initialised using Xavier initialisation [13] with
a uniform distribution, with one exception: The weights of the
fully-connected layer with single output neuron in the attention
block are initialised with samples fromN (0, 0.12).

The openSMILE toolkit [14] is used to extract frame-level
features (25 ms sliding window, 10ms shift). We use a 32-
dim subset of the IS09 feature subset composed of hand-crafted
Low-Level Descriptors (pitch, energy, zero-crossing rate, voic-
ing probability), 12 mel-frequency cepstral coefficients, and
their first derivative. This subset is mean-variance normalised
and forms the input to the emotion recogniser. To prevent over-
fitting we augment the input with random white noise with a
standard deviation of 0.4. In contrast to previous research, this
model accepts variable input lengths.

Training follows closely the procedure in previous work
[12]. The model is trained with the Adam optimiser [15]
(β1 = 0.9, β2 = 0.999, ε = 1E−8) with a learning rate of
3E−5 on mini-batches of 32 for 200 epochs with the cross-
entropy loss. To account for class-imbalance we weight the
cross-entropy for each class c by a factor of wc = Ntot

NclassesNc
,

where Ntot is the total number of training utterances, Nclasses

the number of different classes/emotions, andNc the number of
utterances of class c in the training set. All but the LSTM lay-
ers are regularised with l2-regularisation with a factor of 5E−2.
We select the best model based on the summed Weighted Accu-
racy (WA) and Unweighted Accuracy (UA).

We argue that this emotion recogniser, once trained, will
attend to the emotional parts of the utterance to make a decision.
Thus it is reasonable to assume that the attention weights over
an utterance give a good approximation of the emotion intensity.

2.2. Transformer

The above model is a very simple emotion recogniser and does
not represent the state of the art. More complex architectures
exist which do not allow a straight forward extraction of at-
tention weights. In this section we investigate a more recent
transformer model [16]. It consists of multiple self-attention
blocks, which do not allow the extraction of attention weights
in an obvious way. We make no claim that this model is the
best emotion recogniser currently available; rather, we present
a technique representative of more complex models without re-
strictions to their architecture to extract emotion intensities.

The transformer (Figure 1 right) consists of a feature extrac-
tion block with 4 fully-connected layers with 512 neurons and
SeLU activation. Afterwards a positional encoding is added in
form of a sinusoid with a large period. Dropout with 0.1 prob-
ability is applied on the latent features, which is then fed to
two self-attention [17] blocks with 32 heads each. The result-
ing attention matrix is aggregated with five 2D convolutional
layers with [30, 30, 30, 10, 6] output channels, a 5 × 5 ker-
nel size, and a stride of 2 × 2. The flattened 936-dim output
is projected with a fully-connected layer with 936 neurons and
a final fully-connected output layer with as many neurons as
emotion classes. After each but the last layer in the aggregation
step, dropout with probability 0.2 and SeLU activation is ap-
plied. All parameters are initialised using Xavier initialisation

Figure 1: Architectures of the emotion recognisers. Left: atten-
tion LSTM; right: transformer

[13] with a uniform distribution.
As before we use the openSMILE toolkit to extract frame-

level features (25ms window, 10ms shift). However, we use the
entire 384-dim IS09 features subset as input to the transformer
model and we do not add any noise. The transformer model
requires a fixed-length input. We use a sliding window of 500
frames with a step size of 50 frames previously found to per-
form best [16]. At inference time the final prediction is made
by applying a softmax on the predicted classes of each window
and averaging the results. Sequences are zero padded to match
the window and step size, no frames are dropped.

During training we randomly select 500 frames from each
input in the batch. We use the Adam optimiser (β1 = 0.9, β2 =
0.999, ε = 1E−8, no weight decay) with a learning rate of
1E−5 for 170 epochs on a mini-batch size of 8 and PyTorch’s
ReduceLROnPlateau scheduler with default parameters.

To extract emotion intensities with the transformer model
we propose to use saliency maps. Saliency maps are a common
technique in vision-related machine learning tasks. They at-
tempt to add interpretability to the neural network predictions.
An increasing number of techniques exist with varying com-
plexity [18, 19, 20, 21, 22]; we discuss some below. Saliency
maps compute the importance of each input to the network’s
output, thus each openSMILE feature in each frame receives a
value. To compute a scalar emotion intensity value we investi-
gate the aggregation through max and mean operations. In the
following we will give a high-level description of the techniques
we use in our experiments (Section 3).

2.2.1. Saliency Maps

Input gradients [18] continues the backpropagation chain to
the inputs and thus provides gradients of each input w.r.t. the
correct class label. The idea is that the gradients indicate how
much the class prediction is affected by a change in each input,
thus representing its importance.

Since input gradients produces relatively noisy saliency
maps Smoothgrad [19] attempts to smooth them over multi-
ple observations. It achieves this by adding white noise to the
input multiple times and computes the average input gradients
for all iterations. The idea of Smoothgrad can be applied in
many other saliency map techniques.

Input X Gradient [20] multiplies the input gradients with
the input itself. The idea is that the gradient alone only indicates
how important the feature is, but the input gives information on
how strongly the feature is present. Together they provide a
better abstraction of the feature importance.

Integrated Gradients [21] aggregates input gradients over
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a linear interpolation between a baseline (the zero vector in our
case) and the input. The idea is to capture input gradients that
were steep at some of the interpolations but became flat for the
input, as they are still important for the class prediction.

2.3. Attribute Rank

Recent work [9, 11] has used attribute ranks [10] to compute
emotion intensities. We include this work as a competitive
method here and give a brief overview. For data of two cate-
gories the ranking function computes the ranking/order of the
data w.r.t. to a certain attribute, here emotion intensity. Once
the ranking function is learned, it can assign an emotion inten-
sity level to unseen emotional data. For completeness we give
an example closely following that in [11].

We select all neutral N and happy H samples from the
training set with acoustic features xt with t ∈ [1, . . . , T ] with
T = |N ∪H|. We then form an ordered setO and an unordered
set S of pairs. In the ordered set we pair an emotional sample
of H with a neutral sample from N , indicating that the emotion
intensity is higher in the samples of H than in those of N . In
the unordered set we randomly create pairs of neutral-neutral
and happy-happy samples, indicating that their rank should be
similar. The goal is to learn a ranking function r(xt) = wxt
satisfying the following constraints as much as possible

∀(i, j) ∈ O : wxi > wxj
∀(i, j) ∈ S : wxi = wxj

(1)

The problem can be relaxed with slack variables ξij and γij and
solved by Newton’s method.

In [11] a single openSMILE feature vector xt is extracted
for each utterance. Then the ranking function, i.e. the ranking
vector wm with m ∈ [1, . . . ,M ], is learned for each combina-
tion of neutral with the other M emotions. To obtain phoneme-
level rankings openSMILE features are extracted for the seg-
ments corresponding to each phoneme. This requires a forced-
alignment step for which we use the Montreal Forced Aligner
[23]. We use a Python port1 of the original code2 of [10] with
the default parameters for the Newton algorithm.

3. Experiments
For our experiments we select the SAVEE database [24]. It is
an audio-visual British English database with sentences from
TIMIT phonetically-balanced for each emotion. For each emo-
tion 3 common, 2 emotion-specific, and 10 generic sentences
(different for each emotion) were taken. For neutral the 3 com-
mon and 2 ∗ 6 emotion-specific sentences were additionally
recorded, giving 30 neutral sentences in total. 4 males acted
in 7 different emotions (neutral, anger, disgust, fear, happi-
ness, sadness, and surprise) resulting in a total of 480 utter-
ances. The audio was recorded at 44.1 kHz and has higher
quality compared to most emotional databases. We do not
use the visual information of the database. To compensate
for loudness differences in speaker ’KL’ we use a loudness
normalization technique to normalize all samples to an av-
erage root-mean squared value of RMS = 0.1 with x̃ =

x∗
√

(T ∗RMS2)/(
∑T (x− xmean)2). We also found back-

ground noise to degrade performance in some of the recordings.
To reduce the noise we use a single channel spectral enhance-
ment scheme [25] to pre-process the entire database.

1https://github.com/chaitanya100100/Relative-Attributes-Zero-
Shot-Learning

2https://www.cc.gatech.edu/ parikh/relative.html

3.1. Emotion Intensity

To train emotion recognisers, the SAVEE database is rather
limited. Thus we include the IEMOCAP [26] database in all
strategies for emotion intensity extraction. It splits into 5 dia-
logue sessions of acted and spontaneous emotions with 2 dif-
ferent professional actors each, totalling 10 speakers and ap-
proximately 12 hours of 48 KHz recordings. At least 3 fluent
English speakers annotated the perceived emotion and the final
emotion label was chosen based on majority vote. While still in
the database we exclude samples where no majority label was
found, additionally we exclude the ‘disgusted’ emotion from
our experiments, as it is both very hard to express and very rare
in the database. We apply the same loudness normalization and
noise reduction techniques as on SAVEE.

3.1.1. Emotion Recogniser

We train the attention LSTM (Section 2.1) and transformer
(Section 2.2) emotion recogniser models on IEMOCAP with
the parameters and inputs as defined in their respective section,
using a random split of the 5th session for the validation and
test set. We then fine-tune the models on SAVEE with the same
parameters for 200 epochs and select the best model based on
combined WA and UA on the validation set. For each emotion
we select emotion specific utterances as test and validation set.
Namely we use the 4th and 5th id as test set and the 6th and
7th id as validation set. We select the same ids for all speakers
so that the content is unseen during training. Table 1 shows the
metrics of the trained models on IEMOCAP and SAVEE. With
the trained models we extract the emotion intensity. For the
attention LSTM model these are simply the attention weights.

Table 1: Weighted (WA) and Unweighted Accuracy (UA) of the
emotion recogniser models after pre-training on IEMOCAP and
fine-tuning on SAVEE excluding the disgusted emotion class.

IEMOCAP SAVEE
WA UA WA UA

Attention LSTM 54.7 40.3 62.5 60.4
Transformer 51.2 43.1 69.6 67.7

Table 2: MSE between saliency maps and attention weights ex-
traction on the attention LSTM model on SAVEE. Saliency maps
abbreviated as IG: Input Gradient, Sg: Smoothgrad, IxG: Input
x Gradient, IntG: Integrated Gradients

Aggr. Smoothed IG Sg IxG IntG
mean no 1.46 1.451 1.626 1.62
mean yes 0.625 0.621 1.179 1.312
max no 1.466 1.461 1.5 1.56
max yes 0.665 0.664 0.835 0.984

For the transformer model the variety of saliency maps
(Section 2.2.1) allows multiple intensity curves (Figure 2). We
extract emotion intensity using Input Gradients, Smoothgrad,
Input X Gradient, and Integrated Gradients with max and mean
aggregation. As the saliency maps can be noisy, we also experi-
ment with smoothed versions obtained by a simple convolution
with an 11 frames wide Hanning window (Figure 3). With infor-
mal listening we cannot select a best system. However, we find
that the intensity weights extracted with the attention LSTM
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Figure 2: Emotion intensities extracted with the attention LSTM model and different smoothed saliency maps for an angry utterance of
speaker JK. For better comparison each intensity is mean-variance normalised based on its own statistics. The content is: “Don’t ask
me to carry an oily rag like that.”
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Figure 3: Emotion intensities extracted with the attention LSTM model and with the Smoothgrad saliency map with max and mean
aggregation as well as smoothed mean for the same utterance as in Figure 2

model consistently produce more expressive speech than those
extracted with saliency. Thus it is reasonable to interpret the
saliency map as an approximation of the attention weights and
select the saliency map which is closest to them. For that rea-
son we extract the saliency maps on the attention LSTM model
and compare them to the attention weights in terms of Mean-
Squared-Error (MSE). As can be seen in Table 2 the closest
saliency map is smoothgrad with smoothed mean aggregation.

3.1.2. Attribute Rank

While it is possible to learn the ranking just on the SAVEE
database, we also include the IEMOCAP database for a fair
comparison. Indeed, we found that rankings extracted on both
databases outperform those learned only on SAVEE in infor-
mal listening tests. We exclude the SAVEE samples later used
for validation/test set of the emotional TTS model (Section 3.2)
when learning the ranking function. To form the unordered
set we randomly form pairs for each sample in the neutral set
of SAVEE. We then fill up the set with pairs from IEMOCAP
(speaker independent selection) to reach 150 pairs. We perform
the same with the respective emotion to obtain an unoredered
set with 300 pairs. For the ordered set we randomly select a
neutral SAVEE sample for each emotional SAVEE sample and
again use IEMOCAP to fill up to 300 pairs. This procedure fol-
lows the one in [11].3 With the learned ranking function we
compute phoneme-level rankings for all SAVEE samples.

3.2. Emotional TTS

Our goal is to train an emotional TTS system with emotion in-
tensity input on the SAVEE database. Due to the small size of
SAVEE we cannot train a modern encoder-decoder network on
it, as it quickly overfits before adapting the new speaking styles.
Instead we rely on a classical RNN-based network, which has
also been used in recent studies on emotional speech synthesis
[27]. We use oracle durations in all our experiments, because

3We thank Shan Yang for the detailed description of the process.

duration prediction for emotional speech is a challenging prob-
lem on its own. The model consists of 2 fully-connected layers
with ReLU activation and 1024 neurons, 3 BiLSTM layers with
512 neurons, and the final 97 dimensional output layer. 5%
dropout is applied in all but the final layer. A 128-dim speaker
and 64-dim emotion embedding is concatenated to the input
of each layer. Additionally, we concatenate the mean-variance
normalised emotion intensity input in all layers, which gives
better results than concatenating it only to the input. For all
neutral samples we set the emotion intensity to zero, indicating
that there is no emotion present. We do not predict the emo-
tion intensity internally, because we want to keep it as a tunable
input.

The inputs to the model are 425 text-derived binary and nu-
merical features normalised to [0.01, 0.99], which were derived
from the forced-aligned (with HTK [28]) phoneme sequence
previously extracted with Festival [29]. The model predicts
mean-variance normalised WORLD vocoder [30] features, con-
sisting of linearly-interpolated log F0 , a voiced/unvoiced flag,
30-dimensional mel-generalised cepstrum, and one Band Ape-
riodicity at 5 ms frame step, with their delta and double delta
derivatives. The output is smoothed with the MLPG algorithm
[31]. The WORLD vocoder is used to generate the waveform.

Even for our model the SAVEE database is too small to
train a TTS system, so we instead pre-train on the WSJCAM0
database [32]. It is a large British English database with 92
speakers with 90 utterances each recorded at 16 kHz. We use
only the head-mounted close-talking microphone recordings.
We apply the same loudness normalisation and noise reduc-
tion techniques as on IEMOCAP and SAVEE (Section 3). The
model is pre-trained for 35 epochs with a batch size of 16 and a
learning rate of 0.001 and early stopping. We reduce the learn-
ing rate by a factor of 0.1 on validation loss plateaus. The adap-
tation to SAVEE is split into adaptation to the neutral subset of
SAVEE first, and the entire database second. Each step is fur-
ther divided into three phases. In the first phase only the speaker
embedding is trained (10 epochs, lr=0.001), in the second phase
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the whole model is trained (10 epochs, lr=0.001), the last phase
applies fine-tuning by repeating phase two with a smaller learn-
ing rate (10 epochs, lr=0.0001). The batch size in all phases is
16. In each phase early stopping is used and the best model is
selected to continue with the next phase.

3.3. Subjective Results

In the subjective listening test we investigate how the TTS mod-
els compare in terms of perceived emotion and whether the au-
dio quality is impacted. For the test we include five systems:

• baseline: TTS model without emotion intensity input

• attention: Attention weights from the attention LSTM

• transformer: Smoothgrad saliency map with mean ag-
gregation and smoothing extracted with the transformer

• rank: Phoneme-level rankings extracted with the com-
petitive technique [11]

• ref: Copy synthesis of the recordings

The test set consists of the same two utterances recorded for
every emotion (7, including neutral, excluding disgusted) and
every speaker (4 males). This makes 56 samples for each sys-
tem. As we do not yet have a method to predict emotion in-
tensity from text, we use the emotion intensity extracted from
the reference audio by the respective technique. This gives an
upper bound on the quality achievable with an emotion inten-
sity input assuming that the prediction is perfect. We find that
the emotion intensity input does not increase the expressiveness
of the speech much. However, it offers an unprecedented con-
trol to tune the emotion intensity. Informal listening shows a
greatly increased expressiveness, while still sounding natural,
when scaling the input with a factor of 7. The models have
learned to connect certain speech properties with the intensity
input, which allows scaling them in a natural way. In general
higher intensities result in higher energy in the speech, which is
desirable for all but the sad emotion. Thus all our tests use the
scaled version except sadness.

36 listeners rated 25 randomly selected samples each in a
5-scale MOS test with 0.5 steps and also selected the emotion
they perceived. Table 3 summarises the results. The total col-
umn includes the correct ratings on neutral. As many subtle
emotions like fearful or surprised are rated as neutral, this num-
ber is biased. The emo column indicates the accuracy on the
emotional samples only. On both metric the attention weight
extracted with the attention LSTM model outperforms the other
systems. It shows that an emotion intensity input increases the
expressiveness of the speech, which is also perceivable by lis-
teners. The happy emotion is almost never perceived. The low
recognition rate of the reference samples indicates that it was
not acted well enough. Providing a neutral reference during the
listening test might facilitate its prediction.

It also shows that the quality of the emotion intensity mat-
ters as the phoneme level rankings perform much worse, this
might be due to the phoneme-level granularity. The key benefit
of the ranking function is that it requires very little training data.
It might perform best when we do not include any IEMOCAP
data. It outperforms the baseline system in a similar manner to
that reported in the related work [11].

Interestingly, the saliency map extracted from the trans-
former model performs worse then the simple attention weight,
even though the model is much more complex and achieves
higher emotion recognition scores. All the saliency map tech-
niques are developed for the field of vision, focusing on convo-

Table 3: Results of the subjective evaluation of perceived emo-
tions in percentage. ‘total’ includes the neutral samples. Accu-
racy for each emotion is shown as well labelled as n: neutral,
a: angry, f: fearful, h: happy, sa: sad, su: surprised.

System total emo n a f h sa su

baseline 25.3 17.6 72 28 15 3 33 12
attention 35.5 28.9 70 54 13 6 55 21

transformer 26.7 20.6 60 33 25 0 41 8
rank 25.3 19.0 69 30 14 6 40 8

ref 45.9 40.3 75 74 23 19 31 54

baseline attention transformer rank ref
1.0
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Figure 4: Results of the 5-scale MOS test with 0.5 steps

lutional layers. A different type of saliency map might be neces-
sary for speech tasks or more convolutional networks might al-
low better saliency maps. The benefit of the transformer model
is that it will likely improve its emotion recognition perfor-
mance with more training data compared to the attention LSTM
model due to its small complexity. However, as long as no
proper saliency map technique exists, we are limited to mod-
els that allow straight-forward extraction of emotion intensity.

Figure 4 shows the results of the MOS test. None of the
differences in the results are statstically significant in a two-
tailed paired t-test with a p-value < 0.05. This includes the
copy synthesis reference, which has other quality issues that
were rated low by listeners. We can conclude that the proposed
techniques do not deteriorate the audio quality.4

4. Conclusion and Future Work
We presented two techniques to extract an emotion intensity in-
put from audio in an unsupervised way by utilising pre-trained
emotion recognisers. We do not require emotion intensity label-
ing, but only emotion class labels. Thus one could also refer to
it as weak supervision. From an emotion recognition network
with a single attention layer we extract the attention weights as
emotion intensity. From a transformer-based network we ex-
tract it using saliency maps. We show that the additional emo-
tion intensity input improves an emotional TTS system; increas-
ing the accuracy of which human listeners perceive the target
emotion without degradation in signal quality. The simpler first
method outperforms all others, including a recently published
method for emotion intensity extraction by relative attributes.

For the tests we use oracle emotion intensity extracted from
the reference. As the results show great improvements with an
emotion intensity input, future research will focus on predicting
it from text or conversion in speech-to-speech translation.
Ack.: This work was supported by the Swiss NSF grant number 185010: Neural
Architectures for Speech Technology (NAST); http://p3.snf.ch/Project-185010

4Audio samples at www.idiap.ch/paper/ssw11 emotion intensity/
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Abstract
Sequence-to-Sequence Text-to-Speech (S2S TTS) architectures
that directly generate low level acoustic features from phonetic
sequence are known to produce natural and expressive speech,
when provided with moderate-to-large amounts of high quality
training data. When exposed to a sequence of coarse speaker-
agnostic prosodic descriptors, such systems become prosody-
controllable and can learn and transfer desired prosodic patterns
(e.g. word-emphasis or speaking style) from one seen speaker
to another (in multi-speaker settings).

But what if a high quality speech corpus for a desired speak-
ing style is not available? In this work we explore the feasibility
of teaching a neutral pre-trained prosody-controllable S2S TTS
voice to speak with a conversational speaking style, as learnt
from a low-quality multi-speaker spontaneous dialog corpus
(originally intended for Automatic Speech Recognition). We
have found that it is absolutely necessary to incorporate word
semantics for that task. We fine-tune BERT network to pre-
dict the prosodic descriptors from the input text, based on that
corpus, and apply them to the prosody-controllable S2S TTS at
inference time. The subjective listening tests revealed that the
learnt conversational style rated higher than baseline for 68% of
the stimuli under test. The overall quality and naturalness rated
higher than baseline in 64% of the stimuli under test. The im-
provement came mostly as a result of improving common con-
versational speech patterns, such as filler words and phrases.
However, the overall MOS did not significantly improve due to
less convincing realization of the rising intonation on declara-
tive statements (uptalk).
Index Terms: expressive speech synthesis, sequence to se-
quence speech synthesis, conversational speech synthesis

1. Introduction
Sequence-to-Sequence Text-to-Speech (S2S TTS) architec-
tures [1] [2] that directly generate low level acoustic features
from phonetic sequence are known to produce natural and ex-
pressive speech, if provided with sufficient amount of high qual-
ity training data, covering a variety of speakers and speaking
styles. Apparently, additional high quality expressive data is
required for the S2S TTS to acquire a new speaking style for
existing voices, to perform model retraining or adjustment.

But what if a high quality speech corpus for a desired speak-
ing style is not available? Acquiring a new speaking style for
existing voices in a pre-trained S2S TTS remains a hot research
topic. Cross-speaker speaking style transplantation by means
of style encoding of a single reference utterance, as proposed
initially in [3], partially achieved that goal. However, it worked
mostly when the text of the reference utterance closely matched

∗Work performed as an internship at IBM

the text to be synthesized [3], thus making this method less ap-
propriate for standard TTS applications. Since then, several
methods have been developed to apply various speaking styles,
in unsupervised [4] or semi-supervised [5] configurations, when
style encoding is jointly trained with S2S TTS. Such settings re-
quire high quality speech data to deduce speaking styles from
the corpus. In this work, on the contrary, we explore the fea-
sibility of acquiring an unseen speaking style from a readily
available low-quality speech corpus, that seems unsuitable for
high quality TTS purposes.

The style that we’d like to obtain is a conversational speak-
ing style. Recently, a single-speaker conversational S2S TTS
system has been proposed, trained on a proprietary high-quality
spontaneous data corpus, recorded particularly for that pur-
pose [6]. In this work, on the other hand, we’d like to ex-
plore a less expensive approach, making use of existing data.
For that purpose we selected Switchboard [7], a well-known
multi-speaker corpus of narrow-band spontaneous speech, orig-
inally intended for Automatic Speech Recognition (ASR) de-
velopment purposes. It is a corpus of spontaneous conversa-
tions of telephone bandwidth speech. The corpus contains 2430
conversations averaging 6 minutes in length, spoken by over
500 US English speakers. The calls are manually transcribed
and then submitted to an ASR system to establish approximate
time alignments at the word level [7]. The recordings are truly
spontaneous, with a lot of background noises, prolonged pauses,
word repetitions, filler words, paralinguistics and burst-ins.

As such, this corpus cannot serve directly for high quality
S2S TTS system training, but would rather be utilized for cer-
tain intermediate style representation. Considering the data set
characteristics, this representation should be 1) purely prosodic,
as Switchboard’s general spectral characteristics are very dif-
ferent from that of high quality wide band studio recordings
used for S2S TTS voices, and 2) speaker- and gender-agnostic,
as this multi-speaker dataset has only few stimuli per speaker
available and we want to learn general conversational style as-
pects. Fortunately, our prosody-controllable S2S TTS architec-
ture, originally proposed for unsupervised/weakly-supervised
word-emphasis realization [8] is suitable for that purpose. In
this architecture we condition the speech synthesis on an in-
termediate prosodic representation, Hierarchical Prosodic Con-
trols (HPC), comprising a sequence of hierarchical (word- and
sentence- level) prosodic observations, designed to be gender-
and speaker-agnostic.

In the current work we deploy an extended set of HPC
parameters to better fit the desired speaking style application
and design an HPC predictor model, trained on Switchboard.
The predicted HPC sequences are utilized to condition the pre-
trained prosody-controllable S2S TTS to convey the desired
conversational speaking style. We explore various alternatives
for conversational HPC prediction from phonetic and/or textual
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input, incorporating LSTM [9] and/or BERT [10] networks.
We introduce the system architecture in Sec. 2, detail on train-
ing procedure in Sec. 3 and present system evaluation in Sec. 4.
Concluding remarks are provided in Sec. 5.

2. Architecture
2.1. Prosody-Controllable S2S TTS

The Sequence to Sequence Text To Speech model ar-
chitecture, adopted in this work (Fig. 1), mostly fol-
lows the prosody-controllable S2S model originally proposed
for unsupervised/weakly-supervised word-emphasis realiza-
tion [8]. It is based on a Tacotron2 S2S acoustic model [2],
augmented with Hierarchical Prosodic Controls [8]. The S2S
acoustic model generates a sequence of acoustic feature vec-
tors (composed of mel-cepstral and periodicity components [11,
12]), where each vector corresponds to a constant-length speech
frame, that are then fed to an independently trained LPCNET-
based neural vocoder [11] to generate high-quality samples in
real time [12]. The inputs to the system are a set of symbolic
sequences extracted from the input text by a rules-based TTS
Front End module (adopted from a unit selection system [13]).
All input sequences are aligned (by repetition) to contain the
same number of symbols and are one-hot coded. The input se-
quences comprise:

• (A) phone identity (including silence phone) together
with its lexical stress (primary, secondary or no stress)

• (B) phrase type (4-way: intermediate, declarative, inter-
rogative, exclamation)

All the symbolic sequences are augmented with a special sym-
bol for word boundary, inserted between the words with no
silence between them. The one-hot coded input sequences
are converted to a set of linear embeddings, concatenated to-
gether, and fed into Tacotron2 Encoder module (C), consisting
of convolutional and bidirectional Long Short-Term Memory
(Bi-LSTM) layers [2]. A global utterance-level speaker embed-
ding (E), broadcast over the length of the sequence, is concate-
nated to the encoder output.

A set of Hierarchical Prosodic Controls, extended from the
one introduced in [8] (and further elaborated in Sec. 2.2), is
designed to enable both the sentence-level and the word-level
modifications needed to realize the prosodic patterns associated
with various speaking styles. They are designed to be speaker-
agnostic to ease cross-speaker style transplantation. During
training these prosodic controls are extracted from the target
waveforms (E), while at inference time a separate predictive
module (D) steps in to provide default predictions for the hi-
erarchical prosodic trajectories.

The Decoder is an autoregressive network that largely fol-
lows the standard Tacotron2 architecture [2], but with modi-
fications on the attention mechanism, choice of targets, and
training losses. These are described in detail in [12] and
briefly summarized as follows. The attention is an augmented
two-stage attention where the hybrid content- and location-
based attention mechanism of Tacotron2 [2] is followed by a
structure-preserving mechanism encouraging monotonicity and
unimodality in the alignment matrix [12]. The model is trained
in a multi-task fashion to predict the end-of-sequence indicator
and 80-dim mel cepstral features [2] in tandem with the param-
eters needed as inputs for an independently trained LPCNET
neural vocoder [11]. For 22kHz signals, these features (which
we denote as “LPC features”) correspond to 256 waveform sam-

ples and consist of a 22-dim vector with 20 mel-cepstral coef-
ficients, log f0 and f0 correlation. The predicted LPC features
are also processed with two post-nets (one to refine the mel-
cepstrum, and one to refine the pitch parameters). As opposed
to [8, 12], the autoregressive feedback mechanism in the de-
coder is kept unmodified from the original Tacotron2 architec-
ture.

Let yMt and yLt represent the target sequences for the mel
and LPC tasks respectively, ỹMt and ỹLt their final predictions,
and ŷLt the “intermediate” LPC-feature prediction (before the
post-net). Then the combined acoustic loss function is used to
train the system:

L = MSE(ỹMt , y
M
t ) + 0.8MSE(ŷLt , y

L
t )

+ 0.4MSE(ỹLt , y
L
t ) + 0.4MSE(∆ỹLt ,∆y

L
t ), (1)

where the ∆ operator applies the first difference in time to a
sequence, and MSE(, ) is the mean-squared error. The above
combined acoustic loss is added to the end of-sequence indica-
tor cross-entropy loss [2] to yield the total training loss. For the
sake of space, we omit some detail in this exposition, and refer
the reader to [14, 12] for additional background and formulae.

The default prosodic-control predictor predicts the HPCs
from the Front-End Encoder outputs of the S2S acoustic model
(Fig. 1) and consists of stacked Bi-LSTMs (3x128), terminated
with a linear layer. The predictor is trained separately (after the
training of the main model has ended and all its weights are
frozen) with global MSE loss of the combined HPC sequence
(see section 2.2) and ADAM [15] optimizer. At inference time,
the predictions of the prosodic-control subnet are rectified to be
piecewise constant as the oracle values that the S2S system was
trained with. To that end, a mean pooling function is applied to
the prediction to be constant between the (known) sentence and
word boundaries.

Figure 1: Multi-speaker S2S synthesis acoustic model (phones
to spectra) with Hierarchical Prosodic Controls.

2.2. Hierarchical Prosodic-Control parameters

In this work we extend a set of four perceptually-interpretable
prosodic measurements introduced in [8], evaluated over sen-
tence and word intervals. The sentence-level components rep-
resent general speed and expressiveness [14], while the word-
level components [8] represent fine-grained prosodic structure.
In this work we extend the reported set of prosodic measure-
ments [8] with two more pitch slope components to better suit
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for speaking-style modeling. Altogether, we make use of the
following statistics:

• Sdur: The log of the average per-phone durations, along
a sentence (and excluding any silence).

• S∆f0 : The f0 dynamics (i.e., the difference between the
95- and 5-percentiles of log-f0), along a sentence.

• S∠f0 : The log-f0 linear regression slope along a sen-
tence (excluding any silence).

• Wdur: The log of the average per-phone durations (as
above), along each word.

• W∆f0 : The f0 dynamics (as above), along each word.

• W∠f0 : The log-f0 linear regression slope (as above),
along each word.

Note that the average per-phone durations in the above defi-
nitions are estimated as the duration (in seconds) of the relevant
spans (word or sentence) divided by the number of phone sym-
bols contained therein, and that therefore no fine-level phonetic
alignment is required in the computation (only coarse word-
level alignments and either phonetic transcriptions or a dictio-
nary). The above sentence- and word-level properties are prop-
agated down to the temporal granularity of the phonetic encoder
outputs (i.e., phones) to form piecewise functions that are con-
stant within a (sentence or word) unit. From this we define the
following six-component prosodic-control target vector:

P = Normσ{[Sdur, S∆f0 , S∠f0 ,Wdur − Sdur,
W∆f0 − S∆f0 ,W∠f0 − S∠f0 ]}, (2)

where Normσ{} is the linear map [−3σ2, 3σ2] → [−1, 1],
and σ2 is the global (multi-speaker corpus-wide) variance for
each of the statistics in P . Note that all measurements in P are
gender-agnostic.

2.3. Conversational HPC Prediction Model

For each utterance we predict an HPC sequence, comprising
sentence- and word-level pitch- and duration-related features,
as described in section 2.2. Silences are treated as special words
for which only duration-related features are required. In order
to adapt the prosodic controls to the conversational context, we
consider combining various inputs: the input text, its phonetic
sequence encoding, textual dialog context (casual) and prosodic
dialog context, represented by HPCs, extracted from the past di-
alog audio. We use an encoder-decoder architecture, compris-
ing the encoder (Fig. 2) that converts all the input streams into
a sequence of context-aware word-embeddings, followed by a
decoder (Fig.3) that contains three dedicated HPC decoder net-
works: word-level HPCs, sentence-level HPCs and a dedicated
decoder for silence words. The encoder consists of three neural
models: a BERT network for text processing and two distinct
Bidirectional LSTM stacks for processing the phone-encoding
and prosodic context input sequences.

2.3.1. Text encoding (with conversational context)

BERT is a widely used language model for language under-
standing tasks. The pre-trained model is commonly fine-tuned
for a few epochs to extract high-quality task-specific word em-
bedding [10]. BERT requires transforming the input text into
tokens, e.g. with WordPiece tokenization [16]. In our work we
deploy base (uncased) BERT model in its ”question answering”
configuration; we feed a window of the chat history, i.e. the

textual context, into BERT’s sentence A input, while the target
utterance is fed as its sentence B. Attending to the conversa-
tional context, BERT produces token embeddings for the target
utterance. We average the outputs of the 4 last hidden layers to
produce token-representation, and represent each original word
by its first token representation. We show in our experiments
that all systems incorporating BERT text processing perform
significantly better than the system that processes just phone-
embeddings. We attribute this improvement to BERT’s ability
to capture semantic information, and to its robustness to text
errors.

2.3.2. Phone sequence encoding

Following [14], we utilize the target utterance’s phone sequence
encoding generated by the pre-trained Tacotron2 Encoder mod-
ule (Fig. 1, module C) from the phonetic sequence, to enrich
the semantic word representation with its phonetic counterpart.
We push the phone encoding sequence into a stack of three 32-
dim Bi-LSTMs, and pool to word resolution by either averag-
ing the output along word segments, or by taking the first out-
put element corresponding to each word. The resulting word-
level vectors are concatenated to the word-embedding produced
by BERT. Note that the phone-sequence processing architecture
resembles that of the baseline HPC prediction, as described in
Section 2.1

2.3.3. Prosodic context encoding

We hypothesized that certain prosodic information extracted
from the dialog history can help to attain better conversational
prosody modeling. We extract the HPC sequence of the dialog
context audio and feed it into additional stack of three 32-dim
Bi-LSTMs. We average the whole output sequence into a sin-
gle feature vector. This global feature vector is broadcast and
concatenated to the target utterance word-vectors. We further
apply a 128-dim linear layer followed by GELU [17] activation
to each one of those word vectors, and output a 128-dim word
embedding.

2.3.4. HPC decoder

The sentence-level, word-level and silence HPC features are de-
coded independently by three decoder modules, implemented
as single linear layers (see Fig. 3). The decoders’ outcomes
are combined together to comprise the output HPC sequence.
The sentence decoder is fed with sentence embeddings, where
each sentence embedding is obtained by averaging over its cor-
responding word embeddings. Once a silence word needs to be
inserted after a certain word w1, its embedding we1 (see Fig.
3) serves also as the embedding for the silence word and is fed
to Silence Decoder (see Fig. 3) to obtain the silence HPC com-
ponent (i.e. a silence duration estimate).

3. Conversational HPC Training
3.1. Data Preparation

The conversational HPC prediction model, excluding the pre-
trained frozen parts of BERT and pre-trained S2S Front-End
Encoder (see Fig. 2), is trained on Switchboard dataset that
contains spontaneous conversations in a weakly controlled
setup. As such, its data is challenging and noisy. Besides
the speech, various paralinguistic and non-speech events oc-
casionally happen, such as phone call quality distortions, ex-
ternal noise, coughing, laughter, stuttering, self-correction, un-
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Figure 2: Conversational HPC Predictor: Encoder. Outputs
context-aware word-embedding, based on the word semantics
and phonetics

finished words, prolonged pauses, word and phrase fillers and
para-linguistic particles. While the transcription is organized in
turns, speakers can actually speak simultaneously. Inevitably,
the transcribed text suffers from grammatical errors, incom-
plete sentences and weird phrasing. Fortunately, most of non-
linguistic and para-linguistic events are consistently labeled in
the manual transcription (with special signs). After removing
all the special transcription words, we generated proper En-
glish utterances, inserted commas at each pause and obtained
the phonetic sequences with word boundaries from each tex-
tual utterance, as described in Section 2.1. Then we compared
the word counts in the Switchboard word-alignment files with
the number of words in our generated phonetic sequence and
left out all misaligned utterances. For each speaker turn we de-
manded to have a valid previous speaker turn, to be able to ex-
tract prosodic context by means of HPC. Eventually we retained
∼170K utterances for training, that served us to extract their
phonetic sequences, target HPC sequences and prosodic (HPC-
based) dialog context. We also held out a development set of 35
utterances for post-training adjustments (see Section 3.3) and a
test set of 25 utterances for a listening test evaluation (see Sec-
tion 4).

3.2. Dialog Context

One of the questions we wanted to explore was whether the
dialog context is important for inferring the conversational
style from the multi-speaker spontaneous conversational speech
dataset (i.e. Switchboard).

3.2.1. Textual context

For the textual context (extracted from the past), we explored
several context configurations:

• NONE: no context is used.

• Last Turn (LT): The last turn and the target utterance are
fed to BERT as A- and B-sequence correspondingly.

Figure 3: Conversational HPC Predictor: Decoder

• Other Speaker Last Turn (OSLT): The context window
goes back until the last turn of the other speaker. The
text of the context turns is concatenated with period signs
between turns, and is fed to BERT sentence A as in the
LT case.

• Other Speaker First Turn (OSFT): The context window
is extended until covering the whole last burst of turns
the other speaker said.

For training, we left the original text and punctuation as is, in-
cluding the repeated words and the paralinguistics. The special
event symbols were dropped.

3.2.2. Prosodic context

We concatenate the HPC sequences of the interlocutor’s last
burst of turns and set it as prosodic context. For the starting
turn of each conversation we set the prosodic context to empty
sequence. Examples whose prosodic context was missing due
to pre-processing errors were discarded.

3.3. Training Procedure

We train our architecture with MSE regression loss, as follows:

L = MSEword + c1MSEsent + c2MSEsil, (3)

where the loss weights c1, c2 serve as hyper-parameters tuned
to minimize global MSE loss of HPC sequence, as used in the
baseline S2S TTS system, trained with the high quality speech
corpora (see section 2.1).

Since BERT overfits small datasets very quickly, we freeze
BERT in the first 5 training epochs while the rest of the archi-
tecture starts training. Then, we fine-tune the last two layers
of BERT’s encoder for 3 consequent epochs, and freeze BERT
again for the rest of the training.

In addition, we used bucket batch sampler to equalize the
LSTM’s input sequence lengths, and let PyTorch-Lightning [18]
automate the training process.

We used W&B sweeping tool [19] to apply massive
Bayesian hyper parameter optimization. The optimized hyper
parameters included the dialog context configuration, the sen-
tence and silence loss coefficients, BERT fine-tuning parame-
ters and others.
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For each system we performed a separate hyper-parameter
search to select several systems with the N -best losses. Among
them we selected the best system by listening to 35 utterances
of the held out development set.

We further post-process the predicted HPC features by
adding a negative offset of −0.5 to the silence word duration
HPC component to avoid too long silences that are common in
the spontaneous speech, but disruptive when synthesized with
neutral S2S TTS. This post-processing was also tuned on the
held out development set. A list of the hyper parameters that
was selected for each model under test is listed in Table 1.
All the tested systems were trained with batch size of 128 and
LSTM dropout of 0.3.

4. Evaluation
The training material for the pre-trained neutral multi-speaker
S2S TTS system comprised corpora from three professional na-
tive speakers of US English, two females and one male, of 10-
17K sentences each. A single female speaker was selected for
the conversational evaluation, as it was found more suitable for
the conversational speaking style than the others.

Several proposed variants of HPC models were trained sep-
arately on Switchboard to generate the HPC sequences from the
input texts, with or without dialog contexts. Other parts of S2S
TTS, besides the HPC model, where pre-trained and kept iden-
tical in all the systems.

In a subjective evaluation presented below we would like
to assess how well the proposed conversational prosody models
help to apply the conversational speaking style, while preserv-
ing a decent quality and naturalness of the synthesized speech.
To that end, we consider the following systems:

1. Base: The baseline neutral S2S TTS system with the
default HPC prediction, as learnt from the neutral voice
corpora.

2. Phn: The neutral S2S TTS with the conversational HPC
model, predicting HPC from phonetic sequence only
(phones, lexical stress, phrase type, word boundaries).

3. BERT-TC: The neutral S2S TTS with the conversational
HPC model based on a task-adjusted BERT, predicting
HPC from textual input, enriched with textual dialog
context.

4. BERT-Phn: The neutral S2S TTS with the conversa-
tional HPC model to predict HPC, based on phonetic and
textual input, no dialog context is fed into BERT.

5. BERT-Phn-TC: The neutral S2S TTS with the conver-
sational HPC model that combines that of item 2 and
task-adjusted BERT, trained also with the textual dialog
context. It predicts HPC, based on phonetic and textual
input, enriched with textual dialog context.

6. BERT-Phn-TPC: The neutral S2S TTS with the conver-
sational HPC model that combines that of item 2, but is
conditioned also on the HPC dialog context, plus a task-
adjusted BERT, trained with the input text and the textual
dialog context. It predicts HPC, based on phonetic and
textual input, enriched with both textual and prosodic di-
alog contexts.

To evaluate the systems defined above, we conducted a
combined Mean Opinion Score (MOS) listening test for the six
systems. No natural recordings were included in MOS tests,
since no matched conversational utterances existed for the high

quality voice. The test examples were taken from Switchboard
with their original context.

We conducted a crowd-based evaluation (139 subjects) for
a held-out test set of 25 sentences. The subjects were asked to
rate 1) the overall quality and naturalness of an utterance and
2) ”how well the sound of the voice and the intonation con-
vey the expressive character of a sentence in the context of the
provided conversation”. The subjects chose between five cate-
gorical answers (1 - Poor, 2 - Bad, 3 - Fair, 4 - Good, 5 - Ex-
cellent). The corresponding dialog context transcriptions were
provided to the subjects so that they could assess how well the
speaking style corresponds to the dialog context1. Each stimu-
lus received 35 independent ratings. The raw ratings were sub-
ject to an outlier-removal procedure, after which each stimulus
retained 31 independent votes on average.

Overall MOS results for 1) quality and naturalness and 2)
conversational speaking style correspondence are provided in
Table 2. As we requested a relatively large amount of indepen-
dent votes per stimuli, it makes sense to present also a percent-
age of stimuli with higher than the Base model MOS scores, for
each one of the five models under test (2-6).

5. Discussion and Conclusions
Overall MOS results have shown that the phone-only prosody
prediction (Phn) fails to learn convincing speaking style, but
rather significantly (p < 0.01) deteriorates the quality of the re-
sultant speech. On the other hand, when considering the word
semantics (using BERT), certain success in learning conversa-
tional style pattern from the noisy data is achieved. We observe
that although the absolute MOS improvements for any of the
BERT-containing models vs. the baseline in both the conversa-
tional style and the overall quality metrics are subtle (not sta-
tistically significant), the count of the better-scored stimuli is
much higher for BERT (BERT-TC) model (68% for the con-
versational style and 64% for the overall quality metrics, cor-
respondingly). The results revealed also that neither phonetic
sequence, not prosodic dialog context contributed to better per-
formance of the BERT-based HPC model (BERT-TC), proba-
bly due to the challenging spontaneous dataset used for training.

When exploring the best scored model’s stimuli (BERT-TC
vs. Base) and their corresponding MOS scores, we came to a
conclusion that the perceived improvement came to some ex-
tent as a result of improving general expressiveness, but mostly
due to better realization of common conversational speech pat-
terns, such as filler words and phrases (e.g., ”you know”, ”like”,
”well”, etc.), that sound more fluent and natural in the proposed
system. This observation aligns well with the fact that the con-
versational HPC models were learnt on a multi-speaker data set
containing many speakers, conveying their own interpretations
of a conversational speaking style, so just the most general con-
versational speech features could be acquired, as opposed to
the previously reported setup where a large single speaker con-
versational data set is available [6]. This observation implies
that most of the improvements came up at particular textual pat-
terns, thus explaining why the word semantics (text-only input)
seemed to be enough to gain those improvements.

Analyzing closely how the system scores change when
adding the phonetic stream to the HPC predictor (e.g. BERT-
TC vs. BERT-Phn-TC), we noted that more stimuli got worse
perceptual prosody scores, due to some expressiveness deterio-

1Audio samples are available at http://ibm.biz/S2S-ConvStyle-
SSW21.
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System Phn BERT-TC BERT-Phn-TC BERT-Phn-TPC BERT-Phn
bert context - LT LT OSLT NONE
learning rate 2.892E-05 0.0002 0.0002 0.0002567 0.0002
max epochs 50 40 40 40 40
phone lstm pooling starting phn - mean mean mean
sentence loss coef 11.929 13 13 13.002 13
silence loss coef 6.83 1 1 0.92 1
weight decay 0.0001067 0.0001 0.0001 0.0001218 0.0001

Table 1: Hyper-parameters selected for each model.

Table 2: Mean opinion scores with 95% confidence interval
(and percentage of stimuli with higher than Base MOS score)
for the speaking style (Stl.) and overall quality and naturalness
(Qual.)

Cat.
Systems

Base Phn BERT- BERT- BERT- BERT-
TC Phn Phn-TC Phn-TPC

Stl.
3.81± 3.74± 3.86± 3.85± 3.83± 3.81±
0.07 0.07 0.06 0.06 0.06 0.07
(-) (36%) (68%) (48%) (40%) (56%)

Qual.
3.82± 3.74± 3.87± 3.86± 3.88± 3.82±
0.07 0.07 0.06 0.07 0.06 0.07
(-) (36%) (64%) (36%) (52%) (48%)

ration, thus obtaining lower count of stimuli with higher-than-
baseline MOS scores. However, the terminal sentence prosody
is improved, resulting in statistically similar overall MOS scor-
ing.

Additional conversation style pattern, that is common in
the spontaneous speech and acquired by the HPC model is
uptalk [20], i.e. rising intonation on declarative statement end.
However, we observed that our S2S TTS system (originally
trained with neutral speech that had no uptalk examples) pro-
duced less convincing realizations of the uptalk pattern, that
were consistently down-voted in the subjective evaluation.

Based on that findings, we are currently exploring gradual
neutral and conversation HPC trajectory merging towards sen-
tence ends, to eliminate the negative uptalk effect, while retain-
ing other learnt conversational style effects.
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Abstract

Emotional voice conversion models adapt the emotion in speech
without changing the speaker identity or linguistic content.
They are less data hungry than text-to-speech models and al-
low to generate large amounts of emotional data for downstream
tasks. In this work we propose EmoCat, a language-agnostic
emotional voice conversion model. It achieves high-quality
emotion conversion in German with less than 45 minutes of
German emotional recordings by exploiting large amounts of
emotional data in US English. EmoCat is an encoder-decoder
model based on CopyCat, a voice conversion system which
transfers prosody. We use adversarial training to remove emo-
tion leakage from the encoder to the decoder. The adversar-
ial training is improved by a novel contribution to gradient re-
versal to truly reverse gradients. This allows to remove only
the leaking information and to converge to better optima with
higher conversion performance. Evaluations show that Emocat
can convert to different emotions but misses on emotion inten-
sity compared to the recordings, especially for very expressive
emotions. EmoCat is able to achieve audio quality on par with
the recordings for five out of six tested emotion intensities.1

Index Terms: Voice Conversion, Emotional Speech, Speech
Synthesis, Expressive TTS, Text-to-Speech

1. Introduction
Neural Text-to-Speech (TTS) has greatly supported the advent
of artificial voice assistants like Amazon Alexa, Google Assis-
tant, or Siri. These systems are trained on tens of hours of data
[1] and produce high-quality speech with close to perfect intel-
ligibility [2]. However, their speech is mostly neutral, which
prevents natural conversations and closer bounds with the user.
Creating voices in more expressive speaking styles usually re-
quires recording similarly large amounts of speech for the de-
sired style. This is very time-consuming and costly. An alter-
native is the generation of synthetic data to satisfy the high data
needs. The conversion of speech is generally assumed to be
easier than TTS, thus has lower data needs.

Emotional voice conversion (EVC) is a subfield of voice
conversion (VC) which studies the transformation of a source
audio signal into a different emotion while maintaining its lin-
guistic content and speaker identity. Techniques applied in EVC
are similar to VC and differ mostly in their feature selection
[3, 4]. EVC techniques working without hand-crafted features
are applicable to other speaking styles as well. EVC is also
applied to other tasks like film dubbing.

∗Work performed while being an intern at Amazon.
1The submission platform does not allow to attach samples; they

will be released publicly as part of an associated blog post.

In this work, we aim to convert neutral to emotional speech
in German. As we have only a limited amount of emotional
German data available, we exploit emotional recordings in US
English. We propose EmoCat, a language-agnostic EVC model
trained jointly on German and US English working directly
on mel-spectrograms. Compared to other works we use mel-
spectrograms to leverage our high-quality universal vocoder [5]
to keep a high bar on segmental quality. Our model adapts the
CopyCat model [6] (which is based on AutoVC [7]) for intra-
speaker emotion conversion. CopyCat is a VC model which al-
lows to convert the speech of unseen speakers to a set of target
speakers. In contrast to the global speaker identity, emotion is
a continuous component of speech. We use adversarial training
to explicitly remove emotion leakage from the encoder, which
encodes the neutral source spectrogram, to the decoder, which
generates the converted emotional spectrogram. We propose a
novel improvement to gradient reversal [8] to stabilise its gra-
dients. We further investigate fine-tuning to improve natural-
ness. In an ablation study, we assess the effectiveness of each
of the techniques. The proposed model is able to convert neutral
German to two different emotions in three intensities with the
support of less than 45 minutes of German emotional data. To
the best of our knowledge, no work exists on EVC with multi-
lingual data or mel-spectrograms.

2. Related work
Emotional voice conversion methods are generally split into two
categories: parallel and non-parallel training data.

In the parallel data scenario the database contains the same
utterance spoken by the same speaker in the different target
emotions. This allows the network to directly learn the con-
version. However, these databases are rare and typically small.
It is expensive to record all the emotions of an utterance for
a large phoneme coverage. Additionally, it is challenging for
voice talents to act the target emotion when the linguistic con-
tent of the utterance does not match. This can lead to errors
in emotion intensity and thus either lowers the quality of the
database or requires the exclusion of some recordings. Recent
works, including [9, 10, 11, 12, 13, 14], are less relevant for this
work.

In the non-parallel data scenario, the utterances for each
emotion differ, meaning that the content can better match the
emotion. This allows a wider variety of utterances and also
simplifies acting for the voice talents. With the lack of paral-
lel data, a model cannot be trained to do the conversion directly
as the ground truth target is not available. The training can only
be guided in an unsupervised way. Generative adversarial net-
works (GAN) and cycle consistency losses are commonly used
techniques here [15, 4, 16].

11th ISCA Speech Synthesis Workshop (SSW 11)
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In [15] an encoder-decoder structure with a content and
style encoder is used to convert mel-cepstrum (MCEP) ex-
tracted by WORLD [17] . The model is trained with three
losses. First, the cepstrogram is auto-encoded and an L1 re-
construction loss applied. Second, a semi-cycle consistency L1
loss forces the encoder embeddings to match before and after
conversion. Third, a GAN loss tries to discriminate generated
from recorded samples. F0 is converted by a linear transform
to match the statistics of the target emotion domain. The band
aperiodicities remain unchanged.

StarGAN is used in [4] on WORLD features with a re-
construction loss, an L1 cycle consistency loss, and a real/fake
GAN loss. The model architecture is the same as in the orig-
inal StarGAN-VC paper [3]. An emotion recognition model
(a variant of [18]) was trained with the generated samples and
evaluations show that its accuracy improved.

CycleGAN has also been used for emotion conversion [16].
It is trained with three losses: 1) a reconstruction loss, 2) a
cycle-consistency loss on a sample converted to another emo-
tion and then back to the source emotion, and 3) the GAN loss
for real/fake discrimination. The experiments show that sep-
arate CycleGANs for F0 and MCEP outperform a joint model.
[19] follows a very similar approach but uses an additional emo-
tion classification loss and no reconstruction loss.

A different approach is the variational auto-encoding
Wasserstein GAN (VAW-GAN) for emotion conversion [20]
(originally proposed for VC in [21]). It consists of a varia-
tional auto-encoder (VAE) structure where the decoder is con-
ditioned on an emotion embedding. The latent dimension is
chosen to be small enough so that it will not contain emotion
information. The model is trained with reconstruction loss,
standard Kullback-Leibler (KL) divergence on the VAE latent
space, and a Wasserstein GAN loss. Instead of using a binary
cross-entropy loss for the real/fake prediction of the discrim-
inator, the Wasserstein distance is used. The authors in [21]
claim that the Wasserstein distance is better suited for VC as it
is computed from the optimal transport corresponding to best
frame alignment.

Our approach is closest to the VAW-GAN in [20] as it
employs a similar encoder-decoder structure with a VAE en-
coder. However, the bottleneck used is temporal and drastically
smaller, also we condition the decoder on the linguistic content.
Our reference encoder is similar to the one in [22]. In contrast
to all related work above, we operate on mel-spectrograms and
train with multi-lingual data.

Figure 1: Structure of the encoder-decoder EmoCat model with
a gradient inverter block followed by an emotion classifier to
remove emotion information in the bottleneck embeddings. The
plus sign denotes a concatenation.

3. Model description
In this section we introduce EmoCat, a language-agnostic intra-
speaker emotion conversion model. It aims to convert neutral
speech to emotional speech of the same speaker2. EmoCat is
based on CopyCat [6] and inherits the same structure and hyper-
parameters except four differences:

1. It uses 64-dim emotion embeddings instead of 128-dim
speaker embeddings (see Section 3.1).

2. It uses a gradient inverter block to remove emotion leak-
age from the bottleneck embeddings (see Section 3.2).

3. It operates on multi-lingual data (see Section 4.1).

4. It does not pass the phoneme embeddings to the VAE
reference encoder.

Figure 1 shows the network structure. The VAE reference en-
coder encodes the mel-spectrograms and its emotion embed-
ding. A dimensional and temporal bottleneck is applied by
only selecting every N-th frame [7]. Each selected frame is
copied N times (to restore the sequence length). The bottle-
neck embeddings should contain as much information as possi-
ble to generate high-quality speech but no emotion information.
This is ensured by passing them through the gradient inverter to
the emotion classifier, which removes any leaking emotion in-
formation. Force-aligned upsampled phonemes (procedure de-
scribed in [23]) are encoded by the phoneme encoder to pro-
duce phoneme embeddings. During inference, the bottleneck
and phoneme embeddings are stacked with the target-emotion
embedding centroid and consumed by a parallel decoder to pro-
duce the converted mel-spectrograms. During training, the or-
acle utterance-level emotion embedding is used on the encoder
and decoder side. Source and target spectrograms are the same
as well. The parallel decoder consists of a stack of three con-
volutional layers followed by a uni-directional long short-term
memory (LSTM). The model is trained with an L1 reconstruc-
tion loss and the KL-loss on the VAE latent space. For the de-
tailed architecture, please refer to the CopyCat paper [6].

3.1. Utterance-level emotion embeddings

During training, utterance-level emotion embeddings are fed to
the VAE reference encoder and the parallel decoder. The emo-
tion embeddings need to be organised language-independently
by their style and other latent information to be beneficial to the
model. This excludes simple embeddings per emotion class and
suggests a learnable approach.

We obtain the emotion embeddings from a separate TTS
model, which is pre-trained to do phoneme to mel-spectrogram
conversion. The TTS model has a Tacotron-like architecture
[24] with the addition of two VAE reference encoders [25]. One
reference encoder captures the speaker information while the
other captures the emotion. We use intercross training [26] to
guide each encoder to encode only the speaker/emotion infor-
mation and to be language-independent. Within the reference
encoder the last GRU state is projected to form the VAE param-
eters. The embedding is obtained by sampling from the VAE.
We use the predicted embeddings from the emotion reference
encoder as utterance-level emotion embeddings for the EmoCat
training. We could learn the emotion embeddings in a similar
fashion on-the-fly within the EmoCat model, but this would in-
crease its training time, which is not desirable during research.

2We have informally verified that it also allows conversion between
emotions, but this lies out of the main scope of this paper.
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We could also obtain them from a simple emotion recognition
model, but we hypothesised that those embeddings might be
more suited for recognition than generation.

For the CopyCat model, robust speaker embeddings from a
pre-trained speaker identification system are necessary, because
the model also has to convert from unseen speakers. This is not
the case for the EmoCat model, which only converts between
seen emotions. Thus it requires less sophisticated emotion em-
beddings.

During inference, the utterance-level emotion embedding
of the converted spectrograms is unknown. Instead we compute
the centroid for each emotion over all emotion embeddings ex-
tracted from the training set and feed it to the decoder. The VAE
reference encoder still uses the utterance-level emotion embed-
ding of the input audio.

3.2. Gradient inverter

As emotion is a continuous and integral part of speech, it is
necessary to explicitly prevent it from leaking from the encoder
to the decoder side. With a pre-trained EmoCat with frozen
weights we trained independent gated recurrent unit (GRU)
emotion classifiers to predict the source emotion from the bot-
tleneck embeddings, where the best achieved 64% overall ac-
curacy. We found that heavy leakage resulted in low emotion
intensity during conversion. Decreasing the bottleneck (as de-
scribed in AutoVC [7]) led to heavy degradation in signal qual-
ity and intelligibility. With the reconstruction loss alone, we
could not force the bottleneck embeddings to remove the un-
desired emotion information while keeping information needed
for high signal quality.

Instead we used a gradient reversal block before the emo-
tion classifier during training to actively remove emotion leak-
age from the bottleneck embeddings. The idea of gradient re-
versal is to reverse the gradients during back-propagation to re-
move any activation in the input that helps the following classi-
fier. Gradient reversal achieves this by swapping the sign of the
gradient ∆ (Equation 1). It also applies a weight λ to control
the impact of the gradient on the preceding layers. The choice
of the weight greatly influences the performance of the final
model.

∆′ = −λ∆ (1)
We experimented with a feed-forward and a GRU based

emotion classifier. Interestingly, EmoCat converged to a bet-
ter model in terms of conversion ability with the feed-forward
classifier than the GRU one. This suggests that with gradient
reversal even a weak classifier gives sufficient gradients to lead
to a better convergence point.

We again trained the same emotion classifier as above on
the bottleneck embeddings of the model with gradient reversal.
The classifier mainly predicted the majority class (95% of the
time) showing that the majority of the emotion leakage was re-
moved. Informal listening verified that the conversion ability of
the model improved.

We argue that a simple swap of the sign (Equation 1) fulfils
only half of the reversal purpose. Consider the following two
scenarios:

1. Imagine there is no leakage in the input. As the classifier
cannot rely on any information in the input, its prediction
is random and the cross-entropy loss on its predictions
is high. Thus the back-propagated gradients are large
as well. Even though there is no leakage the preceding
network receives a large reversed gradient.

2. Imagine there is significant leakage in the input and the
classifier is already properly trained. Then its predic-
tion is good, the cross-entropy loss is low, and the back-
propagated gradients are small. Even though there is sig-
nificant leakage the preceding network receives only a
small reversed gradient.

The desired effect on the preceding network in both scenarios
should be swapped. Without any leakage the received gradients
should be small, while with significant leakage the gradients
should be large.

To address this issue, we present the gradient inverter
block. Instead of only swapping the sign of the gradient, it per-
forms a proper inversion by also converting small gradients to
large ones and vice versa. We have experimented with two gra-
dient inverter functions.

∆′ =
−λ∆

||∆||22
Inverse square norm (2)

∆′ =
−λ∆

exp ||∆||22
Inverse exp square norm (3)

Equation 2 implements directly what we want to achieve
by scaling the gradient by its squared norm. Gradients with
a norm smaller than one will become greater than one and vice
versa. However, it might lead to unstable behaviour as gradients
with a norm close to zero are scaled towards infinity. Equations
3 prevents this by bounding the denominator to less than one.
In this variant, gradients with a small norm remain almost un-
changed while big gradients are quickly faded out. We found
that depending on the target emotion one of the proposed in-
verter functions performs better.

3.3. Fine-tuning

While the EmoCat model with the proposed gradient inverter
achieved high emotion intensities, its signal quality left room
for improvement. We investigated fine-tuning on a subset of the
training data. First the model was trained with all data until con-
vergence. Then we continued training on emotional and similar
amounts of neutral data. This should compensate the averaging
effect in the decoder introduced by the huge amount of neutral
training data. We did not change any hyper-parameters, learn-
ing rates, or losses compared to the first training step. This ap-
proach outperforms a GAN-like loss (same as used for CopyCat
[6]), which strives for the generated spectrogram to be indistin-
guishable from the recordings.

4. Experiments
We aim at generating emotional German samples by converting
from neutral using a model trained with a limited amount of
emotional German data. We focused on two emotions: excited
and disappointed, in three intensities: low, medium, high.

4.1. Database

We use two internal databases. For German, we use more than
20 h of neutral and 45 min of emotional single-speaker record-
ings of a female voice. 20 neutral samples are set aside as test
set. We do not use a development set to guide the training be-
cause the L1 reconstruction loss does not match human per-
ception. The 45 min of emotional data are split equally into
excited and disappointed. 25% is low, 50% medium, and 25%
high intensity. Excluding the test set, we have around 5 min

74



Figure 2: System descriptions: blue: grad. reversal, orange: grad. inverter, light green: grad. inverter fine-tuned, red: neutral
baseline, purple: recordings. Black horizontal bars connecting systems denote no statistically significant difference between them
(p-value < 0.05).

for the most challenging intensity: high. As we do not have
access to more emotional German data, we use recordings of
a female US English voice as supporting speaker. From this
speaker, we use more than 20 h of neutral and more than 10 h of
emotional recordings of the same emotion categories. We found
that including US English data greatly improved the conversion
abilities of our model, despite the differences in language. This
suggests that the production of emotion follows a similar be-
haviour in English and German, which thus makes it beneficial
to include the English data during training. This might hold
true for other emotions as well. 24 kHz recordings are used.
We trim all silences to be maximum 100 ms and extract 80-dim
mel-spectrogram. We use phonemes with fully disjoint sets for
English and German, thus the speaker identity can directly be
inferred and explicit speaker embeddings are unnecessary.

4.2. Models

We conduct an ablation study across three models. Each is
trained for 100k steps on the combined two databases. The mel-
spectrogram is synthesised with our universal vocoder [5].

1. Grad. reversal - This model uses the vanilla gradient
reversal block (Equation 1) to remove leaking emotion
information. In contrast to the following two models,
we used a weighted cross entropy loss for the adversar-
ial emotion classifier to compensate for the huge class
imbalance in the training data. We chose the weights in-
verse proportional to the amount of the emotion in the
total training data. We found that this improved the grad.
reversal model.

2. Grad. inverter - This model replaces the gradient rever-
sal block of model 1 with the improved gradient inverter
block (Section 3.2). We use two separate models for the
conversion. The model to convert to the excited emo-
tions uses the inverse exp square norm function (Equa-
tion 3), while the one to convert to disappointed uses in-
verse square norm (Equation 2). This was selected based
on a clear performance difference in informal listening.

3. Fine-tuning - This is model 2 fine-tuned for 2k steps
as described in Section 3.3. The best results were ob-
tained by fine-tuning on the emotional data of the target
speaker with a similar amount of neutral data as for each
emotion. The neutral data requirement is probably due
to the adversarial training. This simple fine-tuning out-
performs GAN fine-tuning.

We wanted to include a state-of-the-art baseline, however we
did not find any work on emotion conversion from spectro-
grams, which is required to use our high-quality neural vocoder.
We adapted the work of [4] based on their StarGAN implemen-
tation3 to use mel-spectrograms instead of WORLD vocoder
features, but the quality of the synthesized speech was very
low. It is likely that major adaptations to the model architecture
are necessary to achieve competitive results. However, creating
such a baseline system is out of scope for this work. A compar-
ison with a WORLD vocoder-based model is superfluous [27],
therefore it was impossible for us to include a competitive state-
of-the-art baseline model in our benchmark.

4.3. Evaluations

We randomly selected 10 neutral German samples from the
held-out test set and converted them to each of the six emo-
tion intensities. 24 native German listeners rated the samples
in terms of emotion intensity and audio quality in a MUSHRA
[28] test from 0 to 100.

4.3.1. Emotion intensity

We asked listeners to rate the emotion intensity where we pro-
vided another neutral recording (different sentence) as a refer-
ence of 0. We also included another recoding of the same emo-
tion of the target speaker as an upper anchor and the utterance
generated by a neutral baseline system. We see in Figure 2 top
line that our gradient inverter model outperforms vanilla gradi-
ent reversal for medium excited and is similar in high excited
(no statistical difference, two-tailed t-test with p-value < 0.05,
denoted as a horizontal bar in the plots) while it is significantly
worse for low excited. The exp square norm function (Equation
3) only scales large gradients down which does not seem to be
optimal for the excited intensities. For disappointed the gradient
inverter model achieves more than 20 MUSHRA points higher
score across all intensities, proving the improvement through
the gradient inverter function. We either did not yet find a gra-
dient inverter function which generalises to different emotions,
or the function should be chosen depending on the use case.
Fine-tuning lowers the emotion intensity for the medium and
high emotions. This shows an averaging effect of the neutral
and low intensity data. It should also be noted that we see a
clear ascent from the low to the high intensity, but do not yet
reach the emotion intensity of the recordings except for low dis-

3https://github.com/glam-imperial/EmotionalConversionStarGAN
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appointed. We were only able to partially address the averaging
effect in the decoder, which might reveal a general shortcom-
ing of current decoder architectures. Highly expressive data in
another language seems to improve the system only to a cer-
tain point. More high expressive German recordings, even from
other speakers, might push the emotion intensity further.

4.3.2. Audio quality

We compared the same systems as above but without a refer-
ence sample and asked the listeners to rate the audio quality
(Figure 2 bottom line). We do not see a statistical difference be-
tween all systems for medium and high excited. Vanilla gradi-
ent reversal outperforms both other techniques for low excited
and all disappointed intensities, but at a lower emotion inten-
sity which makes the comparison unfair. The other techniques
are still at par with the recordings. We see a trade-off between
emotion intensity and audio quality here. We usually found that
higher emotion intensities suffer from reduced signal quality.
Most likely because low intensities are close to neutral samples
for which we have a lot of training data. This leads back to
the averaging effect in the decoder. We suggest to explore dif-
ferent decoder architectures more suitable for highly expressive
speaking styles. While we are not able to reach the emotion in-
tensity of the recordings yet, we achieve high audio quality at a
generally lower intensity level. Fine-tuning did not achieve the
desired improvement in audio quality. Even though it increased
the MUSHRA score in five out of six emotions the difference is
only statistically significant for low disappointed. The increase
in audio quality might be a consequence of the lower emotion
intensity instead of fine-tuning. However, for low disappointed
fine-tuning increased audio quality without reduced emotion in-
tensity. Interestingly, listeners found the audio quality of the
neutral baseline system to be significantly higher than the emo-
tional recordings. Our current hypothesis is that the listeners
indeed noticed that the recordings are acted emotions and thus
found them slightly unnatural.

5. Conclusion
We proposed EmoCat, a novel EVC model based on CopyCat,
which operates directly on mel-spectrograms. It allows to con-
vert neutral to emotional samples in German with less than 45
minutes of German emotional recordings. It achieves this by
leveraging large amounts of emotional English data with the
same emotions. While we expect the technique to be language-
agnostic, we only demonstrate it for the rather similar languages
German and US English. Even though the model is able to gen-
erate expressive speech at different intensities, we are not yet
matching the expressiveness of the recordings. Moreover, we
presented the gradient inverter block, an improvement to gradi-
ent reversal. This showed statistical significant improvements in
emotion intensity for four out of six emotions in subjective lis-
tening tests. We also found minor improvements in audio qual-
ity, at the cost of emotion intensity, through fine-tuning on the
target emotional data. Future work is required to investigate the
influence of increasing the amount of emotional German data,
testing on more dissimilar languages, and further improvements
to the gradient inverter functions.
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Abstract

Artificial speech synthesis has made a great leap in terms of
naturalness as recent Text-to-Speech (TTS) systems are capa-
ble of producing speech with similar quality to human record-
ings. However, not all speaking styles are easy to model: highly
expressive voices are still challenging even to recent TTS ar-
chitectures since there seems to be a trade-off between expres-
siveness in a generated audio and its signal quality. In this pa-
per, we present a set of techniques that can be leveraged to en-
hance the signal quality of a highly-expressive voice without
the use of additional data. The proposed techniques include:
tuning the autoregressive loop’s granularity during training; us-
ing Generative Adversarial Networks in acoustic modeling; and
the use of Variational Auto-Encoders in both the acoustic model
and the neural vocoder. We show that, when combined, these
techniques greatly closed the gap in perceived naturalness be-
tween the baseline system and recordings by 39% in terms of
MUSHRA scores for an expressive celebrity voice.
Index Terms: Neural Text-to-Speech, Generative Adversarial
Networks, Variational Auto-Encoders.

1. Introduction
Artificial speech synthesis has seen a considerable change of
paradigm: from the use of concatenative-based approaches
[1, 2, 3], to leveraging modern Neural Text-to-Speech (NTTS)
architectures such as Wavenet [4] and Tacotron [5]. Neural-
based models are capable of synthesizing speech that rivals the
real one in terms of quality while not being as constrained as
concatenative methods in terms of phonetic coverage. Nonethe-
less, neural models are still data-hungry: training high-fidelity
TTS systems using neural networks requires many hours of
high-quality training data [6].
In addition to the challenge of gathering high-quality training
data, we observed a tradeoff between the level of expressive-
ness in a voice (measured using the variance of f0, energy and
phonemes’ durations within the training data) and the segmental
quality of produced speech: while standard architectures were
able to produce high quality speech for neutral voices, their pro-
duced speech for highly-expressive voices suffered from degra-
dations in audio quality.
In this paper, we present techniques that we applied, on top of a
standard architecture such as in [5], to enhance the speech qual-
ity of highly-expressive voice. The described techniques are:

• Increasing the degree of autoregression as the training
progresses

• The use of adversarial training for improving the quality
of generated spectrograms

• The use of variational autoencoders (VAEs) with care-
fully selected latent representations at inference time

Figure 1: Overview of model architecture. The system can be
broken into two parts: an acoustic model and a neural vocoder
that produces waveform. Orange blocks highlight the building
neural network blocks for the acoustic model while the neural
vocoder is represented by a blue box.

• Training a neural vocoder conditioned on latent repre-
sentations extracted using a pre-trained VAE

In Section 2 we will separately explain each of the ap-
plied techniques, Section 3 will present and discuss the result
of applying the above-mentioned techniques on an expressive
celebrity voice while Section 4 will be for conclusions.

2. Proposed approach
2.1. Model’s architecture

The model we use comprises two main modules trained sep-
arately: an acoustic model which predicts a mel-spectrogram
from an input sequence of phonemes, and a neural vocoder that
predicts the waveform from the output of the acoustic model
(see figure 1).
The acoustic model is a state-of-the-art sequence-to-sequence
(seq2seq) neural network [5, 7, 6, 8] that leverages the attention
mechanism [9, 10]. The model was reinforced by the use of a
Variational-Auto-Encoder (VAE) [11] that takes the target mel-
spectrogram as input and predicts the mean and variance of a
Gaussian distribution from which a latent representation will be
sampled. We use adversarial training [12] in order to shift the
distribution of predicted mel-spectrograms towards the distri-
bution of target mel-spectrograms.The acoustic module models
the following probability distribution:

p(y1:M ) =

∫
Πm=1:Mp(ym|y<m, x1:N , z)p(z)dz (1)

Where y = {y1, y2, ..., yM} is a sequence of mel-spectrogram
frames, x = {x1, x2, ..., xN} is a sequence of phoneme embed-
dings and z is the VAE latent representation extracted from the
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target mel-spectrogram.
The vocoder is a parallel-Wavenet vocoder [13] with the addi-
tion of a VAE. The VAE-component takes as input the spec-
trogram predicted by the acoustic model and generates a latent
representation (see section 2.5 for more details). The vocoder
models the following distribution:

p(w1:T ) = Πt=1:T p(wt|µ(s<t, , y1:M , z), σ(s<t, , y1:M , z))
(2)

Where w = {w1, w2, ..., wT } is the waveform,
y = {y1, y2, ..., yM} is a sequence of mel-spectrogram
frames, z is the latent representation extracted from the target
mel-spectrogram using the acoustic model’s VAE module
and s = {s1, s2, ..., sT } is a sequence of noise sampled from
a prior random variable that serves as input to the Inverse
Autoregressive Flow (IAF) [14] blocks of the neural vocoder.

2.2. Tuning auto-regression levels

The acoustic model predicting mel-spectrograms is an encoder-
decoder architecture that uses location-sensitive attention mech-
anism [7, 9]. The decoder is an LSTM-based autoregressive
module: at each decoder step, the decoder predicts a set of
mel-spectrogram frames based on frames predicted in its previ-
ous step. We observed that the interaction between the decoder
and the attention mechanism led to instabilities when generating
very long sequences. Such instability issues include mumbling
and skipping over phonemes.
To alleviate the instability issues and help the convergence of
the attention mechanism, we changed slightly the decoder’s ar-
chitecture enabling it to predict multiple spectrogram frames at
a time instead of one. With multiple frames predicted per de-
coder step, the decoder needs less steps to produce the same
output spectrogram, this reduction in number of steps helps
prevents instabilities from accumulating during synthesis. This
trick greatly improved the stability of the model; a finding that
was also discussed in [5]. However, the improved stability came
at the cost of a decrease in segmental quality. In order to help
stabilize the attention while maintaining the same level of au-
dio quality, we tuned the decoder’s number of outputs-per-step
(ops) gradually from ops 5 to ops 2 within the same training.
In order to tune the ops with no change to the architecture, we
made the decoder predict the maximum ops (5 in this case) at
all stages of the training. The decoder’s output was then sliced
depending on the current ops: for example, in ops 2 we would
select only the first two predicted frames.
We made the decision to stop the tuning phase before reaching
ops 1 (fully autoregressive model) because we observed, in the
development process, that the ops 2 model generated samples
of comparable quality to the ops 1 model while being faster.
Since the autoregression’s tuning approach attempts to improve
on the instability issues on the decoder side, it can still be com-
bined with orthogonal approaches that tackled the problem from
the attention mechanism’s side [15, 16, 17, 18].

2.3. Using adversarial training for acoustic modeling

Generative adversarial networks (GANs)[19] have been suc-
cessfully used to generate high quality images. [20, 21, 22].
The adversarial loss incentivizes the generator to produce im-
ages that are indistinguishable from real ones, thus mitigat-
ing the over-smoothing effect observed when using traditional
losses such as L1 or L2 alone [23]. Following the progress
made in image generation, GANs have started to be applied to

Figure 2: GAN training setup. The whole acoustic model is the
generator. The discriminator network classifies its input spec-
trogram as real or predicted.

TTS. Kaneko et al. [24, 25] applied GANs to train the post-
filter component of the acoustic model to produce sharper mel-
spectrograms. Other GAN configurations were also explored,
such as applying GANs on the waveform for speech enhance-
ment [26] and the use of GANs to mitigate exposure bias [27].
We explored the use of adversarial training to reduce over-
smoothing in mel-spectrogram prediction via end-to-end train-
ing of our acoustic model. By adding an adversarial loss, we
aim to encourage the network to output a spectrogram distribu-
tion that matches with that of the target and not only focus on
the over-smoothing L1/ L2 losses. In our configuration (figure
2), the generator is the whole acoustic model and is trained us-
ing L1 loss between predicted and target mel-spectrograms plus
the adversarial loss. The discriminator is trained to distinguish
predicted spectrograms from target ones and is based on self-
attention blocks following the same architecture as in [28]. The
following equations summarize the training losses of both the
discriminator and the generator:

(3)
LD = − E

x∼pdata

[min(0,−1−D(G(x)))]

− E
y∼pdata

[min(0,−1 +D(y))]

(4)

LG = E
x,y∼pdata

[‖G(x)− y‖1]

+ α E
x,y∼pdata

[D(y)−D(G(x))]

− β(step)KLD(pz, pprior)

Where D is the discriminator network, G is the generator
network, x is the phoneme input sequence, y is the target mel-
spectrogram sequence, α is a weighting factor used to balance
the contributions of the adversarial loss and the L1 reconstruc-
tion loss, z is the latent representation sampled from the distri-
bution pz whose parameters are predicted by the VAE encoder
and β is a weighting factor for the Kullback-Leibler Divergence
(KLD) loss used for the VAE training (see section 2.4).

We used spectral normalization [29] on the discriminator
side to stabilize the discriminator’s training. We also observed
that feeding the whole mel-spectrogram sequence to the dis-
criminator gave worse results than feeding a small random win-
dow of mel-spectrogram frames. We think that this approach
forced the discriminator to focus on short-term transitions in
the audio, thus explaining the improved audio quality.

2.4. Variational Auto-Encoders (VAEs)

The acoustic model is conditioned on phonetic input which
does not account for latent (i.e. prosodical) factors in the data.
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To be able to factorize these latent elements, we enhance the
acoustic model via the addition of a Variational Auto-Encoder
(VAE) [11] which produces a latent representation predicted
from the target spectrogram. Similar approaches were used for
style modelling using continuous hierarchical embeddings [30]
or discrete ones [31]. The VAE module is a reference-encoder-
like architecture made of a stack of convolutional neural
networks followed by a BiLSTM and two projections that
predict the mean and standard deviation of a 64-dimensional
Gaussian distribution. The prior of the VAE latent vector is a
Normal distribution with zero mean and unit variance. As such,
the Kullback-Leibler Divergence (KLD) has a closed form
equation.

When training with KLD loss, it is possible to observe
KLD collapse: the decoder ignores the latent variable, thus
keeping the posterior distribution similar to the uninformative
standard Gaussian prior. To alleviate this issue, approaches
such as annealing or introduction of skip connections have
been proposed [32, 33, 34, 35]. We use a simple annealing
scheme where the weighting factor of the KLD loss is gradually
increased from 0 to 1 until a given step, after which the KLD
loss is only periodically applied.

Another challenge faced while introducing VAE to our
acoustic model is the selection of latent variable to use at infer-
ence time. Two main schemes can be used: sampling from the
prior distribution of latent variables or providing a fixed latent
representation at inference time for all utterances. For the sec-
ond scheme, different variations can be used, such as using the
mean of the prior distribution, using centroid (mean) computed
over training data, or selecting a latent representation extracted
from sampled utterances from the training set. We observed that
the selected latent representation can have a big impact on the
prosody and audio quality of generated samples. Furthermore,
we observed that the latent representation extracted from spec-
trograms corresponding to utterances with flat/average prosody
led to better observed segmental quality. After extensive listen-
ing, we chose a scheme where we use a latent vector extracted
from an utterance with flat intonation for general speech, and
a latent vector extracted from an utterance with rising intona-
tion for yes/no questions. The acoustic model will use one of
these latent representation at inference time depending on the
domain.

2.5. VAE-enhanced parallel Wavenet

The vocoder is a Parallel Wavenet-like [13] architecture trained
with probability density distillation and additional spectral loss
term. To improve the vocoder’s synthesized speech quality,
we used a similar approach to [36] which conditioned both the
teacher and student networks on additional VAE latent represen-
tation extracted from real-speech (section 2.4). Figure 3 shows
how the VAE conditioning is performed.
The teacher model has a Wavenet-like architecture with mixture
of 10 logistics where audio samples are conditioned on oracle
mel-spectrograms and a 64-dimensional VAE latent represen-
tation extracted from the VAE encoder of the acoustic model.
Mel-spectrogram frames are encoded by a 2-layers BiLSTM
with 128 hidden size, they are then concatenated with a 64-
dimensional VAE latent vector. We then apply an affine trans-
formation, implemented as a 1x1 convolution, to the output con-
catenated vector. Finally, the conditioning representation is up-
sampled to align with audio samples. Every Residual Gated

Figure 3: The architecture of the Parallel WaveNet-like neural
vocoder. The additional conditioning block concatenates the
mel-spectrogram conditioning with the latent representation ex-
tracted from the VAE reference encoder of the acoustic model.

CNN block uses 256-dimensional skip and gated channels. Fil-
ter activation is tanh and the gate activation is a sigmoid func-
tion.
The student network shares the same conditioning blocks with
frozen weights with the teacher network. A logistic distribu-
tion is passed through a stack of 4 Inverse Autoregressive Flows
[14] with affine transform. The parameters of the affine trans-
form are predicted by autoregressive conditioner blocks similar
in architecture to Wavenet blocks [4]. The flow conditioners
contain dilated convolutions with 10, 10, 10 and 30 layers. The
last block uses the same dilation value growth and reset as the
teacher network. The dilated convolutions use 64-dimensional
gated channels with tanh filter activation and sigmoidal gate ac-
tivation.
We tested the effect of the size of the VAE latent representa-
tion by comparing a 16-dimensional representation against a 64-
dimensional one and we observed that, while the 16-dimension
teacher had a higher audio quality, the student conditioned on
16-dimension VAE struggled to properly learn the teacher dis-
tribution and generated noisier samples. We also explored the
use of VAE conditioning on the student only, given the already
high audio quality of the teacher, and found out that the student
network was unable to properly match the teacher’s distribution.
This behavior needs more investigation and may drive future
work. Another detail to take into account is which latent repre-
sentation to use at inference time. Two schemes were examined:
the use of a centroid (mean) computed over the training data and
computing the latent representation from the conditioning spec-
trogram. Extensive listening led us to the choice of using the
centroid conditioning.

3. Results
3.1. Experiments

To demonstrate the benefits of the techniques detailed in the
previous section, we train two NTTS systems on highly-
expressive data of a male, English-speaking, celebrity voice.
The first system is a baseline model: an autoregressive acoustic
model with 5 spectrogram frames given per each decoder
step (with similar architecture to [7, 6]) followed by a parallel
Wavenet vocoder. The second model is the baseline model
enhanced by all four techniques described in Section 2 and we
will refer to it as full-system in the remainder of the paper.
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The acoustic model was trained separately from the vocoder
using a batch size of 32. The training procedure for the
auto-regression tuning was as follows: train the baseline with
5 output frames predicted per decoder step (denoted as ops for
output-per-step), then tune the model as ops 4, followed by
tuning the model as ops3 and finally as ops2. We used Adam
optimizer with default parameters. Once the ops 2 tuning is
finished, we tune the model using the introduced GAN module.
In the GAN tuning phase, the β1 parameter of the Adam
optimizer was reduced. We train the model on 10 hours of
expressive data of a male US voice.
In the vocoder’s training procedure, we use a batch size of 16
and an Adam optimizer with default parameters. Learning rate
decay wasn’t used in student training, but it was used in the
teacher network’s training with a decay value of 0.95. We used
Polyak averaging with a decay value of 0.999.
Our student was trained iteratively on 3 different saved
snapshots of the teacher network, taken at different training
steps, in order to to be able to train the student network while
the teacher’s training was still ongoing. We have observed
through listening that the student trained this way produced
better-sounding audios than the student trained only on the
last snapshot of the teacher. This observation will need to be
investigated, but we hypothesize that the teacher’s distribution
gets more complex and harder to model by the student in the
teacher’s later iterations and thus the iterative training provides
the student with checkpoints that are easier to match during
early training steps.

3.2. Evaluation

We conducted a MUSHRA (Multiple Stimuli with Hidden
Reference and Anchor) evaluation test with three systems:
the baseline, the full-improvements system and recordings
from the speaker. The test was performed on a set of 160
utterances with varying lengths. Each utterance was evaluated
by 15 native English speakers who were asked to rate the three
systems based on naturalness. The results of the perceptual
test can be viewed in figure 4. We report the following mean
MUSHRA scores per system: baseline: 51.13, full-system:
64.04 and recordings: 84.04. These numbers translate into the
full-system achieving a 39% gap-closing between the baseline
and the recordings.

We also conducted VQA tests (Voice Quality Assessment)
of the baseline and our proposed system where two native
US English speakers were asked to report on issues they
hear in audio files synthesized using both systems. The test
set is comprised of 275 utterances with varying lengths and
from different domains: questions, spelling, newscasting,
etc. The issues were classified according to severity, from
critical to almost unnoticeable (reported as minor). The
reported issues covered audio quality, pronounciation issues
and instabilities. Table 1 summarizes the VQA results, where
we can observe a significant reduction in terms of reported
issues. The biggest difference between the two systems was
reported on audio buzziness issues: as the baseline system had
153 reported problems compared to 60 for the proposed system.

In addition to the above MUSHRA test, we conducted an
additional ablation test in order to rank the improvement made
by each change. The test has the exact same setup as the previ-
ously described MUSHRA except that we use 4 systems instead

Figure 4: Boxplot of MUSHRA test’s results. Systems from left
to right: baseline, full-system and recordings. Mean score per
system: baseline: 51.13, full-system: 64.04 and recordings:
84.04.

System Number of
reported
critical
issues

Number of
reported
medium
issues

Number of
reported
minor
issues

Baseline 7 443 252
Full-system 0 231 123

Table 1: Summary of VQA tests performed on both the baseline
and the proposed system. It is worth noting that a single issue
can be reported twice as there are two testers.

of 3. The 4 systems are: full system without ops tuning, full sys-
tem without GAN training, full system without VAE in acoustic
model side and full system without VAE on neural vocoder’s
side. Table 2 summarizes the results of the MUSHRA.

From the results of table 2, we observe that not all tech-
niques are contributing equally to the overall improvements.
Conditioning the Parallel Wavenet vocoder on VAE embeddings
is the most impactful as the full system suffered the most with-
out it. The second most important change is the tuning of ops
within training. The GAN training and the VAE conditioning
in the acoustic model side seem to have the least impact on the
overall gains. This observation does not mean that the latter
VAE should be discarded altogether since we noted, in section
2.2, that the component helped guide the question/non-question
intonations.

System MUSHRA score
w/o ops tuning 66.62 ± 1.06
w/o GAN training 67.64 ± 1.03
w/o VAE in acoustic model-
ing

68.19 ± 1.03

w/o VAE in vocoder 65.88 ± 1.07
Table 2: Mean MUSHRA score per system in ablation study.
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4. Conclusions
The paper tackled the challenge of improving the audio qual-
ity of speech produced by a TTS system trained on highly-
expressive data. To that end, we presented a compilation of
techniques that ranged from acoustic modeling to vocoding. We
then showed that, when combined, the proposed techniques im-
proved the perceived quality which translated into a consider-
able increase in MUSHRA score and a reduction to the num-
ber of reported audio quality issues. We also run an ablation
MUSHRA test to rank the impact of the proposed techniques.
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Abstract
This paper presents a study of expressive speech synthesis

applied to real-life application styles in Brazilian Portuguese.
We explore the use of data with different recording conditions
in state-of-the-art architectures in expressive TTS. Our results
suggest that the variability of recording conditions of the same
style, combined with a guided training of the latent representa-
tion space of the Reference Encoder, assists in the modeling of
non-archetypal expressivities. Additionally, we propose an al-
ternative to evaluating the model’s ability to generate expressive
speech during preliminary results, based on a classifier using
GeMAPS features.
Index Terms: expressive speech synthesis, tacotron2, style
guided, prosodic features, gemaps

1. Introduction
The process of generating an artificial speech from a given
text is named text-to-speech (TTS) synthesis. This artificial
speech should correctly convey the message that was in the
input text (intelligibility) and, ideally, sounding like a human
(realism/naturalness) while having the correct prosody (expres-
siveness). The usage of recent deep neural networks architec-
tures in TTS, neural TTS (NTTS), have established a new state
of the art, being able to generate intelligible artificial speech
with a naturalness close to the human voice [1, 2, 3, 4]. How-
ever, state-of-the-art NTTS models can still not synthesize real-
istic, expressive speech or modulate existing models for differ-
ent styles. Because of this, the synthesis of expressive speech is
still a challenge.

To modulate expressiveness in speech, we need to change
the prosody. According to [5, 6] prosody are speech character-
istics that are not associated with “what is said”, but with “how
it is said”. Similarly to [7] we define prosody as the variation in
speech signal that remains after accounting for variation due to
phonetics, speaker identity, and channel effects. There are sev-
eral parameters that can be changed to modify speech prosody,
mostly related to fundamental frequency, intensity, and duration
during speech. Recent approaches have proposed a global con-
trol of prosody, where a latent representation of prosody (LRP)
is estimated in conjunction with NTTS models. From this latent
space, these approaches showed to be able to alter the speech
prosody without having to control specific acoustic parameters.
Although these approaches show that modeling speech prosody
without explicit specifications is feasible, such approaches do
not control the expressiveness of speech itself.

Later works seek to use these architectures based on esti-
mating the LRP to generate different speech styles. When es-
timating the LRP space using data with varying speech styles,

the modeled space itself showed other characteristics for each
of them. From the analysis of this space, such works showed
that it was possible to control the speech style. However, usu-
ally, these approaches use archetypal styles of speech, clearly
distinguishable from each other.

Based on the availability of lines recorded in different
recording styles and conditions, this work explores the ability
of state-of-the-art models to model the prosodic space (LRP).
The present work investigates the robustness of current meth-
ods of expressive speech synthesis with a diversity of recording
conditions and real-life application styles.

We explore different dataset configurations under different
recording conditions, as well as different methodologies for es-
timating LRP space. Our experiments showed that Global Style
Tokens [8] are not capable of generating separable prosodic
spaces, while Reference Encoder [7] easily generates separa-
ble spaces. However, the space generated does not guarantee
that different styles are modeled. The use of the guidance in
the estimation of the LRP showed feasibility in conditioning the
space to better prosodic modeling. Additionally, we propose an
alternative to subjective perceptual evaluation suitable for inter-
mediate stages of TTS development, based on an expressivity
classifier that uses GeMAPS [9] set of acoustic features.

2. Related works
Three acoustic parameters are mainly related to speech prosody:
fundamental frequency, intensity, and duration. Moreover, we
can classify prosody in two categories: affective and augmen-
tative [10]. The affective prosody is the expression of meaning
related to emotion, mental state, and speaker attitude. On the
other hand, augmentative prosody does not contain any extra
information; it is used to make a verbal communication clearly
by giving intonation or focus in specific parts, disambiguating
one message that could be interpreted in different ways.

Silva and Barbosa [11] tried to verify how to relate prosodic
acoustic features with the perception of people listening to emo-
tional speech. Despite a good correlation of certain features,
many of them did not have a significant relationship and were
unstable over different emotions. The high complexity of how
prosody is related to acoustic features is a big challenge when
talking about controlling expressiveness in artificial speech.

In order to avoid the need of explicit annotations in prosody
modeling, Skerry-Ryan and colleagues [7] proposed the Refer-
ence Encoder (RE), which consists of an additional module to
the NTTS Tacotron architecture [1] that encodes the mel spec-
trogram of a reference audio in a lower-dimensional represen-
tation. This representation is added to the decoder input and
used to control prosody at inference time. This work showed
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that the augmented Tacotron with RE can transfer prosody from
reference audio to the synthesized speech. Later, Wang and col-
leagues [8] proposed an attention layer augmenting the Refer-
ence Encoder, where trainable variables, named Global Style
Tokens (GST), are jointly estimated with the model parameters
in training time. This approach shows that each token can model
distinct acoustic parameters, like pitch and duration. Although
these two works have shown that it is possible to use this lower-
dimensional representation to control prosody in a NTTS sys-
tems, they didn’t perform any relation between these parameters
and controlling a specific speech style.

Further, other works tried to model different speech styles
using these lower-dimensional representations, which we are
calling Latent Representation of Prosody (LRP). In [12] the
GST’s were used conditioning each token to a specific emo-
tion label. By doing that, they were able to control the syn-
thesized speech over three different emotions by using the re-
spective modeled token. Kwon, Jang, Ahn and Kang [13] also
used the GST architecture, but instead of conditioning the to-
kens themselves, they studied the LRP space generated by to-
kens over speech samples. This work demonstrated that us-
ing the centroid’s of each emotional speech in LRP space can
lead to expressive speech control in inference time. However,
those approaches used a balanced internal dataset among differ-
ent styles, which is not easily feasible.

Recently, Sorin, Shechtman and Hoory [14] proposed an
approach where a NTTS model augmented by RE module was
used to generate expressive speech. Particularly, this work
showed that it is possible to transfer expressiveness among dif-
ferent speakers even when just one speaker’s expressive speech
is available. Using a dataset consisting of speech from 3 speak-
ers, where just one of them had a small amount of expressive
data, they trained a multi-speaker Tacotron2 [2] architecture
with RE module to generate the LRP space. Using PCA decom-
position, they were able to select a good representation for each
style to generate controlled expressive speech in inference time
to all speakers. Specifically, in this project, they used real-life
application speech styles called “good news” and “apology”,
besides the neutral. This work is particularly important because
real-life application styles are not so easily distinguishable from
each other, unlike what happens when dealing with emotional
speech..

As far as we know, the only work that applies NTTS ap-
proach to Brazilian Portuguese language is in [15], where sev-
eral experiments were done using different NTTS architectures
on a public dataset made by themselves. However, they don’t
contemplate the expressive speech synthesis problem, having
only neutral samples. We understand this project as the first
one considering the expressive NTTS problem using Brazilian
Portuguese language.

3. Technical setup
3.1. Data

Our experiments were conducted using a proprietary dataset
consisting of utterances recorded by three speakers identified as:
Speaker 1 (female), Speaker 2 (female), and Speaker 3 (male).
Table 1 presents a summary of the dataset, which is character-
ized by a high volume of neutral recordings, and a smaller set of
expressive speech samples. The expressive style is associated to
real-life customer service applications and can be described as
excited positively; we refer to this as Enthusiastic style. Also,
the expressive utterances were recorded only by Speaker 1 in

two different conditions: medium quality (with high reverbera-
tion) and studio quality.

In order to create different experimental setups, four dataset
configurations were designed, each one characterized by a par-
ticular selection of utterances / recording conditions. The first
configuration, named DC1, consists of all available neutral data
from all three speakers, together with all expressive utterances
recorded in high reverberation condition. This configuration
is, theoretically, characterized by a more easily separable latent
subspace, since utterances differ both in terms of expressiveness
and recording condition at the same time.

The other three settings are more challenging and have been
used to cover three possible combinations of recording condi-
tions for the expressive data. In the neutral partition of these
settings only phonetically rich sentences are present, which rep-
resents 30% of the neutral speech contained in DC1 (approxi-
mately 2 hours of speech per speaker). The main motivations to
reduce the amount of neutral data were: (1) to be able to train
a good NTTS model with less data (since the selected sentences
guarantee a good phonetic coverage) and (2) to assure a better
balance between the neutral data and the expressive data.

For each selection of the expressive data, a different dataset
configuration was designed. Therefore, DC2 contains only ex-
pressive data with high reverberation; DC3 contains expressive
data recorded in studio quality; and finally, DC4 contains ex-
pressive data collected in both recording conditions. A detailed
view of data configurations and audio samples are presented on
our demo webpage1.

3.2. Proposed Approaches

Our NTTS architecture is based on Tacotron2 [2] from Mozil-
laTTS implementation. Tacotron2 is a state-of-the-art NTTS
model that maps grapheme or phoneme sequences into mel
spectrograms. The predicted mel spectrograms are synthe-
sized using Griffin-Lim vocoder [16]. To accomplish the
multi-speaker modeling, we added a speaker identity embed-
ding layer. The speaker embedding output is then broadcast-
concatenated to the decoder input.

To generate LRP space, we augmented the Tacotron2 ar-
chitecture with different style encoders. The first architecture
was based on a GST module with six tokens and four heads,
and we name this as simple GST-Tacotron2 architecture. The
choice for six tokens and four heads was an attempt to avoid
the high degree of freedom that GST has. In the second one,
we removed GST module and used only the Reference Encoder
(RE-Tacotron2) without the last fully connected layer, similarly
to [14]. Finally, the third architecture is based on Reference En-
coder with an additional layer that receives as input the LRP
generated by RE and classifies the expressivity of the refer-
ence audio in a supervised manner. In order to accomplish
the style-guided modeling, we added Cross-Entropy Loss to the
Tacotron2 loss function that measures the error of the classifier
layer. We call this last one Style Guided RE-Tacotron2 (SGRE-
Tacotron2). For all architectures, the style encoder layer’s out-
put is broadcast-concatenated with the decoder input, similarly
to the speaker embedding.

In order to generate controlled expressive speech using the
LRP space, we used the centroid’s of each expressivity and, ad-
ditionally, the expressive point with maximum distance in com-
parison with the neutral centroid. This last point is an attempt
to generate an utterance ”as expressive as possible” at inference

1https://bit.ly/3qJfwm5
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Table 1: Proprietary Dataset Available

Speaker ID Gender Style Recording Conditions Data Partition #Utterances #Hours

Speaker 1 Female

Expressive Medium Quality All Available 381 0.45
Expressive Studio Quality All Available 265 0.29

Neutral Studio Quality All Available 7209 6.38
Neutral Studio Quality Phonetically rich 2389 2.24

Speaker 2 Female Neutral Studio Quality All Available 17992 15.00
Neutral Studio Quality Phonetically rich 2543 2.61

Speaker 3 Male Neutral Studio Quality All Available 5173 5.1
Neutral Studio Quality Phonetically rich 1828 2.04

time; we refer to this point as Expressive Maximum Distance
Point (EMDP).

3.3. Model Evaluation

A fundamental problem in the development of expressive
speech synthesis models is how to evaluate the contribution of
parameter or architectural changes to the final naturalness of
speech. Typically, subjective perceptual evaluation is needed to
assess the realism of synthesized speeches as well as the capa-
bility of the model in generating consistent speech styles. How-
ever, subjective perceptual evaluation is a laborious and time-
consuming task, and it is not affordable for intermediate stages
of development.

As an alternative to the subjective evaluation, we propose
two objective metrics to evaluate how well our model fitted our
target expressive style.

The ROC-AUC metric of a Logistic Regression trained on
the learned LPR space can measure how well a linear model can
classify the space. It is a proxy variable to show how separable
are the expressive styles (neutral and expressive) in the LPR
space. However, not only prosodic information is observed by
the model. Since we have no control on what exactly is being
modeled, it is not possible to state that a well separable space
represents a model learned to distinguish only different prosodic
styles.

As a second objective evaluation approach, we trained a
robust classifier based on the Geneva Minimalistic Acoustic
Parameter Set (GeMAPS) features extracted from only Studio
Quality data (DC3) and use this model to classify whether syn-
thesized audio is expressive or not based only on acoustic fea-
tures [9]. This set of features was elaborated aiming at a set
of acoustic parameters that shows a good performance in af-
fective computing tasks applied to speech. The GeMAPS fea-
tures are characterized by: (1) their potential to index affec-
tive physiological changes in voice production, (2) their proven
value in former studies as well as their automatic extractabil-
ity, and (3) their theoretical significance in affect theory. The
minimalistic set of features consists of 62 parameters extracted
from 18 Low-level descriptors (LLD) based on frequency (pitch,
jitter, formant’s frequency), energy/amplitude (shimmer, loud-
ness, harmonics-to-noise ratio), and spectral (alpha ratio, ham-
marberg index, spectral slope, formant’s relative energies, and
harmonic differences). Particularly, we used the extended ver-
sion, called eGeMAPS, that has seven LDD added: spectral
(MFCC and spectral flux) and frequency (Formant’s). As dis-
cussed in [9], cepstral parameters have proven to be highly suc-
cessful in modeling affective states. In total, the extended set
of features, eGeMAPS, contains 88 parameters. In our exper-
iments We trained a 5-fold Random Forest classifier that rec-
ognizes whether an audio is expressive or not with an accuracy

of 98%, based on eGeMAPS features, the eGeMAPS classifier.
To assess the ability of our NTTS model to generate consistent
expressiveness, we select 150 utterances, never seen in training,
and classify the synthesized speech samples using the classifier.
The synthesized speech samples are conditioned to the EMDP
point, the eGeMAPS features are extracted from the output au-
dio and then classified by the classifier. It is therefore expected
that the classifier will be able to focus on prosodic features and
indicate whether the synthesized speech is expressive or not.

4. Results
4.1. Low Dimensional Representations

Initially, we seek to evaluate different approaches in building
the LRP space applied to the configuration of DC1 data. The
GST-Tacotron2 architecture was the first to be evaluated, where
some works have already used the approach to archetypal styles
(such as Ekman’s emotions). We used the UMAP [17] technique
to project the LRP space to a 2D representation and we analyze
the distribution of styles in this lower space, Figure 1 shows the
2D-dimensional projection given by UMAP. The green points
represent the representations of the expressive data and the blue
points the neutral ones, both from Speaker 1, while the gray
(Pool) points are the representations of the other speakers’ neu-
tral data.

Figure 1: UMAP projection of LRP space generated by GST-
Tacotron trained on DC1.

Although the architecture managed to concentrate the data
labeled as expressive in a specific region of space, that same re-
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gion still consisted of neutral data from all speakers. It was not
possible to achieve an adequate modeling of the speech style in
when listening to the artificial audios generated by condition-
ing the synthesis to several regions of the space (centroid’s or
even the EMDP point), as well as the points described in the
proposed approaches.

Similar to what was observed in [14], GST was not able
to model different speech styles under the present conditions
of experimentation. Unlike [13] for example, we don’t have a
balanced dataset between different styles, and also we don’t use
archetypal styles. Because of this, we have chosen to use only
the Reference Encoder as our speech style encoder.

We note that, the RE-Tacotron2 architecture trained on DC1
was able to generate a separable space between the expressive
and neutral data for all speakers, Figure 2. However, it is also
noted that the generated LRP space is more sparse, having sev-
eral agglomerations along with data of the same style. When
listening to the generated audios, this architecture showed to
be more effective to modify acoustic parameters in the synthe-
sized speech by conditioning it to regions of neutral or expres-
sive data. However, when conditioning to the EMDP point, the
hearing quality of the synthesized speech seemed more associ-
ated with the recording condition of the expressive subset than
with the speaking style itself.

Figure 2: UMAP projection of LRP space generated by RE-
Tacotron trained on DC1.

We then performed the same experiment, using the SGRE-
Tacotron2 architecture. We noticed that the generated LRP
space guided in a supervised way is less separable than in the
second experiment, but still more separable than in the first one,
as illustrated by Figure 3.

In this experiment, we noticed that with the EMDP point,
the artificial speech generated is closer to the expressive style
while still modeling the different recording conditions. When
using the expressive centroid for inference, there was no explicit
modeling of the style. We, therefore, chose to follow the SGRE-
Tacotron2 architecture in the subsequent experiments. Table 2
summarizes the conclusions of these three experiments.

4.2. Data diversity experiments

Based on the experiments in the LRP space described in the pre-
vious topic, we choose to continue using the SGRE-Tacotron2

Figure 3: UMAP projection of SGRE-Tacotron2 space gener-
ated by SGRE-Tacotron trained on DC1.

architecture. Next, we tried to assess how different data con-
ditions influence the technique’s ability to generate expressive
artificial speech. First of all, we noticed that a large amount of
data is not necessary if you have a smaller amount of phonetic
richness data. In addition, a smaller amount of neutral data al-
lows a better balance of the dataset in relation to expressive data.
The architecture was then trained with the DC2 data. The gen-
erated LRP space is clearly separable, as shown in Figure 4.
Apparently, a more balanced amount of expressive data helps
the model to generate a more separable LRP space. In addition,
as previously noted, the model is able to generate expressive
speech by conditioning to the EMDP point but still jointly mod-
els the recording condition.

Figure 4: UMAP projection of LRP space generated by SGRE-
Tacotron trained on DC2.

The LRP space generated by this approach allows a lin-
ear model to reach an 87.33% ROC-AUC in the validation set,
showing itself to be a highly separable space. However, only
48% of the synthetic utterances conditioned on the EMDP point
were classified as expressive by the eGeMAPS classifier, which
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Table 2: Summary of Low Dimensional Representation experiments

Model Architecture Data Configuration Comment
GST-Tacotron2 DC1 Not able control acoustic features with Tokens or generate

a separable space
RE-Tacotron2 DC1 Can generate a separable space, but no certain of modeling

prosodic information
SGRE-Tacotron2 DC1 Can guide LRP space to a better prosodic modeling but with

no clear consistency in controlling expressivity

supports our hypothesis that the architecture models not only
the style, but also the recording condition.

DC3 was used in our next test setup. In this case, both neu-
tral and expressive speech have the same recording condition.
This approach leads to a less separable LRP space, with a lower
ROC-AUC value (81.74). Moreover, when listening to the syn-
thetic utterances they sound less distinguishable with regard to
the target style, Figure 5. In practice, this experiment resulted
in audios close to the neutral style, even when conditioned to
the EMDP point. Despite this, our eGeMAPS classifier model
recognized 97.33% of the synthesized audios as expressive.

Figure 5: UMAP projection of LRP space generated by SGRE-
Tacotron trained on DC3.

Our last experiment used all the available expressive data
(DC4), maintaining the same SGRE-Tacotron2 architecture.
The generated LRP space remains separable, but the studio
quality expressive samples are clearly closer to the neutral sam-
ples than the medium quality ones, as shown in Figure 6. In
this space, the linear model achieves a ROC-AUC of 85.52, and
the eGeMAPS classifier model was able to identify 87.33% of
the artificial utterances generated using the EMDP point. With
this configuration, the artificial speech generated by the model
sounds more expressive and with less recording condition, as if
the recording condition highlighted the expressive data allow-
ing the model to capture the prosody of expressiveness. Table 3
summarize all experiments reported in this topic.

Even though the first experiment resulted in a more sep-
arable space, it mostly models the recording condition itself.
As a result, even when conditioning the model to the EMDP
point, our eGeMAPS classifier could not recognize such syn-
thesized speeches as actually expressive. On the other hand,

Figure 6: UMAP projection of LRP space generated by SGRE-
Tacotron trained on DC4.

when we train the model only on studio quality data, the gener-
ated space does not seem so separable, but the eGeMAPS model
can identify the synthesized speeches as expressive. However,
when listening to such audios, they are very similar to neutral
ones, indicating a possible instability of the eGeMAPS classi-
fier model. On the other hand, when we used all the expressive
data in the third experiment, the SGRE-Tacotron2 was able to
model less recording condition while still having a separable
LRP space. It indicates that the variability of recording con-
ditions for the same speech style can prevent only the record-
ing condition from being modeled while still modeling prosody.
The results suggest that not even guided training can guarantee
that prosodic features will be properly modeled. Finally, the
presence of a second distinguishing factor among utterances, as
in the first experiment, reinforces the architecture’s ability to
model all speech aspects present in that group (prosodic char-
acteristics and recording condition).

5. Conclusions and Discussions
The use of latent representations of audios (LRP) to model
acoustic parameters of speech has been widely used to deal with
expressive speech synthesis. Although this approach does man-
age to model speech characteristics, it did not explicitly guar-
antee the modeling of prosodic parameters in isolation under
experimentation conditions of this work. Archetypal speech
styles are associated with striking features in speech, allowing
the model to separate its characteristics from one another eas-
ily. However, when dealing with styles typically used in real

88



Table 3: Summary of Data Diversity experiments

Model Architecture Data Configuration ROC-AUC eGeMAPS expressive accuracy
SGRE-Tacotron2 DC2 87.33 48.00%
SGRE-Tacotron2 DC3 81.00 97.33%
SGRE-Tacotron2 DC4 84.46 87.33%

life applications, the task becomes more challenging. Our ex-
periments suggest that the model tends to model the audios’
most striking features, be them recording conditions or prosody.
The variability of recording conditions in utterances of the same
style, combined with a guided training of the LRP space, proved
to be a promising approach to deal with styles that are not so
easily distinguishable from each other.

Additionally, the present work is innovative in terms of ex-
pressive speech synthesis based on NTTS models applied to
Brazilian Portuguese, and it can serve as a basis for future
studies along the same line. Moreover, we have proposed the
eGeMAPS Classifier as preliminary objective metric to evalu-
ate expressive TTS models.

As a future work, we intend to continue studying the in-
fluence of different recording conditions on different architec-
tures to help model real-life application speaking styles. We
also intend to evaluate the use of prosodic variables to highlight
such characteristics within the LRP spaces. Additionally, we
intend to enrich our dataset with additional styles in order to
perform similar experiments using two different style besides
neutral one.
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Abstract
This paper studies the feasibility of an articulatory speech

synthesizer by extracting the mid-sagittal tongue and palate
contours using the ultrasound (US) imaging modality. The ex-
tracted contours are then used to compute the vocal tract cross-
sectional areas (i.e., area function) during phonation, which
then drives an articulary speech synthesizer. Using this ap-
proach, we synthesized four phonetic vowel sounds (/a/, /i/, /e/
and /o/). The derived vocal tract (VT) transfer functions are
shown to match over multiple utterances for a single vowel,
thereby confirming reliable and accurate area function deriva-
tion using the US. The acoustic formants of simulated vow-
els using the proposed method show a modest deviation from
the speaker’s recorded speech signal since the current articula-
tory model does not include the mouth radiation mechanism.
Furthermore, the higher formants’ positions (F5-F8) are ap-
proximately equivalent to the high-quality standard MRI-based
acoustic results and have an average error of 3.90%, 4.14%,
1.26% and 2.99% for vowel sounds /a/, /i/, /e/ and /o/, respec-
tively. Our approach provides a step towards developing a US-
based speech synthesizer for precise extraction of the upper VT
geometry and enabling speakers to drive an articulatory model
directly by their tongue movements without the necessity of vo-
calization.
Index Terms: speech synthesis, computational paralinguistics,
ultrasound image, silent speech, human-computer interaction

1. Introduction
Speech interfaces follow the sophisticated speech produc-
tion mechanism for synthesizing voices to aid the speech-
handicapped and support communication systems [2, 3, 4]. The
articulatory data are of paramount importance for such inter-
faces, as the speech production task demands unified move-
ments of a set of articulators (e.g., pharynx, tongue, hard palate,
lips, etc.). The existing challenges in these speech synthesiz-
ers can be highlighted by analyzing their underlying assisting
tools (e.g., sensors and imaging devices) and core functionality.
Fundamentally, they build upon two principles:

• Approximating the upper VT geometry (i.e., area func-
tion) using several invasive or non-invasive sensors and
imaging modalities.

• Mapping the VT geometrical information to an acous-
tic space that can generate speech sounds with precise
acoustic characteristics.

The earlier synthesizers took advantage of different optical
and magnetic sensing technologies to estimate VT shapes by
tracking lip movements [5, 6] and tongue shapes [7, 8]. They
consider each articulatory movement as an individual entity and

then unify all articulatory information to determine the final
VT shape. Though it is hard to determine the influence of an
individual articulator, studies [9, 10] show that the tongue is
a significant determinant for the upper VT geometry. Due to
its agility and higher degrees of freedom, the tongue dynami-
cally creates an irregular tube-like constriction between the lar-
ynx and mouth opening, which governs the acoustic features
of speech. Hence, the accurate description of the VT shape
through its area function is a primary component for an articula-
tory model, which uses the VT area function to produce synthe-
sized speech. In contrast to other approaches, the area function
approximates the variation in VT cross-sections as a function
of distance from the glottis and offers a much straightforward
geometrical representation of the intricate VT shape.

Lately, the advance in high-quality non-invasive medical
imaging techniques has enabled the visualization of tongue
movements from different orientations at once. Earlier, the
sagittal x-ray projection [10], and computed tomography [11]
were used to image the upper VT for various vowel and conso-
nant sounds. Nevertheless, due to radiation risks to the human
subject being imaged, these imaging techniques are not clini-
cally safe. Lately, MRI is widely adopted [1, 12] to capture the
mid-sagittal upper VT images at any desired orientation without
any harmful effects. The captured upper airways are then seg-
mented from surrounding tissues before computing their area
functions, which assist in building speaker-specific articulatory
models [13, 14, 15]. However, the image acquisition time us-
ing MRI is on the order of several minutes, and the method is
unsuitable for extracting VT cross-sections during continuous
speech production due to the low temporal resolution of rt-MRI.
Lim et al. [16] have recently produced VT rt-MRI images of 75
speakers with a high spatio-temporal resolution, though such
imaging methods are expensive and not always readily avail-
able. Alternatively, the multimodal compact US imaging device
allows real-time visualization of the tongue contour with bet-
ter temporal resolution. There are several models in literature
[17, 18, 19, 20, 21, 22, 23] which use US to design silent-speech
interfaces. Such a system characterizes tongue shapes, lips and
jaw movements [24] as feature vectors instead of area func-
tions and matches their corresponding speech tokens through a
mapping algorithm (i.e., articulatory-to-acoustic mapping). The
system efficiency relies upon a fixed-size database with a broad
set of prerecorded speech tokens at the expense of computa-
tional run-time and memory space. Therefore, the computa-
tional overhead of the system increases as the acoustic space
grows.

This paper proposes a novel US-based articulatory model
via tracing a section of the oral cavity during phonation and de-
termining its cross-sectional areas from the US imaging modal-
ity. A physics-based articulatory synthesizer (2.5D FDTD VT
[13]) then directly utilizes these area functions to produce intel-
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Figure 1: The area function extraction procedure for the vowel /e/. (a) shows the tracked palate (dotted yellow line) and tongue surface
(dotted red line) in an ultrasound image of a tongue, (b) shows the extracted vocal tract boundaries (in blue), the estimated midline (in
red) and the equidistant grid lines (in black), (c) shows our computed US-based area functions (in red) in comparison to standard MRI
based area functions (blue dotted) [1]. The shaded portion shows the vocal tract area region from the base of the tongue to the tip.

ligible static English vowel sounds without having any depen-
dence on prerecorded speech segments. Therefore, our model
does not require extra memory space to accommodate acoustic
data. Moreover, as a realistic approach, it only relies upon artic-
ulatory information in terms of area function rather than a deep
learning-based mapping algorithm to synthesize speech sound.
At the core of this method is the extraction of the mid-sagittal
cross-sectional areas between tongue and palate using the US,
which drives a computationally affordable acoustic wave solver
for synthesizing speech sounds. We implement the adaptive
grid strategy (AG) [25] that first determines the vocal tract cen-
terline and subsequently extracts its cross-sections perpendicu-
lar to the centerline. For the articulatory model, we adopted a
2D acoustic wave solver (i.e., 2.5D FDTD VT) due to its bet-
ter geometrical flexibility and time complexity than the 1D and
3D articulatory models, respectively. The following section dis-
cusses the development of the proposed model in detail.

2. Method
2.1. Ultrasound Imaging & Audio Recording

At present, the coupled articulatory model simulates synthetic
speech sounds for a fixed VT geometry. Hence, we performed
experimental studies with phonetic vowel sounds for a prelim-
inary assessment of our synthesizer. Evaluation of the articu-
latory synthesizer with dynamic boundary conditions is being
investigated for future work. During this study, a healthy male
speaker (26 years old) was asked to repeat each of the following
vowel sounds five times with intervals in between: /a/, /i/, /o/
and /e/ — the resting time before every utterance was approx-
imately 10 seconds. We have mainly analyzed the VT shape
of cardinal vowels in our study as these vowel sounds represent
the extreme points of articulation. However, we did not con-
sider vowel sound /u/ as it involves the extension of VT due to
lips protrusion. Since ultrasound only captures tongue contour,
the acoustic simulation of vowel /u/ may produce inaccurate re-
sults. Nevertheless, this can be addressed in future work by
estimating lips position using different sensing technology.

For imaging the tongue and upper palate, we used ALOKA
SSD-5000 ultrasound system at 30 fps in conjunction with a
9mm radius UST-9118 3.5 MHz convex ultrasound transducer
(120-degree scan angle) and Echo Wave II ultrasound imag-
ing software. Since the articulatory model requires the cross-
sectional area profile of VT contour along the mid-sagittal
plane, the US transducer was locked into a fixed position and
placed beneath the speaker’s chin while imaging a single section

of the tongue. Usually, the palate is not visible as the US beam
reflects off the air in the vocal tract region. However, while
swallowing, the tongue surface makes complete contact with the
palate, leaving no air in between and thereby allows the imag-
ing of the palate [26]. Since the palate movement is negligible
compared to the tongue during speech production tasks, we im-
aged the speaker’s upper palate only once through a swallowing
action. Throughout the experiment, we asked the speaker to sit
in a chair and put his head supported by firmly attached pads to
the chair. The ultrasound probe was held securely by the arm at-
tached to the same chair. Using this approach, we stabilized the
speaker’s head and eliminated any unwanted palate movements.

Simultaneously, the audio data from the speaker were
recorded using a Sennheiser MKH 416 P48 shotgun micro-
phone and a Focusrite Scalet 2i2 preamplifier to enable a com-
parative study between the original speech signal and the simu-
lated speech output, as illustrated in Section 3.3. The recorded
data are available here1. We used Audacity, a digital audio edi-
tor, to cancel the US ventilation noise from the recorded speech
signal. A time lag exists between the audio recording and video
of the US imaging of the tongue that needs to be calculated.
Therefore, the participant was asked to produce /ka/ 5-7 times
at the beginning of the recording session. The release of /k/ in-
volves a burst and a quick tongue movement; hence, it makes
both acoustic and articulatory landmarks of release easy to iden-
tify and determine the time differences between them.

2.2. Area Function Extraction

As the next step, we traced the tongue shape and palate contour
in a semi-automatic fashion from the US video stream and ex-
tracted the corresponding cross-sectional areas. The area func-
tion usage simplifies acoustic analysis of the vocal tract as it ap-
proximates the upper airway as an irregular acoustic tube which
allows planar wave propagation. From an acoustic perspective,
this means the variation of acoustic pressure remains constant
over a planar wavefront, and the wavefronts are perpendicular
to the tube centerline (i.e., along the direction of sound wave
propagation) in space. It is to be noted that such an assumption
limits the characterization of the vocal tract model for higher-
order modes. However, as per the assumption, the vocal tract’s
cross-sections that coincide with planar wavefronts supervise
its acoustic characteristic. Thus, we implemented the adaptive
grid strategy [25, 27], which first derives the centreline between

1https://github.com/Debasishray19/Talking-
Tube/tree/SSW11/audioData
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Figure 2: Illustration of vowel simulation using 2.5D FDTD
vocal tract model. The colormap shows the acoustic pressure
wave propagation inside the vocal tract.

the traced tongue and palate contours. Next, it approximates a
set of grid planes perpendicular to the centerline for estimating
the corresponding area function. Unfortunately, if there is an
abrupt VT shape change and the number of grid planes is high,
there is a possibility of collision between the grid planes. How-
ever, this could be prevented by positioning them at an equal
interval while reducing their counts. Our solution procedure is
discussed as follows:

1. Trace the tongue and upper palate (see Figure 1a) by
fitting a smooth spline to the lower edge of the visual
lingual contour using the EdgeTrack system [28]. The
EdgeTrack is an automation tool for extracting tongue
surfaces from the surrounding noise and unrelated high-
contrast edges in ultrasound images.

2. Draw the traced contours on a 2D cartesian coordinate
system and sample the coordinates for both the tongue
and the upper palate.

3. Derive the centerline coordinates by averaging the or-
dinates of the tongue and palate corresponding to each
abscissa in the set of sample points. Then, connect the
derived coordinates using piecewise line segments to de-
termine the centerline.

4. Draw a set of equidistant grid lines perpendicular to
the centerline. Each grid line intercepts the posterior-
superior palate contour and the anterior-inferior tongue
contour (see Figure 1b).

5. Calculate the cross-sectional area of the vocal tract tube
from the length of intercepts at the sampled points.

6. Normalize the cross-sectional areas starting from the
base to the tip of the tongue to retrieve the 1D area func-
tions between tongue and palate (see Figure 1c).

2.3. 2.5D FDTD Acoustic Wave Solver

We implement a 2.5D wave-guide-based articulatory model
[13] to synthesize acoustic outputs. The articulatory model ex-
tends the rationale of the 2D finite-difference time-domain (2D
FDTD) numerical scheme [14] and improves upon it by lump-
ing wave propagation effects for off-plane waves. Mohapatra
and Zappi have already shown the potential of the lightweight
2.5D FDTD VT model as its acoustic features are comparable to
a complex 3D FEM (i.e., finite element method) VT model [15]
for static vocal tract shapes. Moreover, unlike 1D articulatory
models, the 2.5D model captures the effect of non-planar wave

Algorithm 1 FDTD Time-Marching algorithm
Input: VT area function a(x), audio time t

1: Initialize the physical constants: air density ρ, sound speed c.
2: Initialize grid size (M ×N) and simulation sampling rateR.
3: Set the temporal resolution (∆t) and grid resolution (∆x) with R and CFL

condition.
4: Set the simulation step size T with t and ∆t.
5: Define boundary cells with a(x) and normal acoustic impedance Z.
6: Set depth values (D̄,D(x) andD(y)) for each grid cell derived from a(x).
7: Define source excitation cells
8: Initialize source excitation velocity ve.
9: Initialize acoustic components (p, vx and vy) for each grid cell.

10: for n = 1...T do
11: for i = 1...M do
12: for j = 1...N do
13: Update pn+1(i, j) with vnx (i, j), vny (i, j) and D(i, j) (Eq. 1

and Eq.3)
14: if (i, j) = excitation cell then
15: vnx ← vnx + vne and vny ← vny + vne
16: end if
17: if neighbouring cells = boundary cell then
18: vnb ← pn(i, j)/Z
19: end if
20: Update vn+1

x (i, j) with pn+1(i, j) and vnb (Eq. 2)
21: Update vn+1

y (i, j) with pn+1(i, j) and vnb (Eq. 2)
22: end for
23: end for
24: end for

propagation inside the VT geometry, which heavily influence
speech acoustics, especially higher-order modes that typically
appear above 5 kHz [25].

Before simulation starts, we first create the 2D VT contour
inside a staggered rectangular grid using the area function re-
trieved from the US and then define the acoustic components (p
as pressure, vx and vy as velocity along x and y axis) for each
grid cell. In a similar fashion, the tube depths(D̄, D(x) and
D(y)) are derived and mapped to each grid cell as described
here [13] in detail. The spatial resolution (∆s) and tempo-
ral resolution (∆t) of the simulation are restricted using the
Courant-Friedrichs-Lewy condition(∆t ≤ ∆s/

√
2c, c = speed

of sound). A boundary condition is enforced via vb similar to
what proposed here [14, 29] to include the time-dependent VT
wall losses. A source excitation function is coupled at the glot-
tal end to induce the acoustic energy into the VT tube.

During the simulation, the 2D wave solver updates each
acoustic component by solving the discretized mixed-form
wave Equations (1) and (2) across the entire grid using a time-
marching algorithm (see Algorithm 1). The time-domain anal-
ysis fits well for the articulatory model, as the vocal tract and
articulatory processes evolve with time to produce speech. We
denote the standard discrete spatial derivatives with ∇̃ as per-
formed in 2D FDTD:

p(n+1) =
D̄p(n) − ρc2∆t ∇̃ · V (n)

D̄
(1)

v(n+1) =
βv(n) − β2∆t ∇̃p(n+1)/ρ + ∆t(1− β)vb

β + ∆t(1− β)
(2)

where,
V = ( D(x)vx, D(y)vy ) (3)

ρ = air density and n = nth time step of the simulation.
β = A scalar parameter to distinguish between air (β = 1) and
the VT boundary (β = 0) in the computational domain.
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3. Experiments and Results
3.1. Experimental Setup

We captured the pressure propagation p(n) (as shown in Figure
2) by placing a virtual microphone 3 mm inside the mouth open-
ing to simulate audio time events of 50 ms. The microphone
essentially collects discretized pressure samples at each time
step during the simulation. Since the 2.5D FDTD VT model
does not yet employ radiation losses, we impose the Dirichlet
boundary condition (i.e., open-end boundary condition) at the
tube end as proposed here [30]. However, it is to be noted that
the mouth radiation is an important dissipation mechanism [31]
in determining the actual acoustic characteristics (i.e., formants’
positions, bandwidths and amplitudes, voice naturalness, etc.)
during speech production. Therefore, we expect some devia-
tions in the acoustic properties between the synthesized vowel
sounds and the recorded speech signal. A Gaussian volume ve-
locity pulse v(n)

e with a maximum frequency range up to 10kHz
was used as the glottal excitation to compute the VT transfer
function and their formants. We followed the transfer function
analysis method to extract formants as it is a standard approach
to characterize the synthesized audio outputs generated from the
computational vocal tract model.

v(n)
e = e−{(∆tn−T )/0.29T}2(m3/s) (4)

where, T = 0.646/f0 and f0 = 10kHz

However, the articulatory model needs to be coupled with
a self-oscillatory vocal fold (VF) model, a source excitation
function to generate synthetic speech output. Hence, during the
vowel sound production, we coupled the 2.5D vocal tract to a
self-oscillating biomechanical vocal fold model (i.e., lumped-
element two-mass VF [32]). We chose a biomechanical VF
model over the parametric (e.g., [33]) and kinematic models
(e.g., [34]), as it simulates the flow-induced oscillations of the
vocal folds. Thereby, it naturally reproduces effects that result
from the interaction between the vocal folds, the glottal flow,
and the vocal tract. In the past, multiple articulatory mod-
els have been successfully demonstrated using the two-mass
VF model [35, 36]. The two-mass VF model is computation-
ally lightweight, and it uses two point-masses connected by a
spring-damper system to emulate the self-oscillatory character-
istics of the human vocal folds.

A numerical simulation using the finite-difference scheme
was then carried out, setting the physical constants as fol-
lows, speed of sound of c = 350m/s and air density of
ρ = 1.14 kg/m3. We fixed the sampling rate of the simula-
tion to 661, 500 Hz, thereby having the temporal resolution of
∆t = 1.51 × 10−6s. We lowpass the output pressure samples
above 22kHz using a second-order Butterworth filter to gener-
ate vowel sounds. The feed-forward and feedback coefficients
of the filter are 0.0754× {1, 2, 1} and {−1.0875, 0.3890}, re-
spectively. We implemented the VT area functions extraction
algorithm and the physics-based articulatory model in the MAT-
LAB environment. The custom code of our model is publicly
available here2.

3.2. Speech Output Evaluation

Our current model supports investigation with different speech
sounds by directly modifying the VT tube geometry, hence con-
trolling the acoustic output. Though several acoustic features

2https://github.com/Debasishray19/Talking-Tube/tree/SSW11
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Figure 3: Illustration of spectral envelops for vowel /a/ and their
formants (dotted vertical line), derived from the simulation of
the US-based area functions samples for three different trials -
Trial1 (Red), Trial2(Green), Trial3 (Blue).

(e.g., formant position and bandwidth, pitch, etc.) contribute to
the simulated-voice quality, we solely focus on formant posi-
tions as they play a vital role in distinguishing the vowel cate-
gories. First, we characterize the acoustic behaviour (i.e., trans-
fer function curves) of a simulated vowel sound, phonated at
separate time instants (i.e., three different trials) by the same
speaker to evaluate the reliability of the US imaging modality
for vocal tract area function extraction. Second, we extract the
formants [37] from the recorded speech signals and compare
them against the US-based VT area functions acoustic simula-
tion. Next, we analyze the higher formants’ positions (F5-F8)
using the proposed method as higher formants in VT frequency
response contribute to the perception of voice quality [38]. For
this, we match the results against a standard high-quality MRI
dataset [1]. Since the US does not capture the complete VT
cross-sectional areas, we generate a new area function dataset,
called US+MRI, to study the impact of missing geometry. The
new area function dataset includes the tongue contour extracted
from the US and supplements the absent area functions using
the standard MRI data directly. Currently, we do not have the
VT area function dataset using the MRI and US imaging tech-
niques for the same subject. However, the human upper airway
geometry approximately remains identical for vowel sounds
across different subjects. Therefore we directly use Story’s MRI
data [1] of VT cross-sections to compensate for the missing ge-
ometrical information.

As discussed earlier, this study does not characterize the
acoustic properties of speech sounds for dynamic vocal tract
shapes. The dynamic boundary condition requires attention to
other additional details such as continuous extraction of vo-
cal tract cross-sections in a fixed-time interval as it changes,
a smooth transition of vocal tract walls in the FDTD computa-
tional domain [39], etc. Therefore, it is essential that we first
characterize our US-based articulatory model for static vocal
tract shapes.

3.3. Results

The VT transfer function H(f) was obtained by applying the
fast Fourier transform (FFT) to the output-pressure samples p0

and Gaussian volume velocity pulse ve as follows,

H(f) =
p(f)

ve(f)
(5)

where p(f) and ve(f), respectively stands for the FFT of p(n)

and v(n)
e . Figure 3 shows three nearly equivalent transfer func-
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Figure 4: Accuracy percentage of the first 4 formants in the US-
based area function simulation for vowels /a/, /i/, /e/ and /o/,
with respect to the speaker’s original speech signal.

Table 1: Absolute positional errors (in percentage) of the higher
formants (F5-F8) with only US (denoted as U) vs US+MRI (de-
noted as U+M) based area function simulation

V F5 F6 F7 F8
U U+M U U+M U U+M U U+M

/a/ 6.4 0.4 1.4 0.7 5.9 1.1 1.8 0.5
/i/ 3.1 4.7 0.5 0 7.4 4.9 5.4 5.9
/e/ 2.0 3.6 0.3 0 0.9 2.4 1.7 2.3
/o/ 6.3 0.4 3.6 0.7 0.3 0 1.6 1.3

tions having similar formants, derived from the simulation of
vowel /a/ with different US-based VT area functions samples.

The speaker’s original vowel utterances were considered
ground truth to analyze the acoustic features of the model. We
used the PRAAT application [40] to approximate the first four
formants for each vowel sound from its recorded speech wave-
form. Figure 4 demonstrates that the accuracy percentage of
the first four formants for static vocal tract shapes generated us-
ing the US-based area functions and synthesized using 2.5D VT
model, is above 80% in most cases.

The PRAAT application can not identify higher-order for-
mant frequencies accurately. Hence, we used Story’s VT area
function [1] to simulate and retrieve the higher formants (F5-
F8), and considered them as baseline for a comparative study.
This MRI dataset has been widely used for the acoustic analysis
of many articulatory models [14, 30]. The comparative study
shows that the average absolute positional errors of these for-
mants were 3.90%, 4.14%, 1.26% and 2.99% for vowel /a/, /i/,
/e/ and /o/, respectively (Table 1). However, there was a sig-
nificant improvement in the formant position with the US+MRI
area functions, which compensate for the missing cross-sections
in the US-based VT areas. The synthesized vowel sounds using
different VT area functions are provided here1 as audio files.

4. Discussion and Conclusion
The VT transfer function for a specific phoneme is unique,
subject-specific and depends upon area functions. Since the de-
rived transfer functions for vowel /a/ across multiple samples
remain consistent, it is evident that the US can be used to ex-
tract VT cross-sections accurately by restricting subjects’ head

movements while imaging. Besides a few exceptions (e.g., F2
in vowel /o/), most formants resulting from VT acoustic sim-
ulation using US images match the speaker’s recorded speech
signal well. However, the inclusion of free radiation effects into
the articulatory model will allow an objective analysis of the
existing errors. In order to do that, we have to include a sim-
plified head geometry to the existing VT model and allow the
outward pressure wave propagation at the mouth end to emulate
free space[41]. This feature will also offer realistic simulation
of a VT shapes extracted with US imaging techniques.

As an imaging device, the US is suitable for tracing tongue
shape from its blade to root, thereby allowing the accurate rep-
resentation of a section of the VT shape as an area function
inventory. This approach is incapable of estimating the com-
plexity of realistic VT geometries (e.g., piriform fossae, sub-
glottal tract, and lip’s area). Though such a level of geometrical
details might not be necessary for categorizing vowel sounds,
they have significance at the higher end of the speech spectrum.
Therefore, the simulation output of US+MRI VT area function
provides better acoustic results for the higher formants. As a
future research direction, it motivates an investigation into the
possible ways of augmenting US-based area functions to gener-
ate rich VT geometrical information.

The results from this study provide insights into the fu-
ture development of a silent-speech interface. This could be
achieved by retrieving VT area functions using the US and
other sensing technologies and passing them to the articulatory
speech synthesizer to simulate synthetic speech sounds. The
current off-line platforms: (1)VT cross-sectional area function
extraction from the US (2) 2.5D FDTD articulatory speech syn-
thesis model, needs to be connected to generate acoustic output
in real-time. We are currently working towards implementing
the dynamic VT geometry in the articulatory model, which will
finally allow the synthesis of continuous speech.
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Abstract
Whilst recent neural text-to-speech (TTS) approaches produce
high-quality speech, they typically require a large amount of
recordings from the target speaker. In previous work [1], a 3-
step method was proposed to generate high-quality TTS while
greatly reducing the amount of data required for training. How-
ever, we have observed a ceiling effect in the level of natural-
ness achievable for highly expressive voices when using this
approach. In this paper, we present a method for building
highly expressive TTS voices with as little as 15 minutes of
speech data from the target speaker. Compared to the current
state-of-the-art approach, our proposed improvements close the
gap to recordings by 23.3% for naturalness of speech and by
16.3% for speaker similarity. Further, we match the naturalness
and speaker similarity of a Tacotron2-based full-data (≈ 10
hours) model using only 15 minutes of target speaker data,
whereas with 30 minutes or more, we significantly outperform
it. The following improvements are proposed: 1) changing
from an autoregressive, attention-based TTS model to a non-
autoregressive model replacing attention with an external dura-
tion model and 2) an additional Conditional Generative Adver-
sarial Network (cGAN) based fine-tuning step.
Index Terms: Text-to-speech, low-resource, expressive speech

1. Introduction
Recent advancements in the TTS domain have demonstrated
highly natural speech generated by neural text-to-speech
(NTTS) models [2, 3, 4, 5]. However, these models often re-
quire large amounts (≈ 10 hours) of recordings [6] to achieve
high levels of naturalness without degradation.

Data collection for TTS is an expensive and time-
consuming task. The problem is magnified for highly expres-
sive voices, because it requires higher vocal effort from the
voice talent as compared to neutral speech. This amplifies the
need for a scalable solution to be able to build highly expressive
voices with smaller amounts of data and without substantial cost
(i.e. low-resource TTS).

Previous research around low-resource TTS attempts to ad-
dress this problem with multi-speaker modelling and transfer
learning. Transferring knowledge from full-resource speakers
to a low-resource one improves the synthesis quality of the low-
resource speaker [6, 7, 8, 9, 10, 11, 12].

Recent work in Huybrechts et al. [1] brings significant im-
provements to naturalness by combining multi-speaker mod-
elling with data augmentation for the low-resource speaker.
This approach uses a Voice Conversion (VC) model [13, 14,
15, 16, 17] to transform speech from one speaker to sound like
speech from another, while preserving the content and prosody

*The first two authors have equal contribution.

of the source speaker. This artificially boosts the training data
available for the resource-scarce target speaker by leveraging
readily available source speaker data. However, we have ob-
served that this solution does not scale to achieve naturalness
on par with a full-data model for more expressive voices than
those presented in [1].

To address this limitation, we investigate the most expres-
sive voice in our catalog and propose changes to the model ar-
chitecture that consistently outperform the approach presented
in [1] and achieve naturalness on par or better than a full-data
Tacotron2-based [2] model.

First, we propose to switch from a Tacotron2-based (autore-
gressive) TTS model to a non-autoregressive mel-spectrogram
prediction model and to replace the attention mechanism in
Tacotron2 with an external duration model. To the authors’
knowledge, this work is the first to investigate such NTTS
architectures in a reduced data scenario. In the literature,
so far mainly attention-based or autoregressive models have
been explored in the context of expressive low-resource TTS
[7, 18, 19, 8]. Such models suffer from stability issues exhib-
ited in synthesised speech, such as babbling, early cut-off, word
repetition, and word skipping [20, 21, 22, 23]. These problems,
attributed to teacher-forcing and attention, are even more preva-
lent in the reduced data scenario. Recent research in the field
[24, 25, 26], inspired by traditional parametric speech synthesis
[27, 28] mitigates these issues by explicitly modelling the du-
rations of phonemes. In addition to improving speech stability,
we posit that explicit duration modelling significantly improves
the overall naturalness of highly expressive voices by making
it easier to model variability in phoneme durations than in the
baseline attention-based systems.

Second, we investigate an application of Conditional Gen-
erative Adversarial Networks (cGAN) [29] as an additional
fine-tuning step aimed at improving the signal quality of low-
resource synthesis. The less data we have, the harder it is to
maintain good segmental quality and speaker similarity. GANs
[30], known for generating high quality images, have also been
applied in the speech domain to improve the segmental quality
of predicted mel-spectrograms [31, 32]. We extend the standard
GAN recipe to pass conditioning in addition to the typical mel-
spectrogram input to the discriminator. This better informs the
discriminator network when making a classification, allowing
for more insightful information to flow to the generator.

2. Proposed Method
As in Huybrechts et al. [1], the method presented in this paper
is based on three main steps: 1) data augmentation, 2) multi-
speaker TTS and 3) fine-tuning. In this work, we also investi-
gate the addition of a fourth step where we fine-tune the model
with a cGAN approach to further improve the audio quality.
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Figure 1: Schematic diagram of the voice conversion model
used in Step 1 of the proposed method.

Our full proposed low-resource TTS methodology is de-
fined as follows:

1. Train a VC model to augment data for the target speaker.

2. Train a multi-speaker TTS model using recordings and
synthetic data created in Step 1.

3. Fine-tune the TTS model with the recordings from the
target speaker.

4. Fine-tune the TTS model with the cGAN approach.

The key contribution of this work is the change in TTS ar-
chitecture from a Tacotron2-style attention-based model to a
non-autoregressive acoustic model supported by external dura-
tions. The resulting TTS model is comprised of two main com-
ponents: 1) an acoustic model that predicts mel-spectrogram ỹ
from a phoneme sequence x, 2) a duration model which assists
the acoustic model during inference by providing the duration d̃
of each phoneme. During training, ground truth durations d are
used by the acoustic model. As in Huybrechts et al. [1], a Paral-
lel WaveNet universal neural vocoder [33] is used to obtain the
final speech signal from the generated mel-spectrogram.

2.1. Voice Conversion Model

A voice conversion model is used to perform data augmentation
in Step 1 of the method. This model converts the speaker iden-
tity of a source audio to sound as though it was spoken by the
target speaker.

As in Huybrechts et al. [1], we use the CopyCat [17] archi-
tecture for this model which is presented in Figure 1. The model
consists of: 1) a phoneme encoder that learns latent representa-
tions from phonemes, 2) a prosody bottleneck encoder which
disentangles prosody from the reference mel-spectrogram and
3) a parallel decoder which generates the mel-spectrogram
given the phoneme and prosody bottleneck encoder’s outputs,
in addition to the target speaker embedding.

We follow the approach in Huybrechts et al. [1] to mod-
ify the original CopyCat model by concatenating speaker em-
beddings to the upsampled phonemes before feeding this to the
phoneme encoder. This was found to help reduce occurrences
of speaker leakage in [1].

The VC model was trained with 18 supporting speakers
who were recorded in a conversational speaking style, in ad-
dition to the target speaker. For the highly expressive target
speaker investigated in this paper, fine-tuning of the Copycat
model was required to prevent issues with speaker leakage, un-
like in Huybrechts et al. [1]. The model was trained on the

Figure 2: Schematic diagram of the acoustic model used in
Steps 2-4 of the proposed method. Components in pink are used
only in Step 4 of the method.

Figure 3: Schematic diagram of the acoustic model during in-
ference.

data from all speakers for 50 k steps and then only on the tar-
get speaker’s data for an additional 320 epochs. We hypothesise
that this fine-tuning is required because the target speaker’s data
is much more expressive than that of the supporting speakers.

2.2. Acoustic Model

We use an acoustic model in Step 2-4 of the method, as illus-
trated in Figure 2. The topology of this model during inference
is presented in Figure 3.

2.2.1. Encoder

Our encoder architecture is the same as that presented in
Tacotron2 [2]. It is comprised of an embedding lookup followed
by 3 convolution blocks each with a kernel size of 3. On top of
that we apply a single bi-directional LSTM layer with a hidden
dimension of 512 and a dropout of 0.1. We pass the phoneme
sequence x as input to this encoder, to obtain phoneme embed-
dings x̃.
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Figure 4: Illustration of a residual gated convolution block and
the decoder architecture.

2.2.2. Variational Autoencoder (VAE)

TTS is a one-to-many problem as the same text can be spoken in
many different, yet acceptable, ways. In autoregressive NTTS
models, this effect is mitigated both by teacher-forcing as well
as by conditioning on the latent acoustic representation obtained
from a VAE [34]. In the proposed non-autoregressive architec-
ture, we use only the VAE to pass information which cannot be
inferred solely from the input phoneme sequence.

This encoder takes mel-spectrogram frames as input. It
comprises 6 convolution blocks each with a kernel size of 5,
followed by one GRU layer with a hidden dimension of 128.
We take the last output from the GRU and perform a projec-
tion to 128 dimensions, in order to parametrise the posterior
distribution. The first half of this output represents µ while the
second half represents σ. Finally, we sample from the posterior
distribution to obtain a final latent representation z. At infer-
ence time, we use a pre-calculated centroid of zs obtained from
the available ground truth data for the target speaker.

2.2.3. Upsampling and Additional Embeddings

To each phoneme embedding we concatenate: 1) the latent z
vector, 2) a speaker embedding obtained from a pre-trained
GE2E-based [35] speaker verification model and 3) a one-
hot ‘synthetic ID’ flag, indicating whether the data is ground
truth or obtained from voice conversion. Then we upsample
each phoneme embedding according to ground truth durations
d (training-time) or predicted durations d̃ (inference-time).

Similar to Parallel Tacotron [25], before passing these up-
sampled embeddings to the decoder, we provide positional
information to indicate the relative position of a frame in-
side a phoneme. To each embedding we concatenate: 1)
a transformer-style positional embedding [36] indicating the
phoneme duration, 2) a transformer-style positional embedding
indicating the frame’s position inside a phoneme and 3) the frac-
tional progress of the frame in a phoneme.

2.2.4. Decoder

The embedding sequence output from the upsampling compo-
nent is passed as input to the decoder. The modelling task of
the decoder was found to require local context in [25], there-
fore our decoder is comprised of 9 residual gated convolution

layers. Each residual gated convolution block is composed of
a 1D-convolution with kernel size 15 and a hidden dimension
of 512, followed by a tanh filter and sigmoid activation gate
which are element-wise multiplied and then added to a residual
connection after a dropout of 0.1.

The convolution stack is followed by 2 uni-directional
LSTM layers with a hidden dimension of 512 and a dropout of
0.1. Preliminary evaluations showed that this final LSTM stack
improves audio quality. A schema of the decoder as well as the
residual gated convolution architecture is presented in Figure 4.

2.2.5. Conditional GAN Fine-Tuning

GANs are a well established solution to the problem of ‘over-
smoothing’ encountered during the optimisation of L1/L2 loss
functions. With mel-spectrogram prediction, this effect mani-
fests as lower brightness and poorer audio quality in the subjec-
tive perception of the speech signal.

Adversarial training of the acoustic model can be utilised
as a fine-tuning step to mitigate such degradations [31, 32].
Typically, such an adversarial training involves only the mel-
spectrogram being passed as input to the discriminator network.
We explore an extension to this setup (cGAN), wherein we con-
dition the discriminator on both acoustic and linguistic infor-
mation. Additional conditioning allows for more meaningful
gradient flow from discriminator to generator, which has been
shown to improve adversarial training [29].

The entire acoustic model acts as the generator network.
For the discriminator network we used the architecture pre-
sented in SAGAN [37]. As input to the discriminator we
feed randomly cropped 64 frame chunks of the generated mel-
spectrogram, along with the embeddings x̃ of the correspond-
ing phoneme sequence and the latent acoustic information z
from the VAE. Cropping was found to be more effective than
feeding the whole mel-spectrogram. We hypothesise that this is
because the goal of the fine-tuning step is to improve the seg-
mental quality of the final mel-spectrogram, which is a more
local, time-invariant task.

2.2.6. Training Setup

To train the acoustic model we use the Adam optimiser [38]
with β1 = 0.9 and β2 = 0.98. We use a linear warm-up of
the learning rate from 0.1 to 1 for the first 10 k steps, followed
by an exponential decay from 10 k steps to 100 k steps with a
minimum value of 10−5.

In Step 2 of the method, the acoustic model is trained for
500 k steps with a mini-batch size of 32. The model is trained
on both ground truth and synthetic data for our target speaker as
well as data from supporting speakers, using the following loss
function:

LTrain = L1 + γ ∗DKL (1)

whereL1 is theL1-distance between predicted and ground truth
mel-spectrogram and DKL is the Kullback–Leibler divergence
between the VAE posterior distribution and N (0, 1). To avoid
the collapse of DKL, we used the same KL annealing scheme
as presented in [39].

In Step 3 of the method, we fine-tune the model for an ad-
ditional 30 k training steps, using only ground truth data from
the target speaker, still optimising LTrain.

Finally, in Step 4 of the method, we freeze all VAE weights
and fine-tune the acoustic model with the cGAN setup for an
additional 30 k steps, also using only ground truth target speaker
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Figure 5: Schematic diagram of the duration model used in Step
2 of the proposed method.

data. During this step, the following generator loss (LG) and
Hinge discriminator loss (LD) functions are used:

LG = Ex,y∼pdata [D(y, x̃, V (y))−D(G(x, y), x̃, V (y))]
(2)

LD = Ex,y∼pdata [ReLU(1 +D(G(x, y), x̃, V (y)))

+ ReLU(1−D(y, x̃, V (y)))] (3)

where D is the discriminator network, G is the generator net-
work (acoustic model) and V denotes the VAE. The discrimi-
nator is trained by optimising LD , while the acoustic model is
fine-tuned by optimising the total loss:

LGANFineTune = L1 + α ∗ LG (4)

2.3. Duration Model

We train a duration model in Step 2 of the method, whose archi-
tecture is presented in Figure 5. We model phoneme durations
as the integer number of mel-spectrogram frames correspond-
ing to each phoneme. We assume that ground truth phoneme
durations are provided by an external aligner, such as the Gaus-
sian Mixture Model (GMM) based Kaldi Speech Recognition
Toolkit [40] used in our experiments.

To model the duration sequence, we first pass the phoneme
sequence through an encoder and then apply a dense projection
to 1 dimension followed by a ReLU activation function. During
training, teacher-forcing is used i.e. only ground truth durations
are input to the acoustic model, while predicted durations are
used only at inference-time.

For the proposed multi-speaker acoustic model using re-
duced target speaker data, we train the duration model separate
from the acoustic model. This model uses a phoneme encoder
identical to the one described in Section 2.2.1, with the hidden
dimension reduced to 256, whose output is concatenated with
pre-trained speaker embeddings after they are passed through
an affine layer. The training objective for this model is a L2 loss
on durations in the log domain and it is trained for 150 k steps
(with a mini-batch size of 32). We use an identical Adam opti-
miser configuration as that used for the acoustic model training.

For the full-data anchor models trained on a single-speaker,
the embedding sequence used for duration prediction is the con-
catenation of the phoneme embeddings x̃ and the latent vector
z from the acoustic model. In this setup, in line with the state-
of-the-art [24, 25, 26], the two models are trained jointly, by
adding an auxiliary L1 loss between ground truth and predicted
durations to the total objective, with a weighting of 0.025.

Preliminary evaluations showed that separately training the
duration model in the low-resource multi-speaker scenario per-
formed better than the joint training of acoustic and duration
models used for full-data single-speaker models.

3. Experiments
3.1. Data

For the ‘highly expressive’ target speaker, we selected the voice
objectively identified as the most expressive speaker in our in-
ternal American English voice catalog. Expressivity was mea-
sured as variation along the three axes of frequency, power and
durations by analysing respectively the mean and variance of
static log f0, mgc0 and phoneme duration features and their
deltas, for each speaker.

In the ‘full-data’ (FD) setup we used ≈ 10 hours of
recorded speech from the target speaker. In the low-resource
aka ‘data reduction’ (DR) scenario, we investigated four differ-
ent reduced data amounts: 3 hours, 1 hour, 30 minutes and 15
minutes of target speech. To perform data augmentation as de-
tailed in Section 2.1, we supplemented the target speaker data
in each DR scenario with 4.5 hours of synthetic data converted
from the full-data of a single supporting speaker, by a VC model
trained using the respective reduced target data amount for that
scenario.

For supporting speakers in our multi-speaker models, we
used an internal American English dataset comprising 18 speak-
ers recorded in a conversational style. This dataset contained
≈ 65 hours of speech.

3.2. Evaluation

In each DR scenario, we evaluated our models by conducting
MUSHRA tests [41] on the following two metrics:

• Naturalness – “Please rate the audio samples in terms of
their naturalness”.

• Speaker Similarity – “Please listen to the speaker in
the reference sample first. Then rate how similar the
speakers in each system sound compared to the reference
speaker.”

Each test was conducted independently, by 20 listeners,
each evaluating 61 MUSHRA screens synthesised from a fixed
test set of 61 held-out samples. To check for statistical signif-
icance, we performed paired t-tests using the Holm-Bonferroni
correction method. All statistical differences presented are for
p ≤ 0.05.

3.3. GAN Fine-Tuning Study

We conducted a supporting study to investigate improvements
from GAN fine-tuning on the naturalness of synthesised speech,
demonstrating the impact of Step 4 of the proposed method. In
this study, we evaluated the following four systems in a 3 hours
DR scenario:

• (Recordings) Ground truth recordings.

• (DR No-att) Baseline without any GAN fine-tuning (i.e.
Steps 1-3 of the proposed method).

• (DR No-att + GAN) Candidate system with addi-
tional fine-tuning using vanilla GAN (i.e. only mel-
spectrogram input to discriminator).

• (DR No-att + cGAN) Candidate system with additional
fine-tuning using Conditional GAN (i.e. conditioned on
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the phoneme sequence, acoustic and prosody informa-
tion).

Target Data 3 h
Naturalness

Recordings 88.94
DR No-att 64.45
DR No-att + GAN 64.08
DR No-att +cGAN 66.57

Table 1: Average MUSHRA scores for naturalness, showing the impact
of Conditional GAN fine-tuning.

As shown in Table 1, cGAN fine-tuning provides a statisti-
cally significant improvement to naturalness when compared to
both vanilla GAN fine-tuning and the baseline without GANs.
This demonstrates that the addition of conditioning information
does indeed appear to help the discriminator make better dis-
tinctions of whether a sample is real or fake, which in turn leads
to improvements in the samples produced by the generator.

3.4. Data Reduction Study

Our primary study investigates the impact of the proposed
changes to the model architecture and methodology presented
in Huybrechts et al. [1], on different amounts of reduced data
for the highly expressive target speaker.

In this study, we evaluated the following candidate DR sys-
tems: ‘DR No-att + cGAN’ and ‘DR No-att’, i.e. the pro-
posed non-autoregressive, external duration TTS model with
and without cGAN fine-tuning respectively. We compared them
against a baseline DR system to investigate the ablation of our
proposed architectural changes and against full-data anchor sys-
tems to investigate the ablation of data amount.

‘DR baseline’ denotes the system presented in Huybrechts
et al. [1] which has been shown to synthesise high quality, ex-
pressive voices from as little as 15 minutes of data. The same
synthetic data is used in the training of both candidate and base-
line DR systems.

As full-data anchor systems we used: 1) ‘FD Tacotron2’ – a
Tacotron2-based TTS model and 2) ‘FD No-att’ – the proposed
non-autoregressive TTS model. Both full-data systems used an
utterance-level VAE and were single-speaker, i.e. trained on all
10 hours of data from the target speaker.

The results of this study are presented in Table 2. They
show that in terms of naturalness and speaker similarity, the
proposed method, ‘DR No-att + cGAN’ significantly outper-
forms the state-of-the-art approach from Huybrechts et al. [1]
(i.e. ‘DR Baseline’) for every data amount, demonstrating a
clear improvement to low-resource TTS. Improvements from
the proposed changes to the model architecture are further high-
lighted by the result that ‘DR No-att + cGAN’ significantly out-
performs ‘FD Tacotron2’ when there is 30 minutes or more of
target speaker data (up to 95% data reduction) and matches it in
the 15 minutes scenario.

Compared to ‘FD No-att’, a full-data model with similar ar-
chitecture, ‘DR No-att + cGAN’ is on par for naturalness while
bringing a significant improvement to speaker similarity in the
3 hour scenario and is on par for both metrics in the 1 hour
scenario. These results highlight the strength of the proposed 4
step methodology in compensating for the reduction in training
data.

The gap between ‘DR No-att’ and ‘DR No-att + cGAN’ di-
minishes as we reduce the data further, suggesting that the audio

Target Data 3 h 1 h 30 min 15 min
Naturalness

Recordings 85.70 83.61 86.39 82.30
FD No-att 64.17 65.01 61.41 69.27
FD Tacotron2 58.35 58.88 55.07 63.37
DR No-att 62.80 64.96 59.16 64.31
DR No-att + cGAN 64.94 65.29 59.33 64.22
DR baseline 54.40 59.86 51.21 58.73

Speaker similarity
Recordings 91.94 92.47 94.04 95.95
FD No-att 69.90 65.21 64.85 70.37
FD Tacotron2 64.11 59.90 58.66 64.05
DR No-att 69.14 66.75 62.94 65.97
DR No-att + cGAN 71.54 66.72 62.95 66.21
DR baseline 63.71 60.74 53.58 60.43

Table 2: Average MUSHRA scores for naturalness and speaker sim-
ilarity, showing the performance of proposed method in the context of
different amount of data. Note that each column is made up of MUSHRA
evaluations for one particular data amount, thus scores are not com-
parable across different columns. Underlined values signify the best
performing system amongst DR systems, up to statistically significant
differences.

quality improvements brought about from Step 4 (cGAN fine-
tuning) are statistically significant only when a relatively large
amount of data (3 hours) is available for the target speaker.

4. Conclusions

We proposed improvements to the state-of-the-art low-resource
TTS technology presented in Huybrechts et al. [1], addressing
its limitations when applied to highly expressive voices. The
improvements were to: 1) model architecture, i.e. the switch to
a non-autoregressive acoustic model supported by external du-
rations instead of an attention-based, autoregressive Tacotron2
architecture, and 2) methodology, i.e. an additional cGAN fine-
tuning step.

The proposed system significantly outperforms the state-of-
the-art in both naturalness and speaker similarity, closing the
gap to recordings by 23.3% and 16.3% respectively, using as
little of 15 minutes of speech from the target speaker. Fur-
ther, compared to a Tacotron2-based model trained on full-data
(≈ 10 hours of speech), the proposed model is on par with just
15 minutes of target speaker data and significantly improves
naturalness and speaker similarity with 30 minutes or more data.
Finally, with 3 hours of target speaker data, our proposed archi-
tecture with additional cGAN fine-tuning outperforms even a
full-data model of a similar architecture.

These contributions demonstrate a robust NTTS method
that can build high quality, natural speech from as little as 15
minutes of target speaker data and can scale even to highly ex-
pressive voices. Such a method can save substantial cost and
time invested in data collection for TTS.

Future work includes applying the proposed method to
more voices that are challenging to model, such as expressive
multi-lingual or character voices. Further, we intend to explore
fine-grained prosody embeddings to better model and control
expressive speech. We also intend to investigate the joint train-
ing of acoustic and duration models for the multi-speaker DR
scenario, which was found to underperform compared to the
separate training approach presented in this paper.
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Abstract

In this work, the current state-of-the-art of articulatory speech
synthesis (VOCALTRACTLAB) is compared to a wide range of
different text-to-speech systems that once represented or still
represent the continuously evolving state-of-the-art of speech
synthesis technology. The comparison systems include neural
and concatenative synthesis by Google and Microsoft, as well as
Hidden Markov Model-based, unit-selection and diphone syn-
thesis developed at universities (using MARYTTS, MBROLA
and DRESS). A small corpus of 15 German sentences was syn-
thesized using the text-to-speech (and, if available, re-synthesis)
functionalities of each system. The intelligibility of the syn-
thesized utterances was evaluated in an ASR experiment. The
naturalness of the utterances was evaluated in a multi-stimulus
Likert test by 50 German native speakers. As an additional ref-
erence, recordings of natural speech were used in the experi-
ments. It was found that the articulatory synthesis can achieve a
performance on par with the non-commercial synthesis systems
in terms of intelligibility and naturalness, while being signifi-
cantly outperformed by the commercial synthesis systems.
Index Terms: text-to-speech, articulatory speech synthesis.

1. Introduction
From mechanical speech apparatuses [1], to electrical vocal
tract analogues [2–6], up to sophisticated computer simula-
tions [7–13]: articulatory speech synthesis has been a topic of
research for centuries. Despite the fact that this kind of syn-
thesis can be considered the most natural approach to speech
synthesis, as it aims to directly model the speech production
process that happens in a human vocal tract, it never played a
significant role outside the academic world [14]. This is mainly
due to (i): the difficulties that arise from modelling the time-
dependent vocal tract geometries, which need to be controlled
up to a very precise level. This requires a deep understanding of
human speech production and knowledge of articulatory move-
ments, which are not easily accessible experimentally. (ii) For a
long time, no complete aerodynamic-acoustic simulation of the
vocal tract existed. And (iii): At any given time, better sound-
ing alternative methods were available (e.g. formant synthesis,
parametric synthesis, concatenation synthesis or recently neural
synthesis) that did require less or no explicit knowledge of artic-
ulatory movements. Furthermore, the generation of synthesized
utterances with articulatory synthesizers generally involves a lot
of manual tuning, which is usually a very time consuming pro-
cess that requires expert knowledge.
Apart from very few (and outdated) exceptions such as GNUS-
PEECH [15], no modern articulatory text-to-speech (TTS) sys-
tems were available until now. This situation has changed with
the recent development of the state-of-the-art articulatory syn-

thesizer VOCALTRACTLAB1 [12] (VTL) version 2.3 that intro-
duced a fully automatic phoneme-to-speech conversion for Ger-
man. Using this functionality, it is possible to generate high
quality re-syntheses of any given German utterance. By extend-
ing the VTL with an additional grapheme-to-phoneme conver-
sion (G2P) and an intonation model, it is possible to setup a
complete TTS pipeline [16]. Although the produced speech by
VTL sounds intelligible, it is not yet known how VTL speech
compares against state-of-the-art systems of well established
speech synthesis technologies in terms of intelligibility and nat-
uralness.
The current study aims to rank the VTL synthesis among widely
used speech synthesis technologies such as diphone, Hidden
Markov Model (HMM), unit-selection and neural synthesis. It
extends the state of research on articulatory synthesis by the
following contributions:

1. A full articulatory TTS system based on the open source
software VOCALTRACTLAB is presented (VTL-TTS).

2. A fair comparison of articulatory synthesis (both fully-
automatic TTS and manual re-synthesis, which in this
case means to derive phone durations and pitch informa-
tion from natural speech recordings) with eight different
types of syntheses, as well as natural speech, is presented
in terms of intelligibility and naturalness. Although this
involves systems under active development and thus can
only serve as a snapshot, it gives valuable insight into the
speech synthesis landscape on the whole at this point in
time.

2. Methods
A small corpus of 15 German sentences, presented in Table
1, was synthesized in a neutral speaking style using differ-
ent TTS systems, namely Google Cloud TTS [17–21]2, Mi-
crosoft Azure TTS [22]2, MARYTTS [23], DRESS [24], as
well as VTL-TTS. Additionally, natural speech recordings of
the 15 sentences were manually re-synthesized using VTL and
MBROLA [25]. The intelligibility of the syntheses was eval-
uated using automatic speech recognition (ASR). The natural-
ness of the syntheses was evaluated by 50 German native speak-
ers in a listening experiment. Finally, a deep learning-based sys-
tem for speech naturalness evaluation (NISQA) [26] was evalu-
ated against the results from the listening experiment. All audio
sample files and the data files necessary to reproduce the syn-
thesized files are available in the supplementary materials3.

1https://www.vocaltractlab.de/ (Last visited 22.04.2021).
2 Since the companies’ systems are proprietary and continuously de-

veloped, no exact descriptions of the systems are available. Hence, the
references should be understood as an (incomplete) overview of impor-
tant contributions to the used technologies.

3https://github.com/TUD-STKS/TTS Comparison SSW21 (Last
visited 22.04.2021).
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2.1. Articulatory synthesis and TTS pipeline

2.1.1. VocalTractLab

The articulatory synthesizer VTL provides a one-dimensional
aero-acoustic simulation [27] within a model of the vocal tract
that is based on magnetic resonance imaging (MRI) scans of a
real human vocal tract [12]. The current version VTL 2.3 pro-
vides three different types of vocal fold models [28–30]. In this
study, the geometric glottis model [28] was used, which is the
VTL default.
During the time domain simulation, the articulatory dimensions
of VTL are controlled by a set of time-dependent functions, a
so called gestural score [31, 32]. A gestural score consists of
several tiers, which describe the shape of the articulators, the
glottis shape, the intonation and the lung pressure, respectively.
While VTL allows for the direct construction and manipulation
of the gestural score and thus precise control, VTL 2.3 also of-
fers a more convenient higher level user interface (for German
speech). By providing a sequence of phone labels and their
respective acoustic durations, a gestural score of articulatory
movements can be automatically generated, excluding the pitch
contour. Therefore, only the missing intonation needs to be gen-
erated either manually or by some external means (see Section
2.2.2). The generated score can be freely edited after the au-
tomatic generation, which allows a semi-automatic workflow
where an utterance is initialized automatically and then tuned
manually (e.g., to match a reference utterance).

2.1.2. VTL-TTS

The used VTL-TTS pipeline consists of several stages. First,
a given plain input text is converted into its SAMPA transcrip-
tion, using a proprietary Web service by Aristech Gmbh [16].
The transcription also provides further annotations, such as the
utterance’s syllables and information on the linguistic stress of
the syllables. Subsequently, a set of 70 phonetic and linguistic
features is calculated. An intonation contour for the utterance is
then predicted using these features fed to a deep neural network.
Finally, the phone durations are predicted using empirically de-
termined, context-dependent reference values taken from [33].
The phone sequence is then turned into a gestural score using
the segment sequence interface of VTL 2.3 described above and
then converted into audio.

2.2. Stimuli preparation and preprocessing

2.2.1. TTS synthesis

Six of the TTS voices were accessed via their Web clients,
namely Microsoft Azure TTS4, Google Cloud TTS5 and
MARYTTS6. In case of the former two services, both a neu-
ral synthesis (in the following referred to as Azure-Neural
and Google-Neural), and a parametric/unit-selection7 synthe-
sis (in the following referred to as Azure-Standard and Google-
Standard) were used to produce the desired samples. In case of
the MARYTTS system, samples were synthesized via HMM-
based synthesis (using the German voice dfki-pavoque-neutral-

4https://azure.microsoft.com/en-us/services/cognitive-services/text-
to-speech (last visited 09.02.2021).

5https://cloud.google.com/text-to-speech (last visited 22.01.2021).
6http://mary.dfki.de:59125/ (last visited 22.01.2021).
7 The companies are not specific about the exact technology that is

used for the standard (non-neural) voices. They state such voices are
created using either parametric or unit-selection synthesis or a mixture
of both.

hsmm de male hmm, in the following referred to as dfki-HMM)
and via unit-selection synthesis (using the German voice dfki-
pavoque-neutral de male unitselection general, in the following
referred to as dfki-unit) [34,35]. The other MARYTTS parame-
ters were set the following way (for both voices): “Input Type”:
TEXT, “Output Type”: AUDIO, “Audio-Out”: WAVE FILE
and “Audio-Effects”: Default (all turned off). For the Azure-
Neural and Azure-Standard syntheses, the parameter “Voice”
was set to Conrad (Neural) and Stefan, respectively. The other
parameters were set the following way (for both the neural
and parametric/unit-selection syntheses): “Language”: German
(Germany), “Voice Style”: General, “Speaking Speed”: 1.00
and “Pitch”: 0.00. For the Google-Neural and Google-Standard
syntheses, the parameter “Voice type” was set to WaveNet and
Basic, respectively. The parameter “Voice name” was set to de-
DE-Wavenet-B and de-DE-Standard-B, respectively. The other
parameters were set the following way (for both voices): “Lan-
guage”: Deutsch (Deutschland), “Speed”: 1.00, “Pitch”: 0.00
and “Audio device profile”: Default. Furthermore, samples
were created using DRESS, which is a pure diphone TTS syn-
thesis using the TD-PSOLA [36] algorithm. The male voice
Jörg was used during the synthesis. The “Rhythmn” parameter
was set to Klatt and the “Intonation” parameter was set to Fu-
jisaki (dt). Finally, samples were created using VTL-TTS using
the previously described processing pipeline.

2.2.2. Re-synthesis

The term re-synthesis describes a synthetic reproduction of a
natural speech recording that matches the original recording as
precisely as possible. In case of VTL, a manual re-synthesis
performed by an expert represents the highest quality that is
currently achievable with the software. Hence, manual re-
syntheses can give an idea of the maximum possible VTL-TTS
performance, if the pre-processing (i.e. G2P, phone duration
prediction and intonation prediction etc.) was ideal. For this
reason, the manual VTL re-synthesis was also evaluated against
the TTS systems in the experiments. In order to generate the
natural utterances, necessary for the re-syntheses, a 24-year-
old German native speaker was recorded at a sample rate of
44.1 kHz. Subsequently, the recordings were loaded into VTL,
where the respective phoneme sequence was aligned with the
natural speech so that the reproduced speech matched the origi-
nal utterances as closely as possible in terms of timing. In order
to match the intonation as well, the natural f0 contour of each
sentence was extracted using the software PRAAT [37]. The
software TARGETOPTIMIZER [38, 39] (TO) was used in order
to fit the natural contours using the TARGET-APPROXIMATION-
MODEL [40,41] (TAM). This step was necessary since the pitch
and articulatory gestures of VTL are based on the TAM. The
obtained pitch gestures were loaded into VTL and manually
fine-tuned when necessary. The audio samples were synthe-
sized using the speaker file JD2, which is the default VTL
speaker. There is no relation between the recorded speaker and
the speaker on whose data the JD2 model is based on (apart
from both persons being male). The audio samples were ex-
ported as WAV files with a sample rate of 44.1 kHz.
In order to have a second re-synthesis system to compare with
VTL, an additional diphone re-synthesis was made using the
open source software MBROLA8. The same phone durations
and pitch contours as for the VTL re-syntheses were used. How-
ever, the used database for the male German speaker de2 does

8https://github.com/numediart/MBROLA (Last visited 14.02.2021).
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Utterance IPA Translation

1 Aber sehen will sie ihn doch. "Pa:b5 "ze:n vIl zi: Pi:n dOx But she wants to see him.
2 Er sah viele bunte Regenbogen. e:5

“
za: "fi:l@ "bUnt@ "Ke:gn

"
bo:gn

"
He saw many colourful rainbows.

3 Chabos wissen wer der Babo ist. "
>
tSa:bo:s "vIsn

"
ve:5

“
de:5

“
"ba:bo: PIst The boys know who the boss is.

4 Das Telefon ist seit sieben Tagen
kaputt.

das "te:l@fo:n PIst zaI
“
t "zi:bn

"
"ta:gn

"ka"pUt
The phone has been broken for seven
days.

5 Die Artikel waren wieder vorrätig. di: PaK"ti:k
"
l "va:K@n "vi:d5 "fo:5

“
KEtIç The products were in stock again.

6 Die Soße ist viermal übergekocht. di: "zo:s@ PIst "fi:5
“

ma:l "Py:b5g@koxt The sauce boiled over four times.
7 Die Straßenbahn fuhr weiter geradeaus. di: "StKa:sn

"
ba:n fu:5

“
"vaI

“
t5 g@Ka:d@"PaU

“
s The tram continued straight ahead.

8 Diese Zeitung ist bereits veraltet. "di:z@ "
>
tsaI

“
tUN PIst b@"KaI

“

>
ts fE5

“
"Palt@t This newspaper is already outdated.

9 Sie fährt keinen Ferrari, sondern einen
Maserati.

zi: fE:5
“
t "kaI

“
n@n fe"Ka:Ki: "zOnd5n

"PaI
“
n@n maz@"Ka:ti:

She does not drive a Ferrari, but a
Maserati.

10 Benno gefällt die orange Vase. "bEno g@"fElt di: Po"KaNZ@ "va:z@ Benno likes the orange vase.
11 Es kann hilfreich sein, wenn man weiß,

wie ein Unterstand gebaut wird.
PEs kan "hIlfKaI

“
ç zaI

“
n v3n man vaI

“
s vi:

PaI
“
n "PUnt5Stant g@"baU

“
t vIKt

It can be helpful to know how to build a
shelter.

12 Er schützt vor Kälte, Wind und
Niederschlägen.

Pe:5
“

SY
>
tst fo:5

“
"kElt@ vInt PUnt

"ni:d5SlE:g@n
It protects against cold, wind and
precipitation.

13 Conny glaubt eigentlich nicht mehr an
den Osterhasen.

kOni glaU
“
pt "aI

“
gn

"
tlIç nIçt me:5

“
Pan de:n

"o:st5ha:z@n
Conny doesn’t really believe in the
Easter Bunny any more.

14 Sie läuft schnell hin. zi: lOI
“
ft SnEl hIn She runs there quickly.

15 Der Petersdom ist das Wahrzeichen des
Vatikans.

de:5
“

"pe:t5sdo:m Ist das "va:5
“

>
tsaI

“
çn
"
dEs

vati"ka:ns
St Peter’s Basilica is the landmark of
the Vatican

Table 1: The used utterances in German, their canonical IPA transcription, and English translation.

not contain a glottal stop. The durations of existing glottal stops
in the segment sequence files used in the VTL re-synthesis were
therefore split half and half between the left and right neigh-
bouring phones. Secondary diphthongs such as /o:5/ were bro-
ken down into the two individual vowels, each with half the to-
tal duration. For MBROLA re-syntheses, the f0 contours were
constructed as linear interpolations between f0 support points.
On average, as many f0 support points were used as there were
phones in the utterance.

2.2.3. Natural speech

In addition to the synthetic speech samples, natural speech
recordings of the 15 German sentences were also evaluated
in all experiments to serve as anchor points. The speaker for
the natural stimuli was different from the speaker for the re-
synthesis reference recordings in order to avoid possible bi-
ases, e.g. regarding the f0 contour. For the natural samples, a
male 27-year-old non-professional German native speaker was
recorded at a sample rate of 44.1 kHz. As in the previous
case, there is no relation between this speaker and the VTL JD2
model. For the recordings a large diaphragm condenser micro-
phone was used (Microtech Gefell M930). It was connected to
a low-noise pre-amplifier (Behringer Eurorack MX 1602). The
pre-amp was then connected to an audio interface (MOTU 896
HD) which was connected to a PC via FireWire. The natural
speech audio samples were recorded in a sound-proofed audio
studio. The speaking style was neutral.

2.2.4. Re-sampling and loudness normalization

The various synthetic and natural speech samples have differ-
ent sample rates. Hence, the amount of high frequency content
differs among the samples, since no frequencies can be present
beyond the respective Nyquist frequencies. However, the pres-
ence or absence of high frequencies are part of the technolo-
gies that should be evaluated in this study. Hence, the samples
were intentionally not downsampled to the smallest sample rate

present in the data (which would implicate a high frequency
cut-off for some of the samples). Instead, they were upsampled
to the largest present sample rate that is 44.1 kHz to facilitate
further processing without distorting the frequency contents.
Afterwards, all samples were loudness normalized. This is
very important since the various speech samples produced with
the different technologies (even though peak normalized) dif-
fered widely in their loudness. However, the loudness of a
sample might significantly impact the rating on a psychomet-
ric scale [42]. Hence, the audio amplitudes of all samples were
first peak normalized to −1 dB FS. Subsequently, the integrated
loudness according to the ITU-R BS.1770-4 recommendation
(measured in dB LUFS ) was calculated for each sample using
the PYTHON library PYLOUDNORM. Using the same tool, all
samples were then loudness normalized to the minimal loud-
ness obtained in the previous step, which was −25.7 dB LUFS.
This way all stimuli had the same loudness and the maximum
peak amplitude among all samples was −1 dB FS.

2.3. Evaluation of intelligibility

Evaluating the intelligibility of the audio samples in a percep-
tion experiment with human listeners would be challenging, due
to the high number of participants that would be required to
obtain an adequate statistical power. Hence, automatic speech
recognition was chosen as a tool to measure the intelligibility
of the synthetic and natural speech samples. Four state-of-the-
art commercial ASR systems, namely Google Web API, Mi-
crosoft Azure speech-to-text, IBM Watson speech-to-text and
Wit.ai (owned by Facebook), were accessed via their respec-
tive API using the PYTHON libraries SPEECHRECOGNITION
and IBM-WATSON. Four different systems were used in order
to reduce a possible impact from the biases of the ASR systems
towards certain speech styles, f0, voice etc. The audio files
were sent to each service and the speech-to-text conversion was
returned as a string. The word error rate (WER) between the
true text and the ASR answer was calculated using the python
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library JIWER. Thereby, both the true and recognized strings
were pre-processed in the following way: The punctuation was
removed from the strings, all characters were converted to lower
case, double or multiple white spaces were converted to a single
white space, leading and trailing whitespaces were removed.

2.4. Evaluation of naturalness

2.4.1. Listening experiment

In order to evaluate the naturalness of all samples, an on-
line perception experiment was carried out using the tool web-
MUSHRA9 [43]. The experiment was designed as a multi-
stimulus Likert test. Thereby, participants would see a single
page per sentence that contained all eleven versions of that sen-
tence. Each version had to be played and rated in order to pro-
ceed to the next page. Participants could play an audio sample
as often as desired. Each page displayed the utterance text at the
top of the page. Below that each page featured the following in-
structions (translated to English): “On a scale of 1 to 5 stars,
how natural (i.e., how human) does each utterance sound? (1:
Very unnatural, 2: Rather unnatural, 3: Neither, 4: Rather nat-
ural 5: Very natural). You have to play all versions to the end
and rate all versions.”
At the beginning of the test, participants were asked to play an
example audio sample in order to adjust their listening volume
to a pleasant level. Thereby, the example file was the sentence
(translated to English): “Please listen to the following sample
sentence and adjust the volume so that you find it comfort-
able.”. It was synthesized using the IBM TTS10 online client
that was not used for other samples in the experiment. Just as
all other samples, the example file was loudness normalized to
−25.7 dB LUFS.
In total, 50 subjects (18 male, 32, female) aged between 18 and
50 years (median: 24.0 years, mean: 26.6 ± 6.7 years) par-
ticipated in the experiment. Participants were required to be
German native speakers, but due to the online nature, no addi-
tional screenings were conducted. To avoid a bias of the results,
experts in (articulatory) speech synthesis technology were not
encouraged to participate.

2.4.2. NISQA

As an automatic kind of speech quality assessment, the pre-
trained CNN-BLSTM NISQA-TTS11 [26] model was used in
order to evaluate the naturalness of the synthesized speech sam-
ples. The predicted NISQA scores were then compared to the
ratings of the human listeners to evaluate the predictive power
of such an automated assessment system. This is of particu-
lar interest for articulatory synthesis, since the produced speech
is not directly derived from original, human recordings, which
might break the assumptions of a pre-trained assessment model.

3. Results
3.1. Evaluation of intelligibility

The word error rates across all samples are shown in Figure 1
for all four ASR systems separately. While the median of each
distribution is zero, one can see that the means (Google: 0.08±

9Despite its name, the tool is not limited to MUSHRA tests, but can
be used for several kinds of listening experiments. In this analysis, a
multi-stimulus Likert test was performed.

10https://www.ibm.com/demos/live/tts-demo/self-service/home
(Last visited 22.01.2021).

11https://github.com/gabrielmittag/NISQA (Last visited 14.02.2021).

0.0 0.2 0.4 0.6 0.8 1.0
WER

Google

Azure

Wit.ai

IBM

Figure 1: Word error rates across all speech samples, separated
into single distributions for the four ASR systems, shown as box
plots. The position of the median of each distribution is indi-
cated by two x-shaped markers. The position of the respective
mean is indicated by a triangle.

0.15, Azure: 0.13±0.22, Wit.ai: 0.16±0.24, IBM: 0.19±0.27)
differ due to the different amount of outliers. Based on two-
sided Mann-Whitney U tests (MWU tests), the Google WER
distribution of the Google ASR system is significantly different
from those of Wit.ai and IBM (p < 0.01), but not significantly
different from the distribution of the Azure system (p > 0.01).
No significance was observed between permutations of Azure,
Wit.ai and IBM (p > 0.01).

0.0 0.2 0.4 0.6 0.8 1.0
WER

Google-Neural

Google-Standard

Azure-Neural

Azure-Standard

Natural speech

dfki-HMM

MBROLA-Res

dfki-unit

VTL-TTS

VTL-Res

DRESS

Figure 2: Word error rates across all ASR systems, separated
into single distributions for each type of synthesis, shown as box
plots. Medians are indicated by two x-shaped markers. Means
are indicated by a triangle.

Figure 2 shows the WER distributions for all tested synthesis
types across all ASR systems. The synthesis types are sorted
by their respective mean (top: best performance, bottom: worst
performance). It is observed that the first five synthesis types
(Google-Neural and Standard, Azure-Neural and Standard, as
well as the natural speech) achieve a median WER of 0.0 across
all ASR systems, which means they are mostly identified cor-
rectly. The distributions differ slightly in their mean values,
but this is mainly due to the outliers. While the median WER
of the dfki-HMM syntheses is also 0.0, the distribution is still
significantly broader than the distribution of the natural speech
samples and those of the Google syntheses (p < 0.01, based
on two-sided MWU tests), resulting in a higher mean. No sig-
nificant difference was found among permutations of WER dis-
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1 2 3 4 5
Score

Natural speech

Google-Neural

Azure-Neural

Google-Standard

Azure-Standard

dfki-HMM

VTL-Res

MBROLA-Res

dfki-unit

VTL-TTS

DRESS

Figure 3: Likert scores across all listeners, separated into sin-
gle distributions for each type of synthesis, shown as box plots.
Medians are indicated by two x-shaped markers. Means are
indicated by a triangle.

tributions of the non-commercial synthesis systems. The WER
medians of the five worst performing technologies deviate from
zero and range from 0.04 (dfki-unit) to 0.14 (DRESS). The
mean values range from 0.17± 0.22 (MBROLA) to 0.25± 0.3
(DRESS).

3.2. Evaluation of naturalness

The results from the listening test are shown in Figure 3. The
order of synthesis types decreases in performance from top to
bottom (top: rated as most natural, bottom: rated as most unnat-
ural). The constituents of all possible distribution pairs, except
for permutations of dfki-HMM, VTL-Res and MBROLA-Res,
are significantly different (p < 0.01) from each other, based
on two-sided MWU tests. The natural speech performed best,
with a mean rating of 4.84 ± 0.50. It is followed by the two
neural syntheses (Google-Neural: 4.53 ± 0.73, Azure-Neural:
4.17±0.89). The commercial parametric/unit-selection synthe-
ses perform worse than the neural syntheses, with mean values
of 3.51± 1.09 and 2.72± 1.11, respectively. The re-syntheses
perform worse and similar to the dfki syntheses. VTL-TTS
is rated significantly less natural (1.51 ± 0.78) and DRESS
samples were rated to be the least natural sounding samples
(1.22± 0.56).
Figure 4 shows the measured subjective scores plotted against
the predicted scores from the NISQA-TTS model. It is observed
that the predicted scores do not agree well with the measured
data. While the performance of VTL-Res, VTL-TTS, dfki-unit
and DRESS is greatly overestimated, the performance of the
neural syntheses and the natural speech is underestimated. The
linear correlation coefficient between the predicted and mea-
sured values is ρ = 0.28.

4. Discussion
A small corpus of 15 German sentences was synthesized using
a wide range of different TTS systems that once represented or
still represent the continuously evolving state-of-the-art both in
the commercial and the academic domain of speech synthesis
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Predicted MOS
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Azure-Neural
Azure-Standard
dfki-HMM
dfki-unit
DRESS
Google-Standard
Google-Neural
MBROLA-Res
Natural speech
VTL-Res
VTL-TTS

Figure 4: Subjective MOS measured in the listening experi-
ment plotted against predicted MOS values determined with
the NISQA network. The errorbars indicate the ±1σ interval
around the mean.

technology. The intelligibility and the naturalness of the syn-
theses was evaluated and compared against natural speech in an
ASR experiment and in a listening experiment, respectively.
From the ASR experiment, it was observed that the WER’s of
the commercial TTS systems did not differ significantly from
the WER of natural speech. It can be concluded that the ob-
tained WER is rather limited by the recognition performances of
the ASR systems and less by the quality of the artificial speech
samples. The main reasons for the significantly worse perfor-
mance of the non-commercial systems are probably the synthe-
sis artifacts that are quite audible in case of dfki-HMM, dfki-
unit and DRESS. Further, the intonation and phone durations
have an impact on the performance. This is well exemplified
in case of VTL-TTS and VTL-Res. Despite pitch contours and
phone durations copied from natural utterances, VTL-Res per-
forms worse than VTL-TTS with regard to WER. It seems likely
that the longer and more uniform distibuted phone durations of
the VTL-TTS system increase the intelligibility in this case.
As expected, the participants in the listening experiment con-
sidered the natural speech samples as the most natural sounding
samples. Despite not being directly comparable due to the ex-
perimental setup of the Likert test, the obtained scores for the
Google-Neural and Standard syntheses are in agreement with
the MOS scores reported in [21]. In terms of naturalness, VTL-
TTS performs significantly worse than VTL-Res. Hence, a
more realistic modeling of intonation and phone duration could
improve the articulatory TTS pipeline a lot.
To conclude, none of the TTS systems is both, as natural and as
intelligible as natural speech yet, even though the commercial
neural voices come very close. However, the non-commercial
syntheses perform significantly worse. Within the subgroup
of academic systems, semi-automatic articulatory re-synthesis
proved to be very competitive in terms of naturalness and was
not significantly worse than the best non-commercial system
dfki-HMM. However, in order for articulatory synthesis to keep
up with the modern commercial systems, the overall quality
would have to improve greatly. Starting points for improving
intelligibility and naturalness of VTL syntheses include an im-
proved modeling of the noise sources inside the vocal tract,
modeling tongue-loops [44], and microprosodic effects.
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Abstract
Smiling during speech production has been shown to result
in perceptible acoustic differences compared to non-smiling
speech. However, there is a scarcity of research on the per-
ception of “smiling voice” in synthesized spontaneous speech.
In this study, we used a sequence-to-sequence neural text-to-
speech system built on conversational data to produce utter-
ances with the characteristics of spontaneous speech. Segments
of speech following laughter, and the same utterances not pre-
ceded by laughter, were compared in a perceptual experiment
after removing laughter and/or breaths from the beginning of
the utterance to determine whether participants perceive the
utterances preceded by laughter as sounding as if they were
produced while smiling. The results showed that participants
identified the post-laughter speech as smiling at a rate signif-
icantly greater than chance. Furthermore, the effect of con-
tent (positive/neutral/negative) was investigated. These results
show that laughter, a spontaneous, non-elicited phenomenon in
our model’s training data, can be used to synthesize expressive
speech with the perceptual characteristics of smiling.
Index Terms: speech synthesis, text-to-speech, smiling voice,
smiled speech

1. Introduction
There are many well-documented functions of smiling in inter-
personal communication. A smile can influence a speaker’s per-
ceived desire for cooperation[1] as well as their perceived trust-
worthiness [2], competence [3], extroversion, sympathy, kind-
ness, and attractiveness [4]. And smiling is not merely a visual
phenomenon–it creates changes in speech that can be perceived
by listeners. The features associated with smiling voice include
greater pitch height and pitch range [5, 6], and higher formant
frequencies for some vowels [7, 8]. These audible character-
istics allow smiling voice to mirror at least some of the social
functions of smiling even in the absence of visual cues (e.g.,
conveying trustworthiness in virtual agents [9]).

With the advancements of conversational AI allowing for
more nuanced interactions than ever before [10], synthetic
voices of conversational agents need to become more realis-
tic and versatile, displaying character, and complex conversa-
tional capabilities. In the area of expressive speech synthe-
sis, there has been a relatively recent shift of research interest
from synthesizing speech reflecting specific emotion categories
or dimensions, towards unsupervised approaches of synthesiz-
ing “speaking styles” [11, 12]. These data-driven approaches
have benefited from the availability of audiobooks, which con-
tain a higher variability of speaking styles than traditional TTS
corpora, but are lacking explicit annotation found in corpora
of specifically recorded emotional speech. Less attention has
been given to the interpretability and perceptual effect of syn-
thesized styles using unsupervised methods. On the other end

of the spectrum, various systems have been proposed for in-
terpretable and intuitive control of prosodic features such as
melody, rhythm, [13], pitch range, phone duration and spec-
tral tilt [14]. However, for more stylistic characteristics, the
gap between controllability and interpretability still remains to
be closed. Thanks to recent advances in deep learning which
have resulted in more robust systems both in text-to-speech
and in speech processing tools for annotation and segmenta-
tion, spontaneous speech synthesis has made a leap forward in
terms of naturalness and appropriateness for certain contexts
[15]. As corpora of spontaneous speech have become avail-
able targets for text-to-speech, we are no longer restricted to
modeling speaking styles in audiobooks, which are mostly a
result of colorful reading, such as the speaker imitating charac-
ters. Real-world spontaneous speech data contains a myriad of
speech phenomena that reveal the speaker’s cognitive state, atti-
tude stance, etc., which are represented in a variety of acoustic-
prosodic and segmental features. Much of the research in spon-
taneous speech synthesis to date has been focused on model-
ing and understanding the use of hesitations such as uh and um
[16, 17] and breathing [18], with many styles and phenomena
left to be explored, both in terms of synthesis and perception.

This paper focuses on synthesizing a specific voice style,
namely amused speech following laughter in a spontaneous
monologue, which we refer to here as “smiling voice”. We pro-
pose a context-driven method for synthesizing speech following
laughter, using state-of-the art neural TTS built entirely from
spontaneous conversational speech. In the training data, laugh-
ter (short affect burst) is not explicitly elicited, emerging as part
of the spontaneous delivery contributing to the narrative. The
perceptual effect of smiling voice is explored in different con-
texts, using sentences with positive, negative and neutral senti-
ment.

2. Related work
While much of the research on smiling voice has involved nat-
urally produced speech, there have been a few investigations
of smiling voice in synthesized speech. Lasarcyk and Trouvain
[19], for example, synthesized four different German vowels
using articulatory synthesis, and applied combinations of three
different parameters to these vowels which correspond to the
effects of smiling on articulation: raised f0, spread lips, and
raised larynx. They found that higher f0 resulted in a greater
degree of perceived smiling for all vowels. Both spread lips and
a raised larynx influenced vowel formant frequencies as well as
the perception of smiling, but this effect was different for dif-
ferent vowels. The vowels /a:/ and /y:/ were perceived as more
smiley when synthesized with spread lips, while /i:/ showed no
difference and /u:/ was considered less smiley with spread lips.
The vowels /a:/ and /i:/ were perceived as more smiley with a
raised larynx, but this parameter had no effect on the other vow-
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els.
Another approach [20] used HMM-based synthesis to allow

for a controllable degree of smiling in synthesized speech. Two
models were created using recordings of neutral and smiling
speech from one actor. For the recordings of smiling speech,
the actor was instructed to smile and “sound happy” but not to
laugh. A new model with controllable degrees of smiling was
created by using a weighted-sum interpolation between the neu-
tral and smiling models, with a degree of smile that varied ac-
cording to the weights used. The evaluation showed that higher
weights resulted in synthesized speech that was perceived as
smiling to a greater degree, but also less natural.

In terms of synthesizing amused or happy-sounding speech,
generating laughter is another important issue. Some previous
approaches attempting to combine laughter and smiling voice
have synthesized these two components independently from one
another and then combined them. An HMM-based approach in
[21], for example, inserted vowels produced while laughing into
smiling speech generated with a different method, and the ap-
proach of [22] inserted phrase-sized “affect bursts” using con-
catenative speech synthesis. A more recent effort to synthesize
laughter [23] employed a sequence-to-sequence neural text-to-
speech system, with the goal was to create natural-sounding
laughter which could then be integrated with a model for smil-
ing speech.

In contrast to the approaches described above, our method
of producing smiling voice neither explicitly manipulates
acoustic parameters, nor does it use data that was explicitly
elicited while smiling. Rather, we employ a context-driven ap-
proach on spontaneous data, generating smiling voice by syn-
thesizing speech following laughter in one integrated model.

3. Database and synthesis
3.1. Spontaneous speech corpus

The TTS corpus was created from the audio recordings of the
Trinity Speech-Gesture Dataset (TSGD) [24], which is com-
prised of 25 impromptu monologues by a male actor, on av-
erage 10.6 minutes long. The recordings were performed over
multiple recording sessions by a male speaker of Irish English.
The actor is speaking in a colloquial style, spontaneously and
without interruption on topics such as hobbies, daily activities,
and interests. During the monologues, he addresses a person
seated behind the cameras who is giving visual, but no ver-
bal feedback. Because a large part of the monologues involve
story-telling, the actor often engages in retelling entertaining
anecdotes, which naturally elicit laughter followed by the im-
pression of amused, smiling voice, the synthesis of which is the
focus of the current paper.

3.2. Annotation

To create a TTS corpus, the recording was transcribed using
ASR and subsequently manually corrected to contain as few er-
rors as possible, and to ensure that all filler words are accu-
rately transcribed. In order to maximize the utterance length in
the corpora and to enable insertion of inhalation breaths in the
TTS, we used a data augmentation method called breathgroup
bigrams, which essentially consists of segmenting a speech cor-
pus into stretches of speech delineated by breath events, and
then combining these breath groups in an overlapping fashion
to form utterances no longer than 11 seconds [18] (see Figure
1). This method also makes it possible to learn contextual in-
formation beyond respiratory cycles during TTS training. Aside

Figure 1: Illustration of the breathgroup-bigram utterance
structure [18] applied to create the TTS corpus from continu-
ous recordings of spontaneous speech. Breath events are high-
lighted in grey.

from filled pauses such as uh and um, the ASR transcription was
enhanced with manual annotation of laughter, style breaks and
silent pauses, the latter indicated with a comma. Both the filled
pauses and laughter were transcribed using ARPABET phones.
No new characters were introduced outside the standard. If
a laughter involved ingressive airstream and was directly fol-
lowed by more speech, the last voiced inhalation was annotated
as breath event.

3.3. Systems

Two systems were trained using the sequence-to-sequence neu-
ral TTS engine Tacotron 2 [25]. The first system uses the stan-
dard Tacotron 2 architecture. The second system implements
an utterance-level prosody control method, similar to [14], to be
able to direct f0 and speech rate at inference. Speech rate (syl-
lables/second) over the utterance and mean f0 are normalised,
aligning the 1st and the 99th percentile points of the data to -1
and 1 respectively, and allowing outliers to go outside of that
range. Normalized values for both features are appended to
each utterance’s encoded text and passed to the attention and
decoder blocks from the pre-trained model. In order to fit the
additional features, the input dimension to the attention, LSTM,
projection and gate layers in the decoder are expanded. The ad-
ditional weights added to the model are initialized with zero
values. As such, at the start of the training the model evalu-
ates as the pre-trained model. This method allows for directing
mean f0 and speech rate on utterance level based on the natural
distribution of these features in the corpus, as opposed to direct
manipulation.

We used a PyTorch implementation of Tacotron 21, training
each voice using transfer learning for 200k iterations on top of a
pre-trained model trained on the LJ speech corpus [26]. Trans-
fer learning based on a model trained on a large read-speech
corpus has been shown to improve the quality of spontaneous
speech synthesis [15]. For vocoding, the pre-trained universal
model of WaveGlow [27] was fine-tuned for 290k iterations.

3.4. Synthesis of smiling voice

Our hypothesis is that due to the natural occurrence of laughter
in the spontaneous speech corpus, synthesizing a laughter token
followed by a breath event will result in an amused speaking
style, characteristic of smiling voice in the subsequent speech.

1https://github.com/NVIDIA/tacotron2
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Our reasoning is that the presence of smiling in speech that fol-
lows laughter introduces acoustic differences from comparable
speech sounds not preceded by laughter, and accurately repro-
ducing these differences will reduce the loss function (MSE)
used to train the synthesizer. The synthesizer’s ability to achieve
these loss-function reductions and “remember” when to pro-
duce smiling speech also across a breath likely relies primarily
on the encoder (rather than the acoustic memory offered by the
autoregression and the LSTM in the decoder), since the encoder
contains several CNN layers ideal for learning short-range de-
pendencies and operates on the phone level, where the smiling
token and the next speech sound are adjacent. To gain an insight
into the perceptual effect of this method, the two systems were
used to create two different conditions of synthesizing smiling
voice. The baseline original Tacotron 2 architecture was used
in the first condition, which we call unconstrained, because it
allows the system to use the proximity of laughter to influence
the rendering without any further constraints. The second con-
dition employs our prosody-controllable architecture. During
inference, we set both the normalized mean f0 and speech rate
values to 0, in order to assess whether smiling voice can still be
elicited while directing the system to render a realization close
to the median of the distribution in the corpus for these two
prosodic features. Hence, we call this condition constrained.
We propose this method to help isolate other acoustic-prosodic
features characteristic to smiling speech, to be able to assess
their perceptual impact.

4. Evaluation
4.1. Stimuli

The samples for this experiment were synthesized from 36 utter-
ances that stated an opinion. Twelve of each type of statement
was used: positive (e.g., “I agree with that”), negative (e.g., “I
don’t really agree with that idea”) and neutral (e.g., “It’s fine
with me either way”). These utterances were then synthesized
with the constrained system and the unconstrained system, both
preceded by laughter and without laughter. This resulted in a
total of 144 stimuli with combinations of 3 different parame-
ters: model (constrained/unconstrained), context (laughter/no
laughter) and content (positive/negative/neutral). Laughter and
inhalation breaths were removed from the beginning of each ut-
terance, as we were interested in whether the utterances them-
selves would carry the perceptual characteristics of smiling and
did not want the participants to base their judgments on whether
or not they heard laughter.

4.2. Acoustic-prosodic analysis

The evaluation samples were analyzed for a number of acous-
tic and prosodic features to determine whether they dif-
fered between model (constrained vs. unconstrained), con-
text (post-laughter vs. no laughter), and/or content (posi-
tive/negative/neutral). Speech rate (syl/sec), mean f0, and f0
variation were measured and compared for the four different
combinations of model and context. In addition, to compare
the conditions in terms of breathiness, we calculated median
smoothed cepstral peak prominence (CPPS, [28]) of all voiced
frames in an utterance. CPPS quantifies strength of the first har-
monic relative to the regression line over the power cepstrum,
with high values corresponding to more modal voice and low
values indicating breathiness. No significant difference was
found in mean f0. However, analysis of variance showed a
significant main effect of context on f0 variation. f0 variation

(as measured by the standard deviation of f0 per utterance) was
higher for speech following laughter (M=14.49, SD=5.56) than
for speech synthesized without laughter (M=12.27, SD=5.61),
F(1,33) = 4.61, p < 0.05. There was also a main effect of
model on speech rate. The samples synthesized with the un-
constrained model had a higher speech rate (M=5.15, SD=0.96)
than samples synthesized with the constrained model (M=5.08,
SD=1.01), F(1,33) = 7.67, p < 0.05. Finally, analysis of vari-
ance showed a significant effect of model on CPPS in voiced
segments. Samples synthesized with the constrained model had
a higher CPPS (M=12.35, SD=1.70) than samples synthesized
with the unconstrained model (M=11.94, SD=1.57), F(1,33) =
6.86, p < 0.05.

4.3. Naturalness test

The systems were assessed for naturalness based on a web-
based MUSHRA-like listening test. The test involved four ver-
sions of each utterance side by side (post-laughter/constrained,
post-laughter/unconstrained, no laughter/constrained and no
laughter/constrained) in randomized order with a scale for each
item that ranged from 1 (very unnatural) to 5 (very natural).

4.4. Pairwise listening test

The extent to which post-laughter speech sounded like smiling
was evaluated with a web-based forced-choice audio discrimi-
nation task. In one version of the test, stimuli synthesized with
the constrained model were used. The other version used stim-
uli synthesized with the unconstrained model. Otherwise the
setup was identical: smiling and non-smiling versions of each
of the 36 utterances were presented side by side and the task
was to choose which of the two versions sounded the most as if
the speaker was smiling. The samples could be played as many
times as needed. The order in which the two versions were
displayed was randomized, as was the order of the utterances.
The TTS samples used in the experiments are available here:
https://www.speech.kth.se/tts-demos/ssw2021smiling

5. Results
5.1. Naturalness test

Twenty-one participants recruited online via Prolific completed
the test. 54.38% were female and 47.62% were male. A within-
subjects factorial analysis of variance showed that there was no
main effect of content (positive/negative/neutral), context (post-
laughter/no laughter) or model (constrained/unconstrained) on
how natural-sounding participants rated the stimuli. The inter-
action between model and content was significant, F(2,19) =
5.62, p < 0.05, however, simple main effects of content were
not significant for either the constrained or the unconstrained
model. Results are summarized in Figure 2.

5.2. Pairwise listening test

A total of 60 participants were recruited via Prolific, of which
55.9% were female and 44.1% were male. All participants were
native speakers of English. Half (30) received the unconstrained
version of the task while the other half received the constrained
version. One participant from the unconstrained group was ex-
cluded from the final analysis because their completion time
was over 4 standard deviations above the mean.

Participants who heard stimuli synthesized with the uncon-
strained model identified the post-laughter synthesized speech
as smiling 67.62% of the time, while participants who heard

110



+ - 0+ - 0+ - 0+ - 0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Na
tu

ra
ln

es
s

UnconstrainedConstrained

SmilingSmiling Not SmilingNot Smiling

Figure 2: Results of MUSHRA-like naturalness test on conver-
sational utterances with positive (+), negative (-) and neutral
(0) linguistic content.

stimuli created with the constrained model identified post-
laughter speech as smiling at a rate of 62.55%. Single-sample
t-tests showed that this rate was significantly higher than chance
for both participants who heard stimuli synthesized with the
prosody-constrained model, t(29) = 5.01, p < 0.001, and those
who rated stimuli synthesized with the unconstrained model,
t(28) = 10.26, p < 0.001.

A mixed factorial analysis of variance was carried out to
investigate the effect of content (positive/negative/neutral) and
model (constrained/unconstrained) on the rate of identifying
post-laughter speech as smiling. There were significant main
effects of both content (F(2,56) = 44.25, p < 0.001) and model
(F(1,57) = 6.97, p < 0.05). Participants who heard the prosod-
ically unconstrained samples rated the post-laughter speech as
smiling more often (M=67.62, SD=14.29) than those who heard
the prosodically constrained samples (M=60.46, SD=17.33). In
addition, participants were more likely to rate utterances that
stated positive opinions as smiling (M=74.44,SD=12.17) com-
pared to negative (M=65.96,SD=16.76) and neutral statements
(M=51.55,SD=17.40). Post-hoc tests with the Bonferroni cor-
rection showed that the differences between these means were
all significant (p < 0.01).
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Figure 3: Results of pairwise listening test, with coloured bars
representing correct identification of smiling voice for utter-
ances of positive (+), negative (-) or neutral (0) linguistic con-
tent produced by each model.

6. Discussion
As hypothesized, it appears that speech following synthesized
laughter is perceived as smiling, showing that the voice style
we referred to as “smiling voice” conveys some of the percep-
tual aspects of smiling. The content of the utterances (whether
they stated a positive, negative or neutral opinion) seemed to
play a role in how participants performed at classifying post-
laughter speech as smiling: listeners found it easier to discrim-
inate between smiling voice and non-smiling voice when the
content of the utterance was positive. Note that due to the use
of a forced choice test in our evaluation, this does not mean
that positive linguistic content increases the likelihood of per-
ceived amusement in speech, but rather that it improves dis-
crimination between two utterances on the basis of perceived
amusement. This may indicate that, as a consequence of the
context-driven approach, the TTS system was better at generat-
ing utterances that sounded like smiling when the content was
positive. An alternative explanation would be that there is an
effect of congruence between content and perceived emotional
valence, whereby participants had an easier time distinguish-
ing between smiling and non-smiling speech when the content
and expressive characteristics of the synthesized smiling speech
matched. However, participants had the most difficult time dis-
tinguishing between smiling and non-smiling speech when the
linguistic content was neutral, which makes the first possibility
more plausible.

Unlike in some previous studies, smiling speech in this
case was not perceived as less natural than non-smiling speech.
There appears to have been some joint effect of model and con-
tent on perceived naturalness, but since the differences in natu-
ralness between positive, negative and neutral content were not
significant with either model, this is difficult to interpret. The
takeaway is that smiling voice synthesized with our method did
not sound less natural.

In terms of acoustic/prosodic features, there were some dif-
ferences between the constrained and unconstrained model. The
unconstrained model produced breathier speech with a higher
speech rate. However, these differences did not, in turn, seem
to affect discrimination between smiling and non-smiling voice.
Although participants who listened to samples from the uncon-
strained model did have an easier time with the discrimination
task, there was no association between their performance and
the parameters on which the models differed. Rather, f0 varia-
tion seems to have had the largest impact on performance at the
discrimination task independent of model, consistent with pre-
vious findings that f0 variation is higher in naturally produced
smiling speech [5, 6].

7. Conclusions
By synthesizing speech following laughter, we were able to ex-
ploit a spontaneous phenomenon in our models’ training data to
create the impression of smiling, without affecting the natural-
ness of the speech signal. This was the case even in a prosody-
constrained model that restricted f0 and speech rate variation
towards the median in the corpus, although listeners found the
discrimination task more challenging with this model. Due to
the context-driven nature of our method it seems that the lin-
guistic content of the utterances affected the ease of discrimi-
nating between smiling and non-smiling speech. It is not en-
tirely clear, whether this is due to the smiling speech sounding
more like smiling when synthesized from utterances that sug-
gest agreement, the non-smiling speech sounding less like smil-
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ing in this context, both, or some other difference between the
stimuli that made the discrimination task easier by making the
stimuli sound more dissimilar.

The fact that the mere proximity of synthesized speech to
synthesized laughter can create an impression of smiling means
that it may not be necessary to synthesize laughter and smil-
ing speech independently, as previous approaches suggest. In-
tegrated into a conversational system equipped with voice style
management modules, this approach could both create smiling
voice that emerges in the context of laughter, and standalone
amused speech (where the synthesized laughter is masked in
the output), thereby improving the dialogue systems’ capability
to engage in informal social interactions.
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Abstract
Voice Conversion (VC) is a technique that aims to transform
the non-linguistic information of a source utterance to change
the perceived identity of the speaker. While there is a rich lit-
erature on VC, most proposed methods are trained and evalu-
ated on clean speech recordings. However, many acoustic en-
vironments are noisy and reverberant, severely restricting the
applicability of popular VC methods to such scenarios. To ad-
dress this limitation, we propose Voicy, a new VC framework
particularly tailored for noisy speech. Our method, which is in-
spired by the de-noising auto-encoders framework, is comprised
of four encoders (speaker, content, phonetic and acoustic-ASR)
and one decoder. Importantly, Voicy is capable of performing
non-parallel zero-shot VC, an important requirement for any
VC system that needs to work on speakers not seen during train-
ing. We have validated our approach using a noisy reverberant
version of the LibriSpeech dataset. Experimental results show
that Voicy outperforms other tested VC techniques in terms of
naturalness and target speaker similarity in noisy reverberant
environments.
Index Terms: voice-conversion, zero-shot, noisy reverberant
environments

1. Introduction
Voice Conversion (VC) is the task of modifying an utterance
from a source speaker to make it sound like it was uttered by a
target speaker, while preserving the original linguistic content
[1]. VC is a key component of many modern applications, in-
cluding text-to-speech (TTS) [2], speech enhancement [3], and
speaking assistance [4] systems. Due to its success in these
fields, VC has been studied extensively in recent years [5].

However, despite their success in generating realistic sam-
ples, most current VC approaches have two important limita-
tions. First, they are trained and evaluated on clean speech
recordings, such as LibriSpeech [6] or VCTK [7]. This is a
shortcoming, since most real acoustic environments are noisy
and reverberant. Second, not all methods can perform non-
parallel zero-shot conversion [8, 9]. These shortcomings limit
their applicability to certain industrial use-cases, such as apply-
ing VC to noisy utterances captured by voice-controlled virtual
assistants. In such scenarios, a production VC system should
work well in more realistic acoustic conditions (noisy and re-
verberant) and be robust to microphones with different charac-
teristics. In addition, VC methods should be capable of trans-
forming utterances from speakers not seen during training, and
be able to change the speaker’s identity while preserving the
quality and naturalness of the speech. Finally, a production VC
system should be scalable and robust.

* Equal contribution

In this paper we propose Voicy, a new VC method that ful-
fils the desired characteristics outlined before. Our approach,
based on de-noising auto-encoders [10] and the AutoVC model
[8], is especially tailored for noisy reverberant speech, and ca-
pable of performing non-parallel zero-shot VC. Importantly,
the proposed phonetic and acoustic-ASR encoders, an improve-
ment over the original AutoVC formulation, significantly im-
proves the intelligibility of the converted speech in noisy con-
ditions. Moreover, since Voicy is based on auto-encoders, it is
more robust and easier to train than other GAN- [9] and Flow-
based [11] approaches.

To validate our approach, we have created a noisy reverber-
ant version of the LibriSpeech dataset [6], and used it to train
and test both our method and other selected baselines. Results
show that Voicy outperforms other VC techniques in terms of
naturalness and target speaker similarity in noisy reverberant
environments. Converted speech samples are provided here 1.

2. Related Work
Based on the required training data, VC methods can first be
characterized as parallel or non-parallel. Models in the first
category [12, 13] depend on a training set of aligned speech
pairs of source and target speakers uttering the same phrase.
Conversely, non-parallel models only require source and target
speaker’s utterances, but they do not need to be aligned or match
in terms of content. Non-parallel VC techniques can further be
characterized as either zero-shot or not, depending on their abil-
ity to transform utterances of speakers unseen during training.
Naturally, non-parallel zero-shot VC is the most challenging but
valuable framework, and is therefore the focus of this work.

Regardless of the type of required data, the actual conver-
sion technique behind each VC method varies. Some methods
rely on traditional statistical approaches such as Gaussian Mix-
ture models (GMM) [14], while newer techniques use Deep-
Learning-based approaches. Within this family, different ap-
proaches exist, most notably, Generative-Adversarial-Network-
based (GAN) [9, 15], Variational-Auto-Encoder-based (VAE)
[16], Auto-Encoder-based [8], and Flows-based [11] models.
Each family has its own trade-off between conversion quality,
complexity and ease of training. In general, Auto-Encoder-
based models appear to have the best trade-off [8]. In particular,
[17] proposes a variational-autoencoder method conditioned on
the phonetic contents of utterances, but it is not zero-shot, and
was only evaluated on a small dataset of clean utterances.

Finally, a small body of work is dedicated to VC in noisy
environments. In [18], a parallel exemplar-based VC model
is proposed. Another approach is [19], where a speech-
enhancement-based technique that applies two different filter-
ing methods to suppress noise is proposed. Then, a tradi-

1https://github.com/alexa/amazon-voice-conversion-voicy
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tional BLSTM-VC model [20] is used to convert the filtered
utterances. Although successful, these approaches have sev-
eral shortcomings, including their inability to perform zero-shot
conversion, and the fact that the presented results are compared
against relatively weak baselines (GMM-based VC).

3. Voicy: Our Proposed Method
3.1. General System Description

Voicy is comprised of 5 modules (see Figure 1), and uses two
representations of an utterance: Mel-spectrogram and transcrip-
tion, represented using phonemes.

Our speaker encoder follows [21]. We use a model pre-
trained on VCTK [7], which remains fixed during training. In
addition, our content encoder is inspired by AutoVC [8], but
with minor modifications to the hyper-parameters (size of fil-
ters, etc.).

The phonetic encoder, with its architecture detailed in Fig-
ure 1, is responsible for encoding the sequence of phonemes
into a sentence-level representation of the text. As such, the
content encoder is not forced to be in charge of both maintain-
ing the linguistic information and the prosody of the speech.
The main effect of adding this component is having a specific
module in charge of intelligibility, which improves the natural-
ness of the converted speech (see Section 4.2).

Finally, the ASR module, comprised of CNN and bi-LSTM
layers (Figure 1), learns to predict the phonetic embeddings pro-
duced by the phonetic encoder, but working in the audio instead
of the text domain. As such, once our model is trained, the pho-
netic encoder can be substituted by the ASR module, remov-
ing the need for the textual representation of the input utterance
during inference. This makes the applicability of this approach
in production more viable. As an alternative, one could also
consider a system were a standard ASR model that automati-
cally generates a textual representation of the utterances, which
could then be encoded thanks to the phonetic encoder. How-
ever, to maximize performance, we have opted for our design
that uses the best of both worlds: use transcriptions if available,
or an ASR module when not. This motivated our choice of hav-
ing 2 modules instead of just one.

The decoder’s architecture follows [8], and is comprised of
GRU and CNN layers. It receives the output of the speaker, con-
tent, and phonetic or ASR encoders (depending on the stage),
and outputs the converted spectrogram. We can interpret its
3 inputs as: (1) what is being uttered (linguistic information
captured by the phonetic/ASR embedding), (2) who uttered it
(speaker identity captured by the speaker embedding), (3) how
it is uttered (prosody information captured by the content en-
coder). Finally, the Universal WaveRNN-like Vocoder [22] is
used to convert the produced Mel-spectrogram into a waveform.

3.2. Architecture Description

Let us first define the tuple (S,Z,A) representing speaker S,
content (phonetic and prosodic) Z, and audio segment A. Let
us now take two such tuples, (S1, Z

i
1, A

i
1) and (S2, Z

k
2 , A

k
2),

where the first corresponds to the i-th tuple of the source
speaker 1, and the second to the k-th tuple of the target speaker
2. The goal of any VC system is to produce the output utterance
Âi

1→2 that keeps the content of Ai
1, while changing the per-

ceived speaker to S2. Since we tackle the zero-shot VC prob-
lem, S1 or S2 do not need to be part of the training set.

To achieve this, Voicy uses five modules: speaker en-
coder Es(.), content encoder Ec(.), phonetic encoder Eph(.),

acoustic-ASR encoder EASR(.), and decoder D(., .). Both the
phonetic and acoustic-ASR encoders are improvements over
AutoVC [8], which, along with the use of the de-noising auto-
encoder technique, allow our model to perform VC in a noise-
robust manner.

More concretely, given an utteranceA, we represent it using
two modalities: its Mel-spectrogram ML, and its transcription,
represented using phonemes PH . For simplicity, we denote
ML = fML(A) and PH = fph(A). Then, let us represent the
input/output of each module as:

C = Ec(ML), U = Es(ML)

R = EASR(ML), P = Eph(PH)

Â.→. = D(C,U,R, P )

(1)

where D receives either R or P, but not both. During train-
ing (Figure 1), we use inputs (S1, Z

i
1, A

i
1) and (S1, Z

j
1 , A

j
1),

representing two different utterances from the same speaker
S1. Following the de-noising auto-encoder methodology, and
leveraging the parallel corpus of clean and noisy data we con-
structed (see Section 4), we also consider tuple (S1, Z

i
1, Ã

i
1),

where Ãi
1 is a clean version of Ai

1, always available during
training. Then, for each training utterance Ai

1 containing ei-
ther clean, noisy, or noise reverberant speech, the model pro-
duces Ci

1 = Ec(fML(A
i
1)), U

j
1 = Es(fML(A

j
1)), R

i
1 =

EASR(fML(A
i
1)), P i

1 = Eph(fPH(Ai
1)) and Âi

1→1 =

D(Ci
1, U

j
1 , P

i
1). We then compute the total loss:

L = Lrecon + βLphonetic + λLcontent

Lrecon = ‖Âi
1→1 − Ã1

i‖2
Lphonetic = ‖Ri

1 − P i
1‖1

Lcontent = ‖Ec(Â
i
1→1)− Ci

1‖1

(2)

with λ and β hyper-parameters of the model. Lrecon, Lphonetic

and Lcontent are loss functions computed using the inputs and
outputs of the difference modules, and are presented in Figure
1. Speaker encoder Es(.) is assumed to be pre-trained and re-
mains fixed during training. The model only sees utterances
from a single speaker (when working in batches, many speak-
ers are used) during training, and the reconstruction loss is al-
ways computed between the output of the decoder and the clean
version of the input. This teaches the encoders to be robust to
noise.

Once trained, the model can convert utterances from source
to target speakers. For this step (see Figure 1), let us again con-
sider tuples of two speakers (S1, Z

i
1, A

i
1) and (S2, Z

k
2 , A

k
2). We

then use the trained modules to compute: Ci
1 = Ec(fML(A

i
1)),

Uk
2 = Es(fML(A

k
2)), Ri

1 = EASR(fML(A
i
1)) and X̂i

1→2 =
D(Ci

1, U
k
2 , R

i
1). As we can see, the phonetic encoder Eph is

no longer needed, and EASR takes its place since it learned
how to approximate its behavior. As such, we can convert utter-
ances for which we do not have the transcription. Moreover, the
speaker encoder Es now receives an utterance from the target
speaker S2, and its output is fed to the decoder to reconstruct
the speech as if it was uttered by S2.

4. Experimental Validation
4.1. Experimental Protocol

Using LibriSpeech as the basis, we have first created reverberant
utterances using the Aachen Impulse Response (AIR) Database
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Figure 1: Voicy during training (top) and test (bottom) phase.
For simplicity, fML(A) and fph(A) are not shown. The
speaker encoder ES (in blue) is pre-trained and fixed during
training.

[23], which contains over 200 room impulse responses for di-
verse settings. Due to the sizes and properties of the rooms, the
reverb can be significant, with reverberation time (T60) rang-
ing from 0.12 to 1.25 seconds. For this set of transformations,
no noise is added. In addition, we have created a second set
of utterances containing both noise and reverberation using Py-
roomacoustics [24], a room acoustics simulation package. Us-
ing this simulator, we created 3D shoebox rooms of different
sizes, trying to approximate the dimensions of realistic home
rooms. Then, for each room configuration, we have added 3 au-
dio sources: (1) clean LibriSpeech utterance, (2) white noise of
different levels, and (3) external noises selected at random from
the DEMAND dataset [25]. This dataset is comprised of real-
world noise from a variety of settings. The position of these 3
sources, along with the position of the (virtual) microphone, are
varied randomly for each room/utterance. The resulting utter-
ances have on average less reverberation than the previous set
(due to the room size), but have two noise sources.

Both approaches are applied to LibriSpeech train-clean-100
(250 speakers, 100 hours), train-clean-360 (920 speakers, 360
hours) and dev-clean (40 speakers, 5.3 hours). Both train-clean-
100 and train-clean-360, along with their reverberant and noisy
reverberant versions, are combined into a single training set. To
create the evaluation set (see Section 4.2), we first combine the
dev-clean and its reverberant and noisy-reverberant versions.
We then randomly select a subset of 400 utterances, covering
all speakers and noise levels (clean, reverb, and noisy-reverb).
The SNR distributions in both training and test sets match, with
a maximum SRN of 35 dB (for the clean Librispeach audios),
a minimum of -2.2 dB, and an average of 16 dB. All audio has
a sampling frequency of 24kHz. Finally, we chose 2 random
target speakers from the training set, one female and one male,

and used each VC model to transform the 400 utterances into
them.

Mel-spectrograms are extracted using the LibRosa library
[26], with 80 coefficients and frequencies ranging from 50 Hz
to 12 kHz. To obtain the phonetic representation, we have used
the transcription provided with LibriSpeech, and the Montreal
Forced Aligner [27].

As baselines, we have considered four methods besides
Voicy (referred to as Proposed in Section 4.2). First, AutoVC
[8], which inspired our work. In addition, to compare our model
against a speech-enhancement-based approach, we trained Au-
toVC on the original clean LibriSpeech, and used it to trans-
form de-noised de-reverbed test utterances obtained by apply-
ing the LogMMSE [28] and the Weighted Prediction Error [29]
speech enhancement methods to our noisy evaluation set. This
methodology is referred to as Preproc. Moreover, we consid-
ered StarGAN-VC [9], an established GAN-based VC model.
StarGAN-VC uses a one-hot representation of the speakers, and
needs to see utterances from both training and test set speak-
ers during training. To address this problem, we have taken
10% of the test set and added it to StarGAN-VC training set.
This 10% is not included in the evaluation set of the meth-
ods. Finally, we perform a simple ablation study by remov-
ing the acoustic-ASR encoder from our architecture and using
this model as a baseline. We refer to this approach as Phonetic.
Since this variant uses the phonetic encoding during inference,
and is fed the ground-truth transcription, its performance should
provide an upper bound of the metrics. We have used Wilcoxon
signed-rank test to do pairwise comparisons between the differ-
ent approaches. Hyper-parameters were optimized using ran-
dom search to maximize the perceived quality of samples under
informal listening.

To quantify the performance of the methods, we run two
perceptual evaluations inspired by past voice conversion chal-
lenges [1], looking at Naturalness and speaker Similarity. The
evaluations were crowd-sourced on Amazon Mechanical Turk,
and designed according to MUltiple Stimuli with Hidden Ref-
erence and Anchor (MUSHRA) [30], but without forcing any
system to be rated as 100. Each evaluator rated 20 screens, and
selected the Naturalness and Similarity to the target speaker us-
ing a 0 to 100 scale. In each evaluation screen, listeners were
presented with samples from the 5 systems, and with record-
ings of the target speaker as hidden reference. A different ran-
dom recording of the target speaker was provided as explicit
reference. We collected 3 scores per utterance, for both target
speakers.

4.2. Results

We first evaluated the methods in clean acoustic conditions
(original LibriSpeech data, no noise nor reverberation). Re-
sults (not presented for brevity) showed that the performance
difference between the methods is minor for both metrics, with
Phonetic outperforming the others due to its ability to leverage
the phonetic information available during inference. In this sce-
nario, Voicy does not outperform the other methods.

However, when analyzing the results for the reverberant
(Figure 2) and noisy reverberant utterances (Figure 3), we ob-
serve a clear difference between our systems and the baselines.
Once again, Phonetic outperforms all others for both metrics,
while the Proposed approach significatively outperforms the re-
maining baselines in terms of Naturalness on both reverberant
and noisy reverberant conditions, likely due to the added infor-
mation provided by the acoustic encoder during inference. Re-
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sults are more mitigated for Similarity due to the high variance
of the results for all methods. The relatively large variances in
performance is source/target dependent, but also on the level
and type of noise. Models that handle noise better have signif-
icant less variance. Moreover, the use of Mechanical Turkers
can add significant variability to the scores, even if precise in-
structions are given to them. Nevertheless, statistical analyses
of the pair-wise comparisons between the systems show that
the only non-significant improvement between Voicy and the
baselines is for Similarity for reverberant conditions. For ex-
ample, when comparing Proposed and Star-GAN, we observe
p = 1.35E−5 and p = 8.46E−6 for Naturalness in reverber-
ant and noisy-reverberant conditions respectively, and p = 0.21
and p = 0.038 for Similarity. This could be due to the fact that
the added phonetic context does not add any speaker disentan-
gling information. In addition, we observe how AutoVC’s per-
formance can improve by applying speech-enhancement tech-
niques as pre-processing (Preproc), particularly for the noisy
reverberant utterances. The reader is encouraged to listen to
converted samples in different noise conditions (see Section 1).

Moreover, we have estimated the SNR of the utterances us-
ing the Pysepm toolbox 2, and analyzed the performance of the
models for different noise levels. Results are presented in Fig-
ure 4) for a SNR range of interest (noisy conditions). Results
show that our method outperforms the others (except Phonetic)
in terms of Naturalness until 8 dB, and until 5 dB for Similar-
ity. For higher levels, Star-GAN and AutoVC appear to match
or slightly outperform Voicy, which could be due to the fact the
added phonetic encoder does not contribute to the speech recon-
struction in clean acoustic conditions. We also observe a degra-
dation in performance for all of the systems at 5 dB SNR. We
believe that during the random process of adding noise, more
samples fell into the 5db noise bucket. The larger number of
speakers and samples might have affected the performance of
all models equally.

Overall, results concur in showing that Voicy outperforms
the baselines in terms of Naturalness and Similarity in noisy re-
verberant environments, except for Phonetic, which has an ”un-
fair” advantage during inference. The Proposed approach, with
its acoustic encoder, tries to match its performance without the
need for the phonetic representation during inference, but is un-
able to reach this upper bound. Nonetheless, it outperforms the
other baselines. We believe these results could be improved us-
ing a better pre-trained ASR module.

5. Conclusions
In this work we presented Voicy, a new VC model designed for
use-cases that require noise/reverb robustness as well as zero-
shot transformation, which is not possible with current VC ap-
proaches. Our architecture is comprised of five modules, in-
cluding a phonetic and an acoustic-ASR encoder, which help
improve the intelligibility of the converted speech in noisy en-
vironments. We have created a noisy reverberant version of the
LibriSpeech dataset, and used to train and test both our method
and four other baselines. Results show that Voicy outperforms
the baselines in terms of naturalness and speaker similarity in
noisy reverberant environments. In the future, we will improve
our acoustic-ASR encoder, and study if there is prosodic leak-
age in the phonetic embedding.

2https://github.com/schmiph2/pysepm

Figure 2: Naturalness (top) and Similarity (bottom) of the sys-
tems for reverberant utterances.

Figure 3: Naturalness (top) and Similarity (bottom) of the sys-
tems for noisy reverberant utterances.

Figure 4: Average score for Naturalness (top) and Similarity
(bottom) by SNR.
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Abstract

In this paper, a text-to-rapping/singing system is introduced,
which can be adapted to any speaker’s voice. It utilizes a
Tacotron-based multi-speaker acoustic model trained on read-
only speech data and which provides prosody control at the
phoneme level. Dataset augmentation and additional prosody
manipulation based on traditional DSP algorithms are also in-
vestigated. The neural TTS model is fine-tuned to an unseen
speaker’s limited recordings, allowing rapping/singing synthe-
sis with the target’s speaker voice. The detailed pipeline of the
system is described, which includes the extraction of the tar-
get pitch and duration values from an a capella song and their
conversion into target speaker’s valid range of notes before syn-
thesis. An additional stage of prosodic manipulation of the out-
put via WSOLA is also investigated for better matching the tar-
get duration values. The synthesized utterances can be mixed
with an instrumental accompaniment track to produce a com-
plete song. The proposed system is evaluated via subjective
listening tests as well as in comparison to an available alter-
nate system which also aims to produce synthetic singing voice
from read-only training data. Results show that the proposed
approach can produce high quality rapping/singing voice with
increased naturalness.
Index Terms: text-to-speech, rapping voice synthesis, singing
voice synthesis, text-to-rapping, text-to-singing, prosody con-
trol, prosody manipulation, neural models

1. Introduction
With the recent development of neural text-to-speech (TTS),
the task of singing voice synthesis (SVS) is gaining popularity,
since it has become feasible to produce natural and expressive
speech more effectively. Before the development of deep neu-
ral network based synthesis, SVS systems were mainly based on
unit selection technology [1, 2, 3, 4] or parametric TTS [5, 6].
During the last few years, with the establishment of neural TTS
systems such as Tacotron [7], it has become possible to investi-
gate approaches like neural rapping and singing.

SVS is a complicated task. As in regular TTS, a large and
powerful neural model that accurately predicts acoustic features
must be designed and tuned. Additionally, singing information
such as musical notes and rhythm must be accurately followed,
in order to produce high quality samples. For rapping, the pro-
cedure is the same, though the focus is less on musical notes,
and more on pitch variation and rhythm, the latter translating
into accurate phoneme durations.

1.1. Related work

Several approaches of rapping and singing voice synthesis have
been proposed over the years. Early methods were based on
unit concatenation [1, 2, 3, 4] and statistical parametric syn-
thesis [5, 6]. There was also an attempt focused on speech-
to-rap voice conversion, based on a phase vocoder and beat
tracking [8]. Nevertheless, such approaches had significant lim-
itations and did not achieve high quality synthesized speech.
In recent years, many steps have been made towards high
quality SVS, with the use of neural and deep learning meth-
ods. Hybrid, mixed and conditioned models have been intro-
duced that advance further the SVS systems. Some notable
approaches are the WaveNet variant architecture [9] used for
parametric singing synthesis, WGANSing which is a pitch con-
ditioned Generative Adversarial Network (GAN) [10] and an
adversarially trained, pitch conditioned sequence-to-sequence
Korean singing model [11]. Another GAN-based approach
is unsupervised cross-domain singing voice conversion [12],
which uses additional perceptual losses on its generator out-
put. Mellotron [13], a multi-speaker expressive voice synthe-
sis model based on GST-Tacotron 2 [14], also has SVS capa-
bilities. Moreover, Jukebox [15] generates singing voice with
accompaniments, and UTACO [16] consists of an attention-
based sequence-to-sequence mechanism and a vocoder with di-
lated causal convolutions. Another approach was Durian-SC,
a duration-informed, phoneme-to-acoustic features’ alignment
model with composite conditioning that allows SVS [17]. The
transformer architecture has also been employed to address the
problem, as in DeepSinger [18], which employs separate en-
coders for its features, and HiFiSinger [19], which includes a
FastSpeech-based [20] model and multi-scale adversarial train-
ing approaches. Recently, ByteSing [21] was introduced, a
Tacotron 2 model combined with a duration prediction model
and uses linguistic along with musical embeddings.

1.2. Proposed method

In this paper, we propose a complete text-to-rapping and singing
approach based on a system that, unlike other methods, relies
solely on spoken data and can be adapted to an unseen target
voice with very limited data. Our method is based on a fine-
grained prosody manipulation multi-speaker TTS model pre-
sented in [22]. Combined with augmentation of training data,
our method can achieve phoneme-level prosody manipulation
(F0 and duration), which allows us to generate rapping and
singing synthesized speech.
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26-28 August 2021, Budapest, Hungary

118 10.21437/SSW.2021-21



Figure 1: Proposed text-to-rapping/singing system

We train a multi-speaker multilingual TTS model on inter-
nal spoken data, in US English and Korean languages, and show
that the prosody control capabilities at the phoneme-level musi-
cal note and duration are effective in all training speakers. For
the case of speaker adaptation with very limited data, we re-
sume the model training on 2 speakers of both languages with
only about 11 minutes of spoken data, and show that the result-
ing models can also maintain the same prosody control capabil-
ities. Extracting the desired prosody information from a given a
capella song and presenting it as input to our model enables us
to synthesize a capella utterances that closely follow the refer-
ence, allowing rapping/singing synthesis with the voice of every
speaker included in the training set.

We present the proposed approach, from the stage of
phoneme alignment and F0 extraction and discretization, up to
the final post-processing steps required to produce the actual
song with the voice of the selected speaker. This includes sev-
eral processing steps and modules as well as a fine-tuning digital
signal processing (DSP) stage based on synchronous overlap-
add algorithms [23, 24], in order to achieve exact alignment
of the synthetic speech to the target song music track. Fi-
nally, our system is evaluated via crowd-sourced listening tests
against the ground truth samples, as well as against samples
from Mellotron, a widely accepted state-of-the-art SVS system.
Objective evaluation results are also presented, showing that our
model follows the desired prosody patterns appropriately.

2. Method
2.1. Overview

Our proposed text-to-rapping/singing system aims at producing
a song with the voice of a target speaker, based only on the
lyrics and an a capella version of the song by its original singer.
A block diagram of the system is shown in Figure 1 and consists
of four main parts.

The first part involves the preprocessing of the lyrics by a
front-end module in order to obtain the phonemes, as well as the
extraction of the required prosodic features from the reference
audio, i.e. phoneme durations and F0 (Section 2.2). Second,
to avoid extreme F0 values which can hinder the output qual-
ity, F0 contours are converted so as to lie within the range of
the target speaker (Section 2.3). Third, the converted F0 values
along with the phoneme durations are discretized and used by
the TTS model, which produces the synthesized song by con-
trolling the prosody at the phoneme-level (Section 2.4). The
fourth step is post-processing, including the introduction of a
DSP module, which is necessary for accurate time alignment
of the produced song with the original time specification, if the
instrumental accompaniment track needs to be combined. This
task can be performed by a mixer which combines the synthe-

sized a capella utterances with the music track (Section 2.5). A
detailed analysis of each step is given in the following sections.

2.2. Alignment & feature extraction

A capella songs are used as reference since the acoustic model is
trained only on neutral style spoken data which do not contain
music tracks. Initially, phoneme alignments are automatically
extracted from the song using an HMM monophone acoustic
model trained using flat start initialization [25]. As the forced-
alignment model is trained only on spoken utterances and may
not produce precise phoneme boundaries, a manual correction
of the alignments was performed. Most corrections were at-
tributed to accommodate for long vowel durations in the singing
data, which are not usually encountered in spoken speech.

F0 contours are calculated using the algorithm included in
the Praat toolkit [26]. Interpolation is applied on the unvoiced
regions in order to avoid zero values and the final contour is
smoothed.

2.3. Note conversion/extraction

The acoustic model is trained to control the prosody within the
range of each speaker. When a reference song is used as input
to the proposed system, the F0 contour of the singing speaker
may have different range than that of the target speaker. This is
due to the fact that the song originates from a different speaker
with diverse source characteristics or gender. Also, the singing
speech itself may vary in extreme F0 values both in the lower
and higher end between two speakers.

We use Eq (1) in order to transpose the F0 contour of the
reference speaker to match the range of the target speaker:

ftarget =
median(fspeaker)

median(fref )
· fref (1)

where fspeaker and fref represents all the F0 values of the tar-
get and reference speaker’s utterances respectively.

Two approaches were examined on F0 transposition. The
first approach takes one single (global) pitch value for the ref-
erence speaker, which is the median F0 value, while the second
recalculates the median F0 value for every verse. Early results
demonstrated that the former approach works better, producing
more stable samples, and avoids the discontinuities in octaves
that may occur due to the recalculation of the F0.

After the conversion, the average phoneme-level F0 is cal-
culated by using the previously extracted alignments. The cor-
responding musical note and octave can be extracted by using
formulas (2) and (3):

h =

⌊
12 · log2

ftarget
440

⌉
+ 57 (2)
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octave =

⌊
h

12

⌋
and note = (h mod 12) (3)

where h represents the distance in semitones from the note C0.

2.4. Acoustic model

For controlling prosody, we use an acoustic model based on pre-
vious work [27]. This method uses unsupervised clustering on
phoneme-level F0 and duration values in order to extract a se-
quence of discrete learnable prosodic labels for each utterance,
which is then used to condition the decoder of a Tacotron-based
acoustic model [7, 14] in parallel to the phoneme sequence. The
model is also augmented with a secondary Mixture-of-Logistics
(MoL) attention module [28] which operates on the prosodic
sequence only, aiming to disentangle the phonetic and prosodic
content. The final model is able to control the prosody at the
phoneme level both for F0 and duration while maintaining high
speech quality.

In [27], it is shown that this model is also effective at repre-
senting musical notes instead of F0 values that are derived from
K-means unsupervised clustering. In the current work, we fol-
low the procedure described in Section 2.3 to assign the notes
and octaves to separate learnable embeddings, so that any possi-
ble combinations are modeled appropriately, even non-existing
ones in the training set. This global representation of musical
notes is also speaker-independent, being suitable for our multi-
speaker setup described below.

For the duration labels, we follow an improved and more
stable method than K-means, as in [22]. The values are sorted
in ascending order and grouped into a desired number of inter-
vals, so that an equal number of samples is contained in each
interval. This alleviates the problem of voice quality deterio-
ration in extreme values which are not common in the training
set, while slightly decreasing the duration control range. In this
work, in order to investigate the effect of the number of labels
involved, we have experimented with two different setups, one
with 15 and another with 30 duration labels.

The training setup follows a multi-speaker/multi-lingual
scenario, similar to the parallel work done in [22]. A multitude
of speakers of both genders and 2 languages is used instead of
a single one, in order to capture as many prosody patterns as
possible, which will help increase the range of the model in
both F0 and duration. That way each speaker has the capabil-
ity to rap/sing a wider variety of songs. Augmentation is also
employed both in F0 and duration by applying pitch shifting
and tempo alteration respectively, further increasing the quan-
tity and range of the training data. This setup also allows us
to perform speaker adaptation using limited data from unseen
speakers and enable rapping/singing for the adaptation speaker
in both languages. This process becomes easier as the model
does not have unseen values due to the global musical note rep-
resentation for the F0 and the duration intervals which are de-
rived from all speakers and are common throughout the training
procedure.

The different speakers are assigned a learnable speaker em-
bedding, which also conditions the decoder at each step. We
also use a linear adversarial speaker classifier on the phoneme
encoder outputs, in order to make them speaker independent,
as well as a residual variational encoder which captures other
latent factors of the recordings [29]. This method is shown to
improve naturalness and stability by simply using a zero vector
during inference, which is essentially the prior mean. The mul-
tilingual setup does not include language embeddings, but sim-
ply considering every phone for each language with a different

Table 1: Multilingual multi-speaker dataset for text-to-
singing/rapping model training. ‘tr’ and ‘ad’ refer to training
and adaptation speakers respectively, while ‘f’ and ‘m’ refer to
gender.

Speaker Language Rec. Hours Utterances

us tr f1 en-us 41.21 36185
us tr f2 en-us 38.88 45841
us tr m1 en-us 36.82 40442
ko tr f1 ko 51.37 40503
ko tr f2 ko 54.29 29289

us ad m1 en-us 0.19 165
ko ad m1 ko 0.18 149

label, increasing the total number of phones to the sum of each
language phoneset. For the speaker adaptation, we found that
freezing the weights of the phoneme encoder, prosody encoder
and attention modules yields better results. We can account this
to the fact that the model has already learned rich representa-
tions which must not be forgotten in the adaptation stage by the
target speaker’s limited data.

2.5. Post-processing

The multi-speaker/multi-lingual prosody control model pro-
duces a capella utterances which are derived between silence
tokens from the original lyrics. These utterances must be con-
catenated in the time domain in order to obtain the full verse
of the song. Additionally, the duration values are discrete in
our model, resulting in some form of quantization, hence the
final durations may not exactly match the original song. The
accurate matching of the synthesized song with the original, re-
quires lengthening or shortening of speech, which in our case is
performed utilizing time-domain DSP methods.

This stage is based on two main algorithms: WSOLA [24]
and PSOLA [30]. These algorithms are both able to modify the
duration of each phoneme without affecting the pitch and resyn-
thesize the original audio using the overlap-add technique. In
early listening experiments, we found that WSOLA produced
slightly better results in almost every comparison, so we in-
cluded this method in the evaluations that follow. A Mixer ele-
ment can also be included for producing the final song, mixing
the time-aligned processed synthetic a capella utterance with
the respective music track. Mixing more than one voices is also
possible, providing a multi-speaker song.

3. Experiments & results
In this section, we describe our experimental setup, along with
the method followed to objectively and subjectively evaluate the
proposed system. The evaluation results are then discussed.

3.1. Experimental setup

The acoustic model is trained with an internal multilingual
multi-speaker dataset containing 222 hours of speech in both
US English (en-us) and Korean (ko) from 1 male and 4 fe-
male speakers. The recorded dataset is a general TTS corpus
of neutral speaking style. For speaker adaptation, we use about
11 minutes of recordings from an unseen male speaker from
each language. The adaptation utterances are selected with a
corpus selection process described in [31] which ensures maxi-
mum phonetic coverage for the required amount of recordings.
Details regarding the data used for training and adaptation are
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Table 2: Average semitone pitch & duration (ms) score for ob-
jective evaluation

Training Adaptation
Speakers Speakers

Pitch Error
(semitones)

15-class 0.85 ± 0.22 0.86 ± 0.23
30-class 0.93 ± 0.28 0.93 ± 0.21
Mellotron 0.51 ± 0.15

Duration
Error (ms)

15-class 27 ± 9 29 ± 8
30-class 29 ± 10 28 ± 7
Mellotron 25 ± 9

presented in Table 1. The augmentations applied to the original
training data, similar to [22], include increasing and decreasing
the F0 by 2, 4 or 6 semitones and the speaking rate from 70% -
130%. The final training set size after the augmentations is 415
hours.

All audio data was resampled to 24 kHz. The acoustic fea-
tures were extracted in order to match the modified LPCNet
Vocoder [32] and consist of 20 Bark-scale cepstral coefficients,
the pitch period and pitch correlation. The phoneme encoder
maps the input phoneme sequence into 256 dimensional em-
beddings and further applies a CBHG module. In the prosody
encoder, prosodic labels are mapped into 64 dimensional em-
beddings. These are processed by a single 128-dimensional
feed-forward Pre-Net with ReLU activation and a bidirectional
Gated Recurrent Unit (GRU) layer with 128 dimensions in each
direction. The decoder contains 3 recurrent layers, a 256-
dimensional attention GRU and two 512-dimensional residual
LSTMs. The attention modules used have a mixture of 5 lo-
gistic distributions and 256-dimensional feed-forward layers.
Dropout regularization [33] of rate 0.5 is applied on all Pre-
Net and Post-Net layers and Zoneout [34] of rate 0.1 is ap-
plied on LSTM layers. We use the Adam optimizer [35] for
training the network parameters with batch size 32. The learn-
ing rate is initially 10−3 and decays linearly to 3 · 10−5 after
100, 000 iterations. We also apply L2 regularization with fac-
tor 10−6. Speaker adaptation involves further training of the
prosody model for 5K iterations, with frozen weights in the
phoneme encoder, prosody encoder and attention modules.

3.2. Objective evaluation

Objective evaluation of the proposed systems in terms of a
capella song synthesis was attempted. Clips from 4 rap songs
and 4 songs, all sung a capella in English, were used as ground
truth for this evaluation1. All the proposed models along with
Mellotron [13] were evaluated against the ground truth a capella
songs. The samples for Mellotron were produced by Mel-
lotron’s latest GitHub repository along with a pretrained Mel-
lotron model and respective WaveGlow model based on Lib-
riTTS dataset. A random female voice from the model was se-
lected for inference of the audio stimuli.

In Figure 2, the pitch contours of 2 a capella reference songs
are presented, along with the pitch contours of the audio stim-
uli inferred by the systems under comparison. One can notice
that the synthesized pitch contours closely follow the reference
ones, while they are shifted appropriately in order to match the
F0 mean value of the inference speaker of each model. In Fig-
ure 3, where the F0 contours of a reference and synthesized clip
are illustrated in a MIDI-like graph, a MIDI value is produced

1The reader is encouraged to listen to the audio samples at:
https://innoetics.github.io/publications/rappotron/index.html

Figure 2: Pitch contours of the original song, Mellotron and
proposed models.

for each phoneme, and the trend of the synthesized melody fol-
lowing in parallel the ground truth one is obvious.

Figure 3: Pitch contours of the original and synthesized song
in a MIDI representation (pink and purple values respectively).
The MIDI values are calculated on a per phoneme basis.

As an objective metric for measuring the accuracy of our
approach, we calculated the average distance of F0 and dura-
tion between the reference and the synthesized audio on a per
phoneme basis. F0 values of the reference audio were trans-
posed again, so as to target the speaker’s mean F0 value before
calculation of the distance. As depicted in Table 2, there is no
significant difference in these metrics between speakers seen in
the training set and those used only for adaptation, neither on
F0 nor on duration values. This observation is valid for both
15 and 30 duration label models. Mellotron seems to achieve
an F0 contour closer to the reference, as was also illustrated in
Figure 2.

Overall, our method manages to reproduce a capella singing
with accurate pitch and duration phoneme values especially in
cases where the respective a capella reference audio is straight-
forward, without notably long durations or extreme low/high
notes. In the latter cases, we noticed that our approach did not
accurately produce phonemes with the target F0 or duration val-
ues, leading either to attention failures or duration mismatches
with the reference audio.
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Table 3: Mean Opinion Score (MOS) evaluation results with 95% confidence interval

30 duration labels 15 duration labels

rap songs songs rap songs songs

setup plain w/ post-proc plain w/ post-proc plain w/ post-proc plain w/ post-proc

us tr f1 3.60±0.36 3.65 ±0.30 3.36±0.33 3.71 ±0.33 3.65±0.32 3.72 ±0.35 3.69±0.33 3.69 ±0.29
us tr f2 3.60±0.30 3.86 ±0.29 3.38±0.38 3.50 ±0.38 3.53±0.31 3.74 ±0.35 3.81±0.29 3.55 ±0.37
us tr m1 3.60±0.33 4.00 ±0.29 3.64±0.32 3.60 ±0.36 3.51±0.27 3.56 ±0.32 3.64±0.34 3.62 ±0.29
ko tr f1 3.35±0.33 3.70 ±0.36 3.17±0.34 3.33 ±0.41 3.44±0.37 3.35 ±0.34 3.81±0.32 3.57 ±0.31
ko tr f2 3.37±0.34 3.42 ±0.35 3.45±0.39 3.33 ±0.37 3.40±0.32 3.40 ±0.34 3.69±0.35 3.81 ±0.32
us ad m1 3.67±0.35 3.74 ±0.29 3.74±0.35 3.33 ±0.37 3.79±0.31 3.51 ±0.35 3.57±0.34 3.33 ±0.39
ko ad m1 3.42±0.39 3.47 ±0.39 3.26±0.42 3.26 ±0.40 3.63±0.36 3.51 ±0.32 3.26±0.38 3.43 ±0.38

Total 3.52 ±0.34 3.69 ±0.33 3.43 ±0.36 3.44 ±0.37 3.56 ±0.32 3.54 ±0.33 3.64 ±0.33 3.57 ±0.33

Mellotron 3.33±0.38 3.17±0.49

3.3. Subjective evaluation and discussion

A subjective evaluation was carried out via a formal listening
test. Two clips from songs and two clips from rap songs, all in
English a capella, were used as ground truth, and the respec-
tive audio stimuli produced by our system and Mellotron were
rated. In the framework of this subjective evaluation, aside from
the overall quality, we also opted to assess: a) the effect of the
number of duration labels per phoneme, and b) the effect of
the post-processing stage for duration matching to the reference
audio via WSOLA (as described in Section 2.5). By combin-
ing the aforementioned parameters we produced all 4 possible
models for each speaker described in Table 1. In total, 60 listen-
ers (Amazon Mechanical Turkers) participated in the listening
test, rating each synthetic stimulus on a 5-point Likert scale on
both melody and intelligibility, with 1 indicating “Totally off-
tune or wrong lyrics” and 5 indicating “Exactly same melody
and lyrics”.

The average MOS and 95% confidence interval for each
voice model versus song type (rap song and song) and post-
processing are presented in Table 3. The results show that our
approach provides satisfactory output, equally for both rapping
and singing, even if the latter is considered as a more complex
task. Overall, post-processing for matching the word bound-
aries between ground-truth and audio stimuli does not seem
to provide any consistent and robust improvement. Although
there is no statistical significance in the pairwise differences ob-
served between models, an improvement tendency is observed
when post-processing is used for rap songs and the 30-duration-
labeled model. This post-processing stage remains necessary in
order to align the generated songs with the music track at the
final mixing stage, in case of music accompaniment of the syn-
thesized a cappella voice. The 15-class duration labeling yields
an improvement tendency for singing, which is most probably
attributed to the fact that fewer but more populated classes in
training entail better learning for our model.

A closer inspection of the results leads us to the conclusion
that adapted speakers achieve similar quality results with the
speakers who are seen during training. This is prominent es-
pecially for English, where the adapted voice performs equally
well to the rest of the English training set voices, while, at the
same time, the Korean adapted voice follows closely the perfor-
mance of the Korean training voices. Such similar MOS ratings
confirm our hypothesis that our approach is robust for limited
speaker data scenarios. As far as the per speaker and language
performance is concerned, Korean voice models have received
lower MOS scores than the English ones. This is most probably
due to the fact that the reference songs we evaluated are exclu-

sively in English. Our informal evaluation showed that these
non-native voice models mainly suffered from lower intelligi-
bility or lack of naturalness, as they did not bear native English
accent and thus sounded more artificial when synthesizing En-
glish a capella songs.

Our informal listening evaluation of the samples showed
that Mellotron output is melodic but often bears intelligibility
issues or audio artifacts. This observation may justify why Mel-
lotron scored lower compared to our system in the formal sub-
jective evaluation (Table 3). Nevertheless, Mellotron outper-
formed our approach in a test song where vibrato singing was
prominent, a voice characteristic that Mellotron can capture and
transfer well, in contrast to our approach where only F0 and du-
ration values per phoneme are provided.

4. Conclusions
In this paper, we presented an approach for producing high-
quality singing and rapping synthesis from a Tacotron-based
fine-grained prosody-control voice model trained solely on read
data. Even though its results do not match the output of an SVS
system trained on singing data, our approach achieves satisfac-
tory results in both singing and rapping. Experiments showed
that equally good singing synthesis can be achieved for limited-
data target voices via adaptation. It is worth-noting that our
system, similarly to other systems based on spoken-only data,
suffers limitations in its ability to produce too long and ex-
tremely low or high-pitched sounds. In other words, although
it can provide satisfactory results for rapping and simple songs,
it may fail to produce adequate singing for more challenging
songs with wide variations in both note values and duration.
Another native limitation to our current approach is the lack of
ability to transfer micro-prosodic characteristics into the syn-
thetic output, such as vibrato or tremolo. Mellotron was shown
to better imitate micro-prosodic singing voice qualities with the
help of a more complex model and attention mechanism. Fur-
ther research on controlling singing voice characteristics, such
as loudness and vibrato, as well as on including singing data in
the training process is required. Moreover, we plan to investi-
gate ways for automating parts of the proposed process, such as
the alignment optimization of the target singing data, so as to
eliminate manual effort in our method.
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Abstract
This work examines the content and usefulness of disentangled
phone and speaker representations from two separately trained
VQ-VAE systems: one trained on multilingual data and another
trained on monolingual data. We explore the multi- and mono-
lingual models using four small proof-of-concept tasks: copy-
synthesis, voice transformation, linguistic code-switching, and
content-based privacy masking. From these tasks, we reflect
on how disentangled phone and speaker representations can be
used to manipulate speech in a meaningful way. Our experi-
ments demonstrate that the VQ representations are suitable for
these tasks, including creating new voices by mixing speaker
representations together. We also present our novel technique
to conceal the content of targeted words within an utterance by
manipulating phone VQ codes, while retaining speaker iden-
tity and intelligibility of surrounding words. Finally, we discuss
recommendations for further increasing the viability of disen-
tangled representations.
Index Terms: code-switching, voice conversion, content-based
privacy

1. Introduction
One of the main benefits of using Vector Quantization Varia-
tional Autoencoders (VQ-VAE) for speech synthesis is that this
architecture facilitates learning rich representations of speech
[1, 2, 3, 4] in the form of discrete latent sequences. These
learned representations come from vector-quantized codebooks
that behave as a clustering space with prototype centroids. Each
entry in a codebook is represented by a pair consisting of a code
(also known as an index or token) and its corresponding vector.
The code is a discrete integer value, and the vector is a learned
n-dimensional array of continuous values. In this paper, we are
interested in the content and usefulness of codebooks after a
VQ-VAE model has been trained. Specifically, we are the first
to compare multilingual and monolingual VQ-VAE codebook
representations for phone and speaker, with the aim to observe
how well they adapt to voice transformation, linguistic code-
switching and content-masking.

The original VQ-VAE architecture design was based on a
single VQ space: one encoder, one VQ codebook, and one de-
coder. That design proved to be useful across different objec-
tives in image, video, and speech processing [3]. Since then,
others have shown that the architecture could be expanded by
stacking encoders which result in learning multiple different
VQ spaces at the same time [2, 5] or even hierarchical represen-
tations [6]. These extended models provide more generalization
capability, in part because they learn richer representations.

It is possible to model multiple types of information in the
speech signal with little or no supervision. In the process of
learning to represent different types of information, the stacked
VQ-VAE architectures are also providing a means to separate

informational factors. This act of separating information from
representations is known by several names, including factor-
ization and disentanglement. Traditionally, factorization has
served the purpose of removing irrelevant information from a
representation such as a speaker embedding – and then discard-
ing what had been deemed irrelevant [7]. After information
has been removed, it could be argued that a representation is
in some way more “pure”. On the other hand, disentanglement
retains information. At the time of this writing we use the term
disentanglement to describe the phenomenon of isolating mul-
tiple types of distributed information from one source, into sep-
arate external representations. Functionally, this is a form of
distributed representation learning.

Currently there are no single-best techniques to measure the
intrinsic goodness of disentangled representations apart from
probing how well they perform in extrinsic tasks [8, 9, 10, 11].
Recent efforts for phone and speaker disentanglement have
been limited to contrastive tasks such as phone recognition and
speaker recognition [2, 12]. Or observing that one represen-
tation “gains” information while another “loses” information
[10, 13] by measuring changes in classification accuracy.

Our work adds additional task-based evaluation by ex-
ploring disentanglement in both a multilingual and monolin-
gual model. In order for the multilingual model to perform
well at tasks such as voice transformation and linguistic code-
switching, the learned representations must completely separate
phonetic content and speaker information. We also introduce a
novel technique that uses VQ phone codes to manipulate tar-
geted content in the speech signal without altering the sound of
a speaker’s voice. Our exploration exposes some of the interest-
ing capabilities of disentangled representations. We also offer
ideas for improving the VQ-VAE architecture.

2. Related Work
Early versions of the VQ-VAE architecture with a single en-
coder and VQ phone codebook are known to be well-suited to
voice conversion. Particularly [14] showed that grouping latent
embeddings together during the training process helps with mis-
pronunciations. Their system relied on one-hot speaker encod-
ings, but they suggest that the model could be made to general-
ize to unseen speakers by using externally-learned speaker em-
beddings instead. Our VQ-VAE implementation uses a similar
approach to group latent embeddings, but goes one step further
to simultaneously learn VQ speaker and phone embeddings.

In [15], they propose a VQ technique that disentangles
speaker and content information in a fully unsupervised manner
for monolingual one-shot voice conversion. Phone embeddings
originate from a VQ codebook whereas speaker embeddings are
learned as a difference between discrete VQ codes and contin-
uous VQ vectors. Finally, the speaker and content representa-
tions are re-combined additively (instead of by concatenation)
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and passed to the decoder as local conditions. While the method
works very well in one-shot voice conversion, it does require a
target speaker sample. Since the speaker representations rely on
differences between internal VQ embeddings, it is not clear how
the content and speaker representations could be used externally
to this system, or whether or not it works for multilingual data.

A dual-encoder VQ-VAE was proposed by [1] which mod-
eled the phone content and F0. This approach of using two en-
coders and learning two VQ codebooks was also used in [2]
who sought to learn speaker identity as well as speech con-
tent at the same time. In [2], they explored several variations
of dual-encoder approach with different kinds of supervision.
They found that the adversarial model performed disentangle-
ment best between the speaker and content. In this paper, we
utilize their pre-trained English VCTK model for multilingual
adaptation as well as our experiments.

While VQ-VAE has received a lot of attention for its poten-
tial in voice conversion, other challenges remain for multilin-
gual speech synthesis. In [16] and [17], they showed it is pos-
sible to use DNNs to synthesize voices across languages, but
these methods perform speaker adaptation rather than learning
embeddings that could be re-purposed. Therefore these meth-
ods require an exemplar sentence that contains specific words
and phrases. Likewise [5, 18, 19] propose universal multi-
language multi-speaker TTS systems, but it is not clear that the
internal embeddings are re-useable for other speech tasks and
the number of evaluated languages is small.

Speech is often a primary medium for communicating sen-
sitive information such as financial details or medical informa-
tion. To date, most speech privacy scenarios reflect the need to
protect speaker voice characteristics [20, 21]. The work of [22]
proposes shuffling audio in a speech file to transform it into a
speech “bag of words” so that the content and meaning can-
not be easily gleaned from ASR. Likewise [13] proposes using
acoustic transformations to conceal the words of speech audio.
Our approach to content privacy is inspired by [23] which cre-
ated a speech privacy sound. However, instead of privacy for
speaker identity, we mask targeted words in a phrase by manip-
ulating the sequence of discrete VQ phone codes.

3. Data
The multilingual SIWIS dataset [24] contains four languages:
English, German, French, and Italian. There are 36 unique
speakers. Each speaker is bilingual or trilingual and has been
recorded in two or three languages. The dataset languages were
imbalanced, so our train/test splits also preserved this imbalance
as shown in Table 1. The monolingual English VCTK dataset
[25] contains 109 speakers with different accents. For VCTK,
we used the same train/test splits as in [2]. All audio was down-
sampled to 16 kHz and normalized with sv56. The preprocess-
ing steps were followed using scripts provided by [1].

Table 1: SIWIS data splits across languages and speakers.

Language Training Validation Held-out
Spk Utt Spk Utt Spk Utt

English (EN) 18 2387 18 603 4 16
French (FR) 26 3405 26 841 5 16
German (DE) 13 1719 13 376 4 18
Italian (IT) 13 1689 13 430 3 10

Figure 1: VQ-VAE overview from [2], two encoders and VQ
spaces which modeled speaker identity as a global condition,
and speech phones as a local condition. We added a global
one-hot language vector for our multilingual training.

4. VQ-VAE Model Adaptation
We started with a dual-encoder VQ-VAE model that was pre-
trained and provided by [2]. It learned two separate encoders
and two separate VQ codebooks for speech content and speaker
identity (Figure 1). They had trained the model to 500k steps
using English VCTK data.

We used the pre-trained model from [2] and adapted it to
multilingual SIWIS data. For the model adaptation, a projection
layer from the pre-trained WaveRNN decoder was discarded but
we kept all other parameters from the encoders and VQ code-
books. We also added a one-hot language vector as global con-
ditions to the WaveRNN decoder. We trained the multilingual
model on all four languages mixed together for 550k steps while
monitoring the validation losses.

The goal is not to learn to disentangle languages, but to
learn representations of content and speaker that are shared
across multiple languages. For example, to learn phone VQ
representations from multiple languages in a single VQ code-
book. During the model adaptation, we did not experiment
with changing the codebook sizes from the pre-trained model.
Therefore we used a codebook size of 256 for the speaker code-
book, and 512 for the phone codebook.

The input to the encoder was a waveform. After the wave-
form was downsampled by each encoder, it was transformed
into a sequence of VQ codes and vectors for phones, and a sin-
gle VQ code and vector for speaker identity. The VQ vectors
were then provided to the WaveRNN decoder. Finally the out-
put was a reconstructed waveform.

5. Task-Based Evaluation
The purpose of a task-based evaluation is to understand how
learned phone or speaker representations perform in tasks that
benefit from disentanglement. We describe four very small
“proof-of-concept” tasks and corresponding results. The syn-
thesized speech1 was assessed using human listening judge-
ments. For the listening tests, participants were recruited from
the Prolific2 platform and the listening test materials were
hosted by Qualtrics3. We grouped our listening test tasks on
the basis of language and dataset in order to utilize similar par-
ticipants. This resulted in a total of seven separate listening
tests and also allowed for consistency among our listener pool.

1Speech examples: https://rhoposit.github.io/ssw11
2https://www.prolific.co/
3https://www.qualtrics.com/uk/
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Table 2: MOS naturalness scores for copy-synthesis. Results
are reported for the multilingual model (SIWIS data) as well as
the monolingual English model (VCTK data).

Data Natural Synthetic ∆

SIWIS-EN 4.1 1.6 ↓ 2.5
SIWIS-FR 3.4 2.9 ↓ 0.5
SIWIS-DE 3.7 2.5 ↓ 1.2
VCTK-EN 4.0 3.3 ↓ 0.7

For example, the same set of French speakers evaluated French
MOS copy-synthesis, French MOS voice transformation, and
French voice transformation speaker similarity. All of our par-
ticipants self-identified as “fluent” in their respective languages,
including pairs for code-switching: English-French, or English-
German. While the multilingual model training included Italian
data, this language was omitted from the evaluation as there
were few speakers in the held-out set to select representative
samples for gender, as well as bilingual/trilingual overlap. For
each of the seven listening tests, we recruited 20 people and
they were compensated at the rate of £ 7.50 per hour.

5.1. Copy-Synthesis

One way to gauge the quality of a trained VQ-VAE is to per-
form copy-synthesis. If copy-synthesis quality is very good then
the internal VQ representations are more likely to also be good,
however this is not guaranteed. While this does not inform us
about the quality of the internal representations, it provides a
starting point. This section is included as a sanity check. How-
ever, since the listening test was very small the reported MOS
values may not generalize.

Listeners rated the naturalness on a Likert scale of 1-5
(where 5 is natural). We evaluated 6 examples per language
using data from the held-out set, for a total of 24 samples. We
report the average MOS naturalness scores in Table 2. The syn-
thetic speech results in lower MOS scores for the monolingual
and multilingual models. In the multilingual model, English
and German naturalness was lower. The MOS for French had
the smallest change from natural to synthetic. Evaluating with
higher quantities of speech samples would provide a better per-
spective of the average MOS scores per language.

5.2. Voice Transformation

We present results from a voice transformation task. We tried
to change the speaker identity by replacing the speaker code
to one of other codes obtained after the VQ-VAE optimization.
Individual speaker codes do not always correspond to speakers
included in the training dataset and hence this is not a conver-
sion to specific identity of a target speaker. But, we would be
able change the speaker identity by replacing the VQ speaker
codes while keeping the VQ phone codes unchanged. For each
model, we identified which VQ speaker codes had been learned
during training. Neither of the two models utilized all of the
possible speaker codebooks (the codebook size was 256 for
both models), even though both models were trained with multi-
speaker data. In the multilingual model (SIWIS), there were 11
VQ speaker codebooks utilized for 36 unique speakers. In the
monolingual model (VCTK), there were 18 VQ speaker code-
books utilized for 110 unique speakers. Our VQ-VAE model
under-estimated the number of speakers and seems to merge
some speakers into one cluster.

5.2.1. Single-Representation

This version of voice transformation changes one single speaker
VQ code at a time, without mixing or combining speaker codes.
For the multilingual model, we selected one male and female
speaker (spk13-male, spk04-female) from the SIWIS data and
seen conditions. Then we extracted the VQ phone and speaker
codes. We replaced their speaker codes with each of the 11
multilingual VQ speaker codes from the codebook. We used 2
utterances per speaker, per language for a total of 12 examples.
For the one-hot language vector, we used the language from
the source sentence. For the monolingual model and codebook,
we followed the same approach selecting a male and female
speaker from the VCTK data and seen conditions (p229-female-
English, p302-male-Canadian). We selected 2 utterances for
each speaker, for a total of 4 examples.

5.2.2. Mixed-Representations

This version of voice transformation mixes speaker VQ codes
to create new voices, in a spirit similar to zero-shot voice con-
version. Ideally, this could be done using various combinations
of VQ speaker codes and weighting them. In this work, we
mixed two representations by calculating an unweighted mean
between two VQ codebook vectors. In a vector space, the re-
sulting representation is a new centroid that is equidistant be-
tween the paired vectors. We randomly paired VQ speaker
codes for each model, and then mixed them. We synthesized
the same source utterances as before.

Table 3: Multilingual (SIWIS) MOS naturalness scores for voice
transformation and voice mixing.

Speaker Code English French German
Code 85 2.4 2.9 3.4
Code 192 2.6 3.0 3.1
Code 238 2.5 3.0 3.2
Code 131+248 2.4 3.1 3.3

Table 4: Monolingual English (VCTK) MOS naturalness scores
for voice transformation and voice mixing.

Speaker Code English
Code 67 2.3
Code 109 2.3
Code 242 2.5
Code 109+242 2.4

5.2.3. Results

For the listening tests, we randomly selected 4 speaker VQ
codes (3 single-representations, 1 mixed) from each model. Par-
ticipants listened to all 8 samples in their language and marked
naturalness on a scale of 1 to 5. The results for MOS natural-
ness are provided in Table 3 and Table 4. MOS naturalness is
changes depending on the speaker VQ code and language. The
mixed VQ speaker vectors did not degrade the quality of the
synthesized speech overall. In the multilingual model, French
and German had better naturalness than English for all four of
the reported VQ speaker codes. This is a similar pattern for
naturalness in the earlier copy-synthesis task.

We also asked our listeners about speaker similarity. The
purpose of this was to understand the consistency of the VQ
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(a) Multilingual model (b) Monolingual model

Figure 2: Voice transformation speaker VQ code similarity matrix. Annotations represent the percent of listeners who marked a pair of
utterances as the same speaker. Note that the monolingual and multilingual models utilize different speaker VQ codebooks.

speaker codes. Listeners were provided with matched and un-
matched pairs in an A/B test, and were asked to decide if the
A/B examples were from the same or different speaker. For ex-
ample, a matched pair was 2 synthetic speech utterances using
the target speaker VQ code 238. An unmatched pair was 2 syn-
thetic speech samples using two different speaker codes such
as 238 and 85. There were 16 total matched pairs and 24 un-
matched pairs per language and dataset. This format allowed us
to observe similarities and differences across a particular lan-
guage and speaker VQ code. Recall that our voice transforma-
tion task did not utilize target speakers, only the learned VQ
codes from the speaker codebooks. Speaker similarity results
are reported in Figure 2. The annotations in the figure represent
the percent of listeners who marked a pair of utterances as the
same speaker. A clear diagonal would indicate that the speaker
VQ codes are consistently unique. In the multilingual model
codes 131+248 and 192 are less consistent. German appears to
be more consistent than French or English. In the monolingual
model, we observed a pair of VQ speaker codes that participants
identified as being inconsistent: 67 and 242.

Table 5: Speaker similarity for linguistic code-switching. A/B
measured how often listeners said the speaker was the same
between synthetic and natural speech. Inter-Utt measured how
often listeners reported consistent speaker within an utterance.

Speaker Similarity
Data A/B Inter-Utt
English-French 57.9% 69.0%
French-English 30.8% 60.7%
English-German 67.5% 77.5%
German-English 75.0% 77.5%

5.3. Linguistic Code-Switching

The purpose the linguistic code-switching task was to find out if
we could generate speech using analysis-synthesis, wherein the
speech has multiple languages within the same utterance. We
simulated code-switching by concatenating together VQ phone
codes from utterances in different languages but from the same
speaker. This was possible because the SIWIS data contained
utterances from bilingual and trilingual speakers. We used the
sequence of VQ phone codes from entire audio files instead of
word or phrase level granularity, and we did not change or mod-
ify the VQ phone code contents. We selected 6 utterances for
English and German, and 6 utterances for English and French

using both male and female speakers from the held-out set. We
also swapped the language order, essentially doubling the num-
ber of exemplars. This was to observe if the WaveRNN decoder
is sensitive to language ordering, since the decoder could only
accept a single one-hot language code. This resulted in 24 code-
switched files (6 per language and order pair). For the one-hot
language vector, we used the language of the first utterance.
The speech was synthesized from VQ phone and speaker codes
without performing any modifications to the codes apart from
the concatenation.

Our main interest for this task was to find out if the mul-
tilingual model could preserve speaker similarity while also
synthesizing the multilingual speech. Listeners were presented
with (A) code-switched synthetic speech from concatenated VQ
phone codes, and (B) code-switched speech from concatenated
audio files. In this A/B test, participants were asked if the
speaker was the same between the two A/B samples.

We also presented listeners with single code-switched ex-
amples from only (A) and asked the listeners to judge if the
speaker voice was consistent throughout an utterance, or if
it changed. This was measured because we had sometimes
observed that the speaker voice was not consistent within an
utterance. Results are reported in Table 5. We observed
slightly more consistency for English-German pairs, compared
to French. The A/B similarity for the French-English pair was
particularly low, which means that the decoder had difficulty
switching from French to English. This could be due to the lan-
guage imbalances in the SIWIS dataset, or differences in the VQ
phone code frequencies between these two languages. More in-
vestigation would uncover which part of the utterance was fail-
ing, and why the decoder was unable to recover. Better perfor-
mance on German was also reflected in the other tasks.

This analysis-synthesis task does not reflect how code-
switching works with speakers in real-life because it was done
at the utterance level instead of the word or phrase-levels. As
mentioned earlier, the purpose was to observe if the model, es-
pecially WaveRNN, is capable of it. More investigation is re-
quired to understand and quantify the limits and edge cases of
VQ-VAE for code-switching. In addition, the quantity of eval-
uated samples was particularly small, which makes it difficult
to generalize the results or draw strong conclusions. We at-
tempted to also measure intelligibility, however the listeners did
not follow instructions often enough to perform calculations of
intelligibility scores. For example, some listeners identified the
names of the languages rather than the words of the utterance.
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Figure 3: Diagram showing two different content masking posi-
tions for VQ phone codes on a given phrase.

5.4. Content-Based Privacy Masking

The purpose of exploring content-based privacy is to develop
a capability that conceals certain sensitive words or phrases in
a manner that does not disrupt the normal flow and feel of a
speech utterance. For example, in some use-cases it might be
preferable to transform a sensitive phrase into a speaker’s mum-
bling voice instead of a cut, beep, silence or static. Different
types of masks may affect speech recognition (ASR) or speaker
verification (ASV) differently.

In this task, we used the monolingual model because we had
reliable alignments for the VCTK data [26]. We hand-selected
phrases that occurred mid-utterance and concealed them to
try and render the target phrases unintelligible, while keeping
the surrounding words intelligible. First, we used the forced-
alignments to determine the timestamp end-points of the target
phrase. Next, we used those endpoints to determine the location
of the target phrase in the sequence of VQ phone codes. Fi-
nally, we modified only the VQ phone codes corresponding to
the target phrase. We experimented with two different masking
positions, as shown in Figure 3, as well as two different mask-
ing methods. We have taken advantage of forced-alignments in
this toy problem as well as knowing the target phrases before-
hand. In real-world applications it may require keyword spot-
ting or another mechanism to decide which words and phrases
get masked. Performing this in real-time versus from a speech
database would introduce additional engineering challenges.

The first masking method was to replace true VQ phone
codes of the target phrase with VQ phone codes from ICRA
noise signals [27]. Since the noise has speech-like spectral
and temporal properties, it is expected to generate speech-like,
but, meaningless phone codes. The speech-shaped noise of-
fers a non-recoverable masking, which is useful for applica-
tions where speech content redaction must be persistent. First,
we analyzed this noise to obtain its VQ phone codes. Even
though the noise does not truly contain phones, the resulting VQ
phone code sequence represented the noise quite well. Next,
we replaced the sequence of true VQ phone codes for our target
phrase with a randomly selected sequence of the SSN VQ codes
of the same length. Our second technique was to simply reverse
the the order of the true VQ phone codes for the target phrase,
while leaving the remaining VQ phone codes intact. The VQ
code reversal method does render the target phrase unintelligi-
ble, however it could be recovered by playing the audio back-
wards. We did not attempt other masking methods, however it
may be possible to use silence or randomly selected VQ phone
codes. It is also unknown if VQ-VAE could be used for recov-
erable masking, wherein the masked could be undone. Whether
or not this is desirable depends on the use-case.

5.4.1. Results

We selected two utterances that were shared between a female
and male speaker. Next, we selected two target phrases to mask,
at different positions in the sentence. For the first utterance, the
two target phrases were “these things” (position1) and “three
red bags” (position2). For the second utterance, the two target
phrases were “sunlight strikes” (position1) and “raindrops in the
air” (position2). In total, 16 examples were evaluated.

Participants were instructed that one or more words had
been removed from the utterance, but were not told which ones.
They were asked whether or not the speaker voice was consis-
tent throughout the utterance and we measured the proportion
of positive responses as shown in Table 6. Overall the SSN
was better for maintaining speaker identity throughout the ut-
terance. In general, masking the phrase at position2 resulted in
more consistency, which could be due to the challenges of us-
ing an auto-regressive decoder like WaveRNN. Listeners also
performed an A/B preference test which revealed a slight pref-
erence for SSN over reversal masking. Finally, we measured
ASR-based intelligibility as word error rate (WER) using the
IBM Watson Speech-to-Text API4. We first calculated the WER
on natural, unmasked audio as a baseline and found it was 24%.
This is higher than expected but likely due to pronunciations
and the audio quality. The other WER is reported in Table 6.
Overall, the WER increased compared to natural, unmasked
speech. The position1 resulted in better intelligibility, and the
two different techniques were comparable on average. It is un-
clear if the rise in WER is due to the masking or if intelligibility
was lost for unmasked words. Future work must provide a pro-
cedure to better evaluate content-based masking.

Table 6: Speaker similarity and ASR-based WER for content
masking, comparing two methods and target phrase positions.

Speaker ASR-Based
Masks Similarity WER
Reversal Position1 63.7% 47%
Reversal Position2 77.5% 68%
SSN Position1 70.0% 53%
SSN Position2 76.2% 61%

6. Discussion
We have shown that it is possible to adapt an existing mono-
lingual VQ-VAE model to a new multi-speaker multi-language
dataset with reasonable performance on copy-synthesis, voice
transformation, and linguistic code-switching5. This is an im-
portant finding for multi-lingual speech synthesis.

The manner in which the VQ speaker codebooks are under-
utilized for both models has some implications for the limita-
tions of the VQ-VAE architecture. It is sometimes referred to
as codebook collapse analogous to posterior collapse in VAE.
We observed similar codebook collapse in our VQ phone code-
books as the VQ speaker codebooks. In both models, the phone
codebook size was set to 256, however the multilingual model
utilized 161 entries and the monolingual model utilized 170 en-
tries. The quantity of utilized entries is far greater than the size
of a requisite phone set – even in the multilingual model. We
examined the distribution of VQ phone codes for each language
in the multilingual model and found that all four languages uti-
lized similar codebooks with similar frequencies.

4https://www.ibm.com/cloud/watson-speech-to-text
5Code/models: https://github.com/rhoposit/multilingual VQVAE
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The diversity of the learned codebooks should be improved.
The size of codebooks must be pre-determined at the time of
initializing the architecture. As we have shown, VQ-VAE mod-
els can be adapted to new datasets, but having hard-coded con-
straints (such as the codebook sizes) may be a limiting factor.
Our recommendation is to develop a way to dynamically add or
remove VQ codebooks during the training process. This would
make it possible to learn only and all of the codebook vectors
that matter. The true capabilities of VQ-VAE modeling are lim-
ited by its toolkit implementation: the nature of the tensor graph
and how it is used in memory does not accommodate dynamic
modeling to its fullest potential.

We have described a method to synthesize high-quality
speech in multiple languages (including code-switching) from
a single multilingual model, based on learned representations.
This will be useful for speech-to-speech translation, control-
lable speech synthesis, and data augmentation. In future work,
we are interested in adding additional internal representations to
the dual-encoder VQ-VAE model in an effort to perform further
disentanglement of speech signal characteristics.
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Abstract

Speech synthesis and music audio generation from symbolic
input differ in many aspects but share some similarities.
In this study, we investigate how text-to-speech synthesis
techniques can be used for piano MIDI-to-audio synthesis
tasks. Our investigation includes Tacotron and neural source-
filter waveform models as the basic components, with which
we build MIDI-to-audio synthesis systems in similar ways
to TTS frameworks. We also include reference systems
using conventional sound modeling techniques such as sample-
based and physical-modeling-based methods. The subjective
experimental results demonstrate that the investigated TTS
components can be applied to piano MIDI-to-audio synthesis
with minor modifications. The results also reveal the
performance bottleneck – while the waveform model can
synthesize high quality piano sound given natural acoustic
features, the conversion from MIDI to acoustic features is
challenging. The full MIDI-to-audio synthesis system is
still inferior to the sample-based or physical-modeling-based
approaches, but we encourage TTS researchers to test their TTS
models for this new task and improve the performance.
Index Terms: music audio synthesis, text to speech synthesis,
deep learning, Tacotron

1. Introduction
Speech and music are human universals, and they have been
the theme of numerous research topics in the social and natural
sciences. From an engineering perspective, both speech and
music information processing deal with symbolic and acoustic
data, i.e., symbolic music notes or text, and acoustic music or
speech audio signals. This similarity makes it possible to share
methodologies across disciplines, especially those based on
data-driven deep learning. For example, AI music composition,
which learns a distribution of music notes to generate new
songs, is based on language models for text data. Automatic
audio transcription, which converts music into a sequence of
notes, uses similar techniques to speech recognition such as
Viterbi decoding and DNNs for classification tasks.

From the music notes to instrumental audio signals1,
however, cross-disciplinary techniques are less explored even
though the concept is very similar to text-to-speech (TTS)
synthesis. It has not been until recently that some deep learning
models, such as WaveNet [1, 2], have been used in both tasks.
While research in both fields has investigated other related
models such as GAN [3, 4] and VAE [5, 6], most studies focus
on music audio-to-audio mapping tasks. The question of how
and to what extent TTS approaches can be applied to music
audio generation remains to be explored.

†Equal contribution
1In this paper, we focus on musical instrument sounds rather than

singing voice synthesis.

This study is our initial step to address the aforementioned
question. We focus on MIDI-to-audio synthesis for piano
because of the available data, but the methodology is expected
to be applicable to many other instruments. In Section 2, we
compare TTS to music audio generation from MIDI and explain
the possibility of using TTS methods for the MIDI synthesis
task. In Section 3, we explain the MIDI-to-audio systems that
use many components from TTS, including Tacotron [7] and
neural source-filter (NSF) waveform model [8]. We introduce
modifications to those components to account for the intrinsic
differences between music and speech. Furthermore, we
introduce MIDI-specific acoustic features and compare them
with the Mel-spectrogram for MIDI-to-audio synthesis.

Based on a subjective evaluation, our study tentatively
suggests that many TTS techniques can be adapted to music
audio generation with slight modifications, and we observed
trends similar to those in TTS. For audio generation, the NSF
models, which were originally created for speech modeling,
can produce high-quality polyphonic piano sound in the copy-
synthesis scenario. For acoustic modeling, the Tacotron-based
models demonstrated competitive performance to produce
acoustic features from the MIDI piano roll input. However,
the conversion from MIDI to acoustic features is the most
challenging task, similar to the bottleneck in TTS. Hence, we
encourage TTS researchers to extend their research outcomes
to the music audio generation task.

2. Using TTS techniques for MIDI-to-audio
synthesis

This paper focuses on music audio generation from music
transcription data in MIDI format. As illustrated in Figure 1, the
MIDI-to-audio synthesis process is similar to TTS since both
convert symbolic data into audio signals.

In both cases, the front-end converts the input text or MIDI
raw data into a representation as input to the acoustic model.
In the case of statistical parametric TTS [9], it is a sequence
of context vectors x1:N = (x1,x2, · · · ,xN ), where N is the
number of frames, and where the vector for the n-th frame
is xn. Each xn encodes linguistic information such as the
phone and syllable identities. In the case of the MIDI-to-
audio generation, the input MIDI contains messages that encode
the time of note onset and offset, velocity, and other events.
For processing using deep learning models, the MIDI input is
usually represented as a piano roll2 that can also be written as
a sequence of vectors x1:N , and each xn is a 128-dimensional
vector in which each dimension encodes the velocity for one of
the 128 MIDI notes3. Figure 2 illustrates the difference.

Accordingly, conversion from x1:N to o1:T can use similar
models for both tasks. These methods can be grouped into two

2Although it is called piano roll, it can be used for other instruments.
3The sustain pedal information can be reflected as elongation of

notes, encoded by extending the note across multiple frames.
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Figure 2: Comparing contextual vector for statistical
parametric TTS (left) and MIDI piano roll (right).

categories from the perspective of MIDI-to-audio generation.
The first group is for applications where the audio is required
to be consistent with the timing information in the MIDI
input. In implementation, the synthesis process has to be
x1:N → a1:N → o1:T , where the MIDI piano roll and
acoustic feature sequences have the same length N , and where
the audio waveform length T is related to the feature length by
a fixed frame shift L, i.e., T = N × L. This pipeline is very
similar to neural statistical parametric TTS [9], and we can use
various types of neural networks [10, 11] for x1:N → a1:N and
use neural waveform models [12, 13] or vocoders [14, 15] for
a1:N → o1:T . Note that x1:N for TTS should have obtained
the duration information from a duration model, while x1:N for
MIDI can retrieve the duration information from raw MIDI.

The second type of MIDI-to-audio application converts
MIDI corresponding to a basic musical score into a professional
“performance” with rich and dynamic expressivity, or transfers
a particular “performance style” to the generated audio. In
this case, x1:M from input MIDI may not be aligned with the
desired output sequence a1:N . Accordingly, the acoustic model
should be capable of x1:M → a1:N , and many attention-based
sequence-to-sequence models [7, 16] are suitable for this task.

Note that it is also possible to use a single model to directly
convert the the input piano roll into an audio waveform, which
is similar to WaveNet for TTS [1].

3. Experimental systems for time-aligned
MIDI to piano audio synthesis

In this paper, we focus on systems that convert time-aligned
MIDI to musical instrument audio waveforms and choose piano
as the target instrument. Figure 3 illustrates the systems as four
groups. While all of them use an NSF-based waveform model,
the first two types contain intermediate acoustic models, and the
remaining two directly convert the input MIDI into an output
waveform. Another difference among the systems is the type
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Figure 3: Four types of experimental MIDI-to-audio systems
using NSF piano waveform model.

of the excitation signal, which will be detailed in Section 3.3.
Note that the experimental systems introduced in this section
are applicable to other monophonic or polyphonic instruments.

3.1. Acoustic models

For the systems that use separate acoustic models, we can use
many types of neural networks that conduct RN×D → RN×D′ .
Although it is originally designed for sequence-to-sequence
mapping, we investigate variants of Tacotron, hoping that the
outcome can accelerate our research on the unaligned MIDI-to-
audio synthesis task in the near future.

Our Tacotron acoustic model implementation was based
on [17]. Tacotron was modified to accept a sequence of 128-
dimensional MIDI piano roll frames as input instead of a text
or phoneme sequence. Tacotron’s encoder learns an embedding
that maps a symbolic token to an embedding vector, but since
piano roll frames are not strictly symbolic but are already
a meaningful vector representation of pitch and velocity, we
replaced this embedding layer with a dense projection layer.
Aside from these initial modifications of the encoder to accept
MIDI piano roll input instead of text, the model architecture
is otherwise the same as in [17]. The encoder consists of a
CBHG module followed by a self-attention block. The outputs
of both are input to the decoder, where the CBHG output is
input to a forward attention mechanism and the self-attention
output is received by an additive attention mechanism. The
decoder consists of a decoder recurrent layer followed by self-
attention, and finally, a post-net conducts spectral shaping and
enhancement for the final spectrogram output.

Because music sequences are much longer than the typical
short utterances used for training text-to-speech synthesis
models, and in particular, the piano roll input representation
is the same length as the output spectrogram, as opposed to
text or phoneme sequences which are much shorter, we had
to take a number of steps to fit the training sequences into
memory and to learn alignments well. First, we found that
it was necessary to segment the data into shorter sequences,
starting with 200 frames. Next, we wished to reduce the
autoregressive dependencies and instead force the model to rely
more directly on the inputs. The prenet to the decoder receives
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Figure 4: Mel-spectrogram versus MIDI-filter-bank spectrogram

the previous predicted spectrogram frame (or the previous
actual spectrogram frame, when teacher-forcing is enabled),
so we increased dropout at the prenet to the decoder from its
default value of 0.5 to higher values of 0.9, 0.95, or 0.99, finding
in initial experiments that the 0.99 dropout rate produced
the best-aligned predictions. Next, we tried a downsampling
approach where we downsampled the input piano roll sequence
by a factor of either 2 or 4, and effectively downsampled the
output spectrogram as well by setting the reduction factor to 2
or 4, so that the model predicts that many output frames at each
timestep. We found that a downsampling factor of 4 produced
the best alignments, and that combining this downsampling
with the dropout to the decoder prenet at a rate of 0.99 produced
stable alignments for sequences as long as 800 frames, so we
chose this as our base model, which we call taco2.

As an additional method to force the model to use the
input sequence more directly, we concatenated the current MIDI
piano roll frame with the previous spectrogram frame at the
decoder prenet (after that spectrogram frame has been dropped
out). We call this model configuration taco3, and we warm-
start its parameters from taco2. Finally, to see whether up-
sampling the data again would improve the synthesis quality,
model taco3 uses none of these prenet or downsampling
tricks, and its parameters are also warm-started from taco2.

As reference, we included a CNN-based network that
conducts RN×D → RN×D′ . This network called
PerformanceNet combines U-Net and multi-band convolution
blocks to convert MIDI piano rolls into acoustic features and
has shown good performance on MIDI-to-audio synthesis [18].
Samples from all systems can be heard online4.

3.2. MIDI filter-bank features

Many TTS systems use Mel-spectrogram or Mel-cepstral
coefficients as the output of the acoustic model, but the Mel
scale may not be the best for music applications. Since each
MIDI note d and its corresponding frequency f is related by

f = 2
d−69
12 × 440, (1)

where 69 and 440 are the MIDI index and frequency value of
note A4, respectively, we can define a new filter bank where
the k-th filter is centered around f = 2(k−69)/12 × 440 Hz.
Figure 4 plots the resulting MIDI-based filter bank.

We apply the MIDI-based filter bank to extract low-
dimensional spectral features in a similar manner to the Mel-

4https://nii-yamagishilab.github.io/samples-xin/main-
midi2audio.html

Bi-LSTM 1D CNN Up-samplingAcoustic 
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…

Condition module

Neural filter module

Figure 5: NSF piano waveform model. Block in neural filter
module is based on the simplified dilated-CNN filter block (cf.
Figure.4 in [8]). FC denotes a fully-connected layer.

spectrogram. Figure 4 also compares the Mel-spectrogram
and MIDI-filter-bank-based spectra. Notice that the bars in
the MIDI-filter-bank-based spectra resemble the corresponding
piano roll. Note that the MIDI-filter-bank spectra have empty
dimensions in the low frequency region because some of the
filters do not cover any discrete frequency bin. These empty
dimensions can be filled in if we increase the FFT points.

3.3. NSF-based piano waveform model

Our NSF-based piano waveform model is based on the
simplified NSF model [8]. As Fig. 5 illustrates, the NSF piano
waveform model contains a condition module that transforms
and up-samples the input frame-level acoustic features and a
neural filter module that converts the up-sampled features and
an excitation signal into an output waveform through multiple
dilated convolution blocks.

A major difference between NSF waveform models
for piano and speech is the source module. While the
source module for speech produces an excitation signal from
fundamental frequencies (F0s), such a module cannot be used
for polyphonic piano sound. One solution is to use noise as the
excitation (e.g., 2© and 4© in Fig. 3). An alternative solution
is to derive a sine-based excitation signal from the input time-
aligned MIDI. In this paper, we use the PrettyMIDI synthesis
API [19]5 to produce a polyphonic sine-based excitation signal
(e.g., 1© and 3© in Fig. 3) from the piano roll notes.

4. Experiments
4.1. Database and protocol

Experiments were conducted using the MAESTRO database
(V2.0.0)6 [2]. This is a large-scale database that contains

5https://craffel.github.io/pretty-midi/
6https://magenta.tensorflow.org/datasets/maestro
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Figure 6: Boxplots of MOS per system. Red dots denote mean of MOS.

over 200 hours of piano performances and aligned MIDI data
from the International Piano-e-Competition. Both the audio
and MIDI data were recorded when the competing virtuoso
pianists performed on concert-quality acoustic grand pianos
with integrated MIDI capture and playback systems.

The experiments followed the official data protocol: a
train set with 161.3 hours of data from 967 performances, a
validation set with 19.4 hours of data from 137 performances,
and a test set with 20.5 hours of data. Because it is impossible
to evaluate the entire test set in subjective evaluation, 192 test
segments were manually excerpted from the test set, and each
test segment was less than 30 seconds in duration.

4.2. Experimental systems and feature configurations

Table 1 lists the systems investigated in the experiments.
The first two are reference software synthesizers, and the
next four are copy-synthesis systems that directly use natural
acoustic features (i.e., Mel-spectrogram or MIDI-based filter
bank features) as the input to the NSF model for piano
waveform generation. They simulate the ideal case where
acoustic models convert the input MIDI into the acoustic
features perfectly. The next 11 systems are pipelines of an
acoustic model, which is either a variant of the Tacotron or the
PerformanceNet model, and the NSF waveform model. The
last two experimental systems, namely midi-sin-nsf and
midi-noi-nsf, directly convert the MIDI and the excitation
signals into the waveform through NSF models.

We trained Tacotron models using the MIDI filter bank
spectrogram as output, since we found initially that this
produced better alignments than using Mel spectrograms.7 The
models were trained on segments of 800 frames using the Adam
optimizer, a batch size of 4, and a learning rate of 0.0001. The
base model taco2was trained for 550k steps until spectrogram
loss on the development set had converged. The other two
models taco3 and taco4 had their parameters warm-started
from taco2, and were trained for an additional 250k steps and
50k steps to convergence, respectively. The PerformanceNet-
based acoustic models (PFNet) were trained for 50 epochs
using the Adam optimizer with a batch size of 16.

All the NSF models were trained using an Adam optimizer
with a learning rate of 1 × 10−4 and [20]. The maximum
number of training epochs is 20, and each epoch took around
24 hours. Due to the limited GPU memory size, the input and
output data for NSF models was truncated into segments of 3s
in duration, and the batch size was set to 5. During generation,
the NSF models produced the waveform without truncation.

As a reference, the original PerformanceNet was included

7Alignment errors were reduced from 21% using Mel spectrograms
to 3% using MIDI spectrograms.

Table 1: Experimental systems. Pitch accuracy is measured
using cross-entropy, the lower the better.

System ID Acoustic
model

Acoustic
feature

Excit.
signal

Wave.
model

Pitch mismatch MOS
(mean)note chord

Natural - - - - - - 4.04

Fluidsynth Sample-based MIDI-to-audio software 5.20 6.77 3.66
Pianoteq Physical-model MIDI-to-audio software 4.82 6.50 4.25

abs-mfb-sin - midi-fb sine NSF - - 3.87
abs-mfb-noi - midi-fb noise NSF - - 3.77
abs-mel-sin - mel-spc. sine NSF - - 2.72
abs-mel-noi - mel-spc. noise NSF - - 3.81

taco2-mfb-sin taco2 midi-fb sine NSF 4.61 6.34 2.97
taco2-mfb-noi taco2 midi-fb noise NSF 4.66 6.36 3.18
taco3-mfb-sin taco3 midi-fb sine NSF 4.78 6.48 3.19
taco3-mfb-noi taco3 midi-fb noise NSF 4.89 6.53 3.19
taco4-mfb-sin taco4 midi-fb sine NSF 4.86 6.39 2.98
taco4-mfb-noi taco4 midi-fb noise NSF 4.97 6.42 2.95
pfnet-mfb-sin PFNet midi-fb sine NSF 5.59 7.14 3.10
pfnet-mfb-noi PFNet midi-fb noise NSF 5.78 7.26 3.05
pfnet-mel-sin PFNet mel-spec. sine NSF 5.66 7.17 1.82
pfnet-mel-noi PFNet mel-spec. noise NSF 5.74 7.25 2.93
pfnet-spec-GL PFNet spec. - GL 5.43 6.98 1.62

midi-sin-nsf - - sine NSF 4.32 6.40 2.88
midi-noi-nsf - - noise NSF 4.40 6.08 2.63

in the experiment. This system uses spectrograms as the
acoustic feature and produces a waveform from the generated
spectrogram through the Griffin-Lim (GL) algorithm [21]. Two
software synthesizers were also included for reference: an
open-source software called Fluidsynth8 and a commercial
one called Pianoteq9. While both produce piano audio given
MIDI input, the former uses a sampling-based approach, and
the latter is based on physical modeling of pianos.

The audio waveforms from MAESTRO were down-
sampled to 24kHz and encoded through 16-bit PCM. The Mel-
spectrogram was then extracted using a frame length of 50ms, a
frame shift of 12 ms, FFT with 2048 points, and 80 overlapped
triangular filters evenly spaced on the Mel-frequency scale. The
MIDI-based filter bank features were extracted using a similar
configuration but with a filter bank based on the MIDI notes
(Section 3.2). The spectrogram for pfnet-spec-GL used the
original recipe [18]. The MIDI files were converted into 128-
dimensional piano rolls using the PrettyMIDI API.

4.3. Subjective evaluation and results

We conducted a crowdsourced listening test to evaluate
the quality of audio from our synthesizers, comparison
synthesizers, and natural audio. We included 120 samples from
each of the 20 systems, and obtained mean opinion score (MOS)
ratings for each sample from five different listeners on a scale
from 1 (very bad) to 5 (very good). Listeners were instructed

8https://www.fluidsynth.org/
9https://www.modartt.com/pianoteq

133



N
at

ur
al

Fl
ui

ds
yn

th
P

ia
no

te
q

ab
s-

m
fb

-s
in

ab
s-

m
fb

-n
oi

ab
s-

m
el

-s
in

ab
s-

m
el

-n
oi

ta
co

2-
m

fb
-s

in
ta

co
2-

m
fb

-n
oi

ta
co

3-
m

fb
-s

in
ta

co
3-

m
fb

-n
oi

ta
co

4-
m

fb
-s

in
ta

co
4-

m
fb

-n
oi

pf
ne

t-m
fb

-s
in

pf
ne

t-m
fb

-n
oi

pf
ne

t-m
el

-s
in

pf
ne

t-m
el

-n
oi

pf
ne

t-s
pe

c-
G

L
m

id
i-s

in
-n

sf
m

id
i-n

oi
-n

sf

Natural
Fluidsynth

Pianoteq
abs-mfb-sin
abs-mfb-noi
abs-mel-sin
abs-mel-noi

taco2-mfb-sin
taco2-mfb-noi
taco3-mfb-sin
taco3-mfb-noi
taco4-mfb-sin
taco4-mfb-noi
pfnet-mfb-sin
pfnet-mfb-noi
pfnet-mel-sin
pfnet-mel-noi

pfnet-spec-GL
midi-sin-nsf
midi-noi-nsf

Figure 7: Results of two-sided Mann-Whitney test with Holm-
Bonferroni correction. A grey block indicates a statistically
significant difference at α = 0.05.

to evaluate the overall quality of the piano sound subjectively.
Each test set contained 30 different samples, balanced to contain
at least one sample from each of the 20 systems. Listeners
were permitted to complete up to 10 different sets. In total, we
received ratings from 224 unique listeners. A box plot of the
MOS ratings for each of the 20 systems can be seen in Figure 6,
and significant differences from a Holm-Bonferroni-corrected
two-sided Mann-Whitney U test at a level of α = 0.05 are
shown in Figure 7. The mean of MOS is also listed in Table 1.

We found that the Pianoteq physical synthesis was
significantly preferred over every other synthesis method,
and was even rated higher than natural piano audio
(although not significantly so). Other systems which were
not significantly different from natural audio were two
of the analysis-by-synthesis systems, abs-mfb-sin and
abs-mel-noi. There were not many statistically-significant
differences between the Tacotron models, with the exception of
taco4-mfb-noi, which was significantly worse than both of
the taco3 systems. As for PFNet-based systems, the two that
used the MIDI filter bank representation had about equivalent
performance to the Tacotrons with no significant differences,
whereas pfnet-mel-sin and pfnet-spec-GL were
significantly worse than all Tacotrons.

Comparing the standard Mel filter bank to the proposed
MIDI filter bank, there are two significant differences
favoring MIDI, pfnet-mel-sin vs. pfnet-mfb-sin
and abs-mel-sin vs. abs-mfb-sin. For noise
vs. sine wave excitation, there are two significant differences
favoring noise, pfnet-mel-sin vs. pfnet-mel-noi and
abs-mel-sin vs. abs-mel-noi.

4.4. Objective evaluation and results

We first measured the pitch accuracy of the synthesized audio.
We trained a CNN-based F0 estimator called CREPE [22] on
the MAESTRO training set. Although the original CREPE
is designed for monophonic sound, it can be modified for
polyphonic piano sound by replacing the target from one-hot
vectors to multi-hot ones. During the pitch detection stage, we
extract the pitch probability sequence p1:N = (p1, · · · ,pN )
from the input audio o1:T by p1:N = CREPE(o1:T ), where
each pn = [pn,1, · · · , pn,128], and where pn,k ∈ (0, 1)

indicates the probability of observing the k-th MIDI note at
the n-th frame. Then, the cross entropy between p1:N and the
input piano roll x1:N can be computed to measure the pitch
mismatch CE = −∑N

n=1

∑128
k=1 xn,k log pn,k. Hence, a lower

CE indicate less severe mismatch.
We created piano rolls and synthesized audio for around

100 individual notes and chords and synthesized their audio.
We measured cross entropy and listed results in Table 1.
It can be observed that, when using separate acoustic
and waveform models, the systems with sine excitation
outperformed their counterparts using noise excitation, but
the systems using only the NSF waveform model achieved
lower CE values. Furthermore, Tacotron models have lower
mismatches compared to PFNet systems using the same
vocoder. However, lower pitch mismatch does not lead to higher
MOS. This indicates that the perceptual quality of piano audio is
not only affected by pitch accuracy. Another hypothesis is that
amateur listeners may not be able to detect mild pitch mismatch.

5. Discussion
The evaluation results suggest that the physical-model-based
approach outperformed the other deep-learning-based MIDI-
to-audio systems and is even slightly better than the original
audio in MAESTRO. The original audio was recorded over
many years, and we observed that the MOS of the audio in year
2008 and 2014 were less than 4.0. This variation of quality may
also affect the MAESTRO training set and the deep-learning-
based models trained using this data. On the other hand, the
physical-model-based approach is free from such artifacts in
data. However, the physical model is the outcome of laborious
analysis and simulation [23, 24, 25], which does not easily
generalize to another piano type or instrument. In contrast,
deep-learning-based models are more flexible, and this study
showed examples of using TTS models for music generation.

Performance of the investigated deep-learning models is not
satisfying yet. Since listeners may be more sensitive to the
artifacts in music signals, this sets a high standard for producing
natural audio but also leaves large room for improvement. One
potential direction for future work is to combine data-driven
techniques with physical models of piano sounds. Rather than
learning a physical sound from scratch, sound physics may offer
effective prior knowledge.

6. Conclusions
This study is our initial step to investigate the possibility of
using TTS models for MIDI-to-audio synthesis. The two
disciplines differ in many aspects but both deal with the
mapping from one sequence of data into another. Based on the
similarities and differences, we modified the TTS components,
namely Tacotron and NSF, and introduced a MIDI filter-bank
acoustic feature set for the MIDI-to-audio task, which improved
alignments for Tacotron and resulted in more preferred audio.
Based on subjective evaluation of the TTS-like systems, natural
audio, physical piano model, and other reference systems,
we observed promising results when using TTS components
for MIDI-to-audio generation. We also identified the quality
bottleneck when converting the MIDI input into acoustic
features, a similar bottleneck to that in TTS. Hence, future work
will explore more different types of acoustic and waveform
models, and we encourage TTS researchers to extend their
knowledge and practices to this challenging task of MIDI-to-
audio generation.
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Abstract
Generally speaking, the main objective when training a neu-
ral speech synthesis system is to synthesize natural and expres-
sive speech from the output layer of the neural network without
much attention given to the hidden layers. However, by learning
useful latent representation, the system can be used for many
more practical scenarios. In this paper, we investigate the use of
quantized vectors to model the latent linguistic embedding and
compare it with the continuous counterpart. By enforcing dif-
ferent policies over the latent spaces in the training, we are able
to obtain a latent linguistic embedding that takes on different
properties while having a similar performance in terms of qual-
ity and speaker similarity. Our experiments show that the voice
cloning system built with vector quantization has only a small
degradation in terms of perceptive evaluations, but has a dis-
crete latent space that is useful for reducing the representation
bit-rate, which is desirable for data transferring, or limiting the
information leaking, which is important for speaker anonymiza-
tion and other tasks of that nature.
Index Terms: voice cloning, text-to-speech, voice conversion,
vector quantization, variational autoencoder

1. Introduction
When it comes to text-to-speech (TTS) tasks, the deep learn-
ing approach has several advantages over the conventional ap-
proaches, such as its simple structure and the ability to scale
with large data [1, 2]. These characteristics are key for push-
ing the performance of speech synthesis systems and machine
learning systems in general. Recent works have shown that a
sequence-to-sequence TTS system [1, 3] trained with a large
transcribed speech corpus can synthesize speech with high natu-
ralness directly from text input instead of going through several
sub-systems. While such systems provide a high performance
and a straightforward solution for TTS, many researchers have
shifted their focus to more elaborate systems that aim to give
some of the control back to human users [4, 5]. For example,
Shen et al. [6] replaced the attention module with a duration
prediction to create a more resilient sequence-to-sequence TTS
model and enable the ability to control the spacing of gener-
ated speech, while Liu et al. [7] explicitly integrated emphatic
code into the model so that users can control the emphasis by
changing duration, intonation, and energy.

For voice conversion (VC), recent deep learning based sys-
tems are formulated around the ability to disentangle speaker
and linguistic information of a neural network by using an in-
formation bottleneck structure to force the model to learn useful
representations [8, 9, 3]. This information bottleneck structure
can simply be a layer with a few units [10], a variational au-
toencoder (VAE) model with its encoder’s output regularized to
approximate a normal distribution [11, 12], or a jointly trained
discrete latent space through vector quantization [13, 14, 9]. In

these works, the common hypothesis is that using a certain net-
work structure can help train a representation that takes on in-
formation and/or properties that are useful for the task at hand.

Previously, we proposed NAUTILUS [15], a versatile voice
cloning system, that is a fusion of TTS and VC. By carefully de-
signing the shared and the exclusive components, NAUTILUS
can utilize them to perform elaborate tasks such as cloning un-
seen voices using untranscribed speech. It also has a consis-
tent performance when switching between TTS and VC. These
properties are the result of a unified and robust linguistic latent
space achieved by the joint training and the VAE-like structure.
However, one may want to use other methods to shape the latent
space for many different purposes. Specifically, if we can train a
discrete latent space [16, 17] instead of a continuous one, it will
be useful for many applications. For example, a low bit-rate
representation [13, 18] is ideal for a client-server VC system in
which the speech encoder is stored in the client device while
the speech decoder is not. Alternatively, by using the vector
quantization bottleneck, we can limit the information getting
through the speech encoder, which is important for tasks such
as speaker anonymization [19, 20] as it helps reduce the leak-
ing of speaker identity through temporal patterns. In this work,
we investigate the use of vector quantization variational autoen-
coder (VQVAE) [17] components to model the linguistic latent
space of the NAUTILUS system. In addition to conducting ex-
periments to clarify its effect on subjective evaluations, we dis-
cuss how different types of assumption about the latent spaces
are useful for different scenarios. We describe the basics of the
voice cloning framework with the vector quantization compo-
nents in Section 2 and discuss our motivation in Section 3. Sec-
tion 4 lays out the experiment conditions, and Section 5 presents
the subjective evaluation results. We conclude in Section 6 with
a brief summary of our findings and mention of future works.

2. Vector Quantization Latent Space for
Voice Cloning

We adopt the basic concepts of the voice cloning framework
proposed in our previous publications [15] and replace the VAE-
based encoders with a VQVAE-based counterpart for this work.
Readers may want to refer to the original study [15] for more
context. Briefly, our voice cloning system is a unified system
of TTS and VC, and thanks to this fusion it has the capac-
ity to clone new voices using untranscribed speech. The pro-
posed VQVAE-based system, called NAUTILUS-VQ, is illus-
trated in Fig. 1. The only difference from the original [15]
is the way the text and speech encoders are set up as shown
in Fig. 2. More specifically, the vector quantization bottle-
neck transforms the continuous latent feature z, emitted by the
text or speech encoder, into a discrete latent feature q using the
jointly trained codebook ek, k ∈ 1...K, with q = ek where
k = argminj ||z − ej ||. The speech decoder then consumes q,
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Figure 1: The modified NAUTILUS-VQ system has a similar
structure to the original system, which includes a text encoder
(TEnc), a speech encoder (SEnc), a text decoder (TDec),
a speech decoder (SDec), and a neural vocoder (V oc). The
jointly trained codebook is the new addition. x is phoneme,
y is acoustic, o is waveform, z is continuous latent feature
and q is the quantized latent feature. The term lossgoal is a
placeholder, depending on the encoder/decoder combination —
it can be losstts (Text-to-speech: TEnc→codebook→SDec),
losssts (Speech-to-speech, STS: SEnc→codebook→SDec),
lossstt (Speech-to-text, STT: SEnc→TDec), or lossttt (Text-
to-text: TEnc→TDec) . The loss functions used in training
and adaptation are mean absolute error (MAE), mean squared
error (MSE) and cross entropy (CE).

instead of z, to reconstruct the acoustic feature y that is used to
synthesize speech waveform o.

2.1. Train the initial model

First, we need to jointly train the text/speech encoders/decoders
and the codebook in a supervised fashion by using a large-scale
transcribed multi-speaker speech corpus and optimizing a des-
ignated loss:

losstrain = lossttstrain + αsts lossststrain + αstt lossstt
+ β losstie .

(1)

Please see the caption of Fig. 1 for subscripts of each term. The
basic structure of the training loss is not much different from the
original [15], but, due to the vector quantization components,
the details are a little more complex. Specifically lossttstrain is
similar to a typical VQVAE setup [17]:

lossttstrain = losstts + δV Q lossTV Q + δC lossTC . (2)

where losstts = ||ỹT − y|| is the reconstruction loss of the
acoustic feature, lossTV Q = ||sg(zT ) − qT ||22 is the codebook
training loss in response to the text input, x, from the text en-
coder, and lossTC = ||zT−sg(qT )||22 is the text encoder commit-
ment. The operator sg() indicates the stop gradient operation.
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Figure 2: The VAE (original) and VQVAE (proposed) setups
for the encoders. The VAE-based encoders output mean µ and
standard deviation σ and then sample the latent feature z using
an ε value drawn from a normal distribution. Kullback-Leibler
divergence (KLD) is used as losstie in this setup. The VQVAE-
based encoders output continuous latent feature z that is then
quantized into the discrete feature q by using the jointly trained
codebook. MSE is used for losstie in this case.

Similarly, we have the optimization loss for the STS stack that
handles the speech input:

lossststrain = losssts + δV Q lossSV Q + δC lossSC . (3)

Unlike the VAE-based setup [15] which used Kullback-Leibler
(KL) divergence to “tie” the encoders’ outputs, the VQVAE-
based system uses MSE as the latent tying loss:

losstie = ||sg(zT )− zS ||22 . (4)

Note that we stop the gradient on the text-encoded latent fea-
ture, which basically creates an asymmetric tied-layer loss in-
stead of the symmetric KL divergence function as in the orig-
inal [15]. A multi-speaker WaveNet vocoder, unchanged from
the original, is separately initialized using the same corpus:

loss′train = lossvoc , (5)

The speech decoder, text decoder, and neural vocoder contain
speaker dependent (SD) components, which are just one-hot
vectors representing speakers in the training set. These SD com-
ponents will be removed in the voice cloning steps along with
the text decoder, which is only included as an auxiliary phone
classification regularizer [15].

2.2. Clone the target voice

Given the untranscribed speech of an unseen speaker, we adapt
the initial model to generate speech with the voice of the new
target, using either the TTS or VC interface.

2.2.1. Step 1 - Adaptation

After removing all SD components, we use the STS stack
(SEnc→codebook→SDec) to fine-tune the speech decoder
while keep other modules immutable:

lossadapt = losssts , (6)
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Figure 3: Different ways the linguistic latent spaces are setup and the methods used to enforce the consistency between them.

The neural vocoder is also adapted using the same strategy (re-
moving SD components, fine-tuning the rest):

loss′adapt = lossvoc . (7)

As this step is similar to the original framework, reader can refer
to Fig. 2a in [15] for details.

2.2.2. Step 2 - Welding

The adapted model obtained in step one is already capable of
generating speech with the target voice. However, we want to
increase the speech decoder and the neural vocoder compatibil-
ity by jointly tuning them using the speech to waveform stack
(SEnc→codebook→SDec→V oc):

lossweld = losssts + γ lossvoc . (8)

The losssts is included to maintain the acoustic space for the
autoregressive speech decoder (see Fig. 2b in [15]).

2.2.3. Step 3 - Inference

After the previous steps, the adapted model can generate speech
with the voice of the target. The TTS stack and the neu-
ral vocoder form a TTS interface that transforms phoneme se-
quences into a speech waveform, while the STS stack and the
neural vocoder form a VC interface that converts utterances spo-
ken by arbitrary source speakers into speech of the same content
but with the voice of the target (Fig. 2c in [15]).

3. Shaping the linguistic latent spaces
Our voice cloning system functions on the assumption of a ro-
bust and consistent linguistic latent space. Briefly, we want the
latent linguistic embedding (LLE) to contain linguistic informa-
tion, which is useful for speech reconstruction, but none of the
speaker information. Moreover, the consistency between the
TTS and VC interfaces is dictated by the consistency between
the text-encoded and speech-encoded latent spaces. In other
words, the proposed system achieves a perfect consistency if its
text and speech encoders produce an identical LLE sequence
given a sentence input and a spoken utterance of the same con-
tent. Note that, for many practical applications [21], it may not
even be desirable to achieve such consistency as it eliminates

Table 1: Japanese target speakers for voice cloning task

Speaker Gender Quantity Duration
F001 female 483 utt. 45.0 min
F002 female 481 utt. 44.4 min
F003 female 484 utt. 47.4 min
F004 female 468 utt. 40.8 min
F005 female 485 utt. 47.6 min

XL10 female

10 utt. 55 s
125 utt. 10.9 min
500 utt. 44.5 min
2000 utt. 2.9 h
8750 utt. 12.9 h

the ability to synthesize speech content that cannot be repre-
sented in written form. However, establishing a straightforward
goal about consistency helps to simplify the analysis.

We can simply use standard latent features [22] as LLEs
and assume the text and speech encoders produce identical fea-
tures when consuming different modalities of the same content,
and so we optimize the consistency between them by minimiz-
ing the distance between the two latent points [23] as shown
in Fig. 3a. The choice of distance function is another decision
that could affect the performance [24], but in practice most use
Euclidean distance for its simplicity [25]. The flaws of this as-
sumption are the one-to-many relation of text and speech and
the scarcity nature of data, which make it difficult to train a
robust and consistent latent space. To address this problem, we
utilized the VAE-based encoders (Fig. 3b) in our previous works
[15]. This modification provides two key benefits: 1) the speech
decoder is trained in a denoising fashion due to the sampling
process, which can be interpreted as an artificial data argumen-
tation, and 2) we can use a density-wise instead of a point-wise
function to connect the text and speech encoders which helps
with the consistency. However, it has the common drawback
of the VAE model [26] which is the average-ness of the gen-
erated features [3]. Therefore, in this paper, we investigate the
VQVAE-based modification that has discrete latent spaces, as
shown in Fig. 3c. The hypothesis is that the discrete features
will allow the speech decoder to learn fine-grain details. More-
over, it has several useful traits as mentioned in previous sec-
tions.
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Figure 4: Subjective evaluations on quality and speaker simi-
larity between NAUTILUS and NAUTILUS-VQ on voice cloning
task for TTS and VC.

4. Experiments
4.1. Model and training configurations

For the experiments, we compared the performances of the orig-
inal NAUTILUS system [15] and the new system with vector
quantization modification. The network architecture of the orig-
inal was unchanged from the previous publication, and consists
of many layers of causal and non-causal dilated convolution lay-
ers. Readers can refer to Fig. 4 and Sec. IV of [15] for details.
The NAUTILUS-VQ system also adopts this architecture but
with several changes to reflect the vector quantization compo-
nents. Specifically, the encoders directly output 64-dimensional
latent vectors instead of means and standard variances. The
160-code jointly trained codebook was used to transform these
continuous features into discrete ones. We chose this size for the
codebook because it produces a relatively reliable performance
based on several test-runs and relevant publications pertaining
to VQVAE [14, 27]. For the hyperparameters, we set α = 0.1,
β = 0.25, γ = 0.01, the same as in [15], and δC = 1.0,
δV Q = 0.25, as based on relevant works [17, 14].

4.2. Speech data

Previously, we conducted experiments with English as the tar-
get language [15]. In this work, we used Japanese to test our
methodology under a new condition. Specifically, several na-
tive female Japanese speakers, as listed in Table 1, were se-
lected as the target speakers. The Japanese model was first
initialized on a large-scale low-quality transcribed speech cor-
pus with a diverse linguistic content. We used ∼236 hours of
speech (978 speakers) from the 16 khz Corpus of Spontaneous
Japanese (CSJ) [28] for this purpose. Then, we fine-tuned it
on a quality-controlled transcribed speech corpus for the de-
sired sampling rate. We used∼134 hours of speech (235 speak-
ers) from an in-house 24 khz Japanese Voice Bank Corpus for
this step. The same policy was applied for the training of both
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Figure 5: Subjective evaluations on quality and speaker simi-
larity of the TTS unsupervised speaker adaption using varying
amount of untranscribed speech data of speaker XL10.

NAUTILUS and NAUTILUS-VQ, and it is similar to the one
we used when we trained the English models [15]. The well-
trained modules were used to adapt to the target speakers us-
ing their untranscribed speech data. For the first scenario, five
speakers with about 45 minutes of speech were used to compare
the performances of NAUTILUS and NAUTILUS-VQ. For the
second scenario, a different speaker, XL10, was used to investi-
gate the performances when adapting with different amounts of
data. This speaker was chosen because she was included in our
previous experiments using the conventional TTS system [29].

5. Evaluations
5.1. Vector quantization latent spaces for voice cloning

We first compare the original and the VQ-based systems on
the voice cloning task: specifically their perceptive evaluations
for TTS and VC1. We used about 45 minutes of untranscribed
speech of the first five target speakers in Table 1 for this sce-
nario. This amount of data was more than our previous En-
glish experiments [15], which were conducted with just five or
ten minutes of speech. We used a crowdsourcing service to
conduct the survey. A total of 241 native speakers, each of
whom did one to five sessions, participated. Listeners were
asked to pick the preferred sample between two presented in
terms of either quality or speaker similarity (which includes a
reference sample). The results are shown in Fig. 4. In total,
each speaker/system/task was judged 300 times. Interestingly,
the NAUTILUS-VQ system had worse results for most speak-
ers except F001. As most of the differences between the two

1Samples are available at https://nii-yamagishilab.
github.io/sample-preliminary-nautilus-vq/
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Figure 6: Examples of the 160-code discrete LLE sequences. One utterance of a source speaker was used to generate the speech-
encoded LLE (orange), while text (phoneme) and alignment information extracted from the same utterance was used to generate the
text-encoded LLE (blue). The color black indicates the overlap of the speech-encoded and text-encoded LLE sequences, which covers
54.41% of this particular example utterance.

systems were marginal, we conclude that the proposed vector
quantization latent space can be used for voice cloning but has
a small degradation in quality.

5.2. TTS speaker adaptation with different amount of un-
transcribed speech data

Next, we investigate the performances of both NAUTILUS and
NAUTILUS-VQ for TTS unsupervised speaker adaptation with
varying amount of adaptation data. For this scenario, we use
speaker XL10, with whom we have more than 13 hours of
speech data. Previously, we found that with this amount of
data, the SD system of this speaker does not seem to benefit
from the joint training with augmented data from other speakers
[29]. In addition to the natural utterances (NAT) and generated
utterances from our voice cloning systems, we included gen-
erated utterance from the conventional TTS system trained on
12.9 hours of transcribed speech of XL10. Basically, we reused
the SD system in [29] as the upper bound for this experiment.
The same listeners who participated in the first scenario survey
were asked to do this one as well. Specifically, they were asked
to judge the naturalness of a speech sample in a typical 5-point
scale mean opinion score (MOS) question, and the likelihood
that two presented samples were spoken by the same person on
a 4-point scale. The results are shown in Fig. 5. As expected,
none of the TTS systems were as good as natural speech, but
the speaker similarity was not too far behind. Second, none
of our voice cloning systems were as good as the SD baseline,
which is not surprising as SD was trained on 12.9 hours of tran-
scribed speech [29] while our systems cloned voices with only
a small amount of untranscribed utterances. Third, between our
systems, NAUTILUS-VQ has worse results than NAUTILUS in
most data points, but not significantly so. Finally, the most inter-
esting results were the performances when adapting to varying
amounts of data, where we found that the performance of the
NAUTILUS system seemed to peak at 125 utterances. These
findings demonstrate the potential of our voice cloning system
but at the same time reveal its remaining limitations.

5.3. Visualization of the discrete LLE sequences

One advantage of our speech synthesis is its ability to use as
TTS and VC while maintaining a relatively consistent perfor-
mance when switching between the two. Figure 6 shows the

LLE sequences generated from text input and an utterance spo-
ken by a source speaker not included in the training and adap-
tation stages. As the discrete LLE is forced to be one of 160
jointly trained vectors, it is easier and more intuitive to evaluate
the consistency between the text-encoded and speech-encoded
LLE sequences compared with the continuous representation
(Fig. 8 in [15]). Figure 6 shows the discrete LLE sequences
generated by the text and speech encoders using text and speech
of the same content. For a perfectly consistent TTS/VC system,
we expect the two sequences to be perfectly matched but it was
not the case as seen in Fig. 6. Most of the overlap occurred
at the start and the end of the utterance, which is the silence
phoneme, but not much elsewhere. Overall, the LLE sequences
were sparse and fragmented. For further improvement, focusing
on condensing the latent space and stabilizing the text-encoded
and speech-encoded LLE sequences would be a good direction.

6. Conclusion

In this paper, we investigated the feasibility of using VQVAE-
based components to train a discrete latent linguistic embedding
for a consistent performance TTS/VC system. While the per-
ceptive evaluations showed that the proposed NAUTILUS-VQ
system is not as good as the original system, having these dif-
ferent approaches to model the linguistic latent spaces is handy
for many practical reasons. Understanding the dynamics of dif-
ferent methods is also important for the development of a more
sophisticated speech synthesis system that can solve more com-
plex and elaborate tasks, such as controlling speaking style [5],
denoising TTS [30], or generating audio other than speech [31].
As VQVAE is just one way to model a jointly trained discrete
latent space, other methods [16, 32] or assumptions [14, 33]
about the nature of the latent space may lead to different results
and have different utilities for specific application scenarios.
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Abstract
This paper presents a low-latency real-time (LLRT) non-parallel
voice conversion (VC) framework based on cyclic variational
autoencoder (CycleVAE) and multiband WaveRNN with data-
driven linear prediction (MWDLP). CycleVAE is a robust non-
parallel multispeaker spectral model, which utilizes a speaker-
independent latent space and a speaker-dependent code to gen-
erate reconstructed/converted spectral features given the spec-
tral features of an input speaker. On the other hand, MWDLP
is an efficient and a high-quality neural vocoder that can han-
dle multispeaker data and generate speech waveform for LLRT
applications with CPU. To accommodate LLRT constraint with
CPU, we propose a novel CycleVAE framework that utilizes
mel-spectrogram as spectral features and is built with a sparse
network architecture. Further, to improve the modeling perfor-
mance, we also propose a novel fine-tuning procedure that re-
fines the frame-rate CycleVAE network by utilizing the wave-
form loss from the MWDLP network. The experimental re-
sults demonstrate that the proposed framework achieves high-
performance VC, while allowing for LLRT usage with a single-
core of 2.1–2.7 GHz CPU on a real-time factor of 0.87–0.95,
including input/output, feature extraction, on a frame shift of
10 ms, a window length of 27.5 ms, and 2 lookup frames.
Index Terms: non-parallel voice conversion, low-latency real-
time, CycleVAE, multiband WaveRNN, waveform loss

1. Introduction
Voice conversion (VC) [1] is a technique for altering voice char-
acteristics of a speech waveform from an input speaker to that
of a desired target speaker while preserving the lingustic con-
tents of the speech. Many real-world and/or research applica-
tions benefit from VC, such as for speech database augmen-
tation [2], for recovery of impaired speech [3], for expressive
speech synthesis [4], for singing voice [5], for body-conducted
speech processing [6], and for speaker verification [7]. As
the development of VC has been growing rapidly [8], it is
also wise to pursue not only for the highest performance, but
also for its feasibility on the constraints of real-world deploy-
ment/development, e.g., low-latency real-time (LLRT) [9] con-
straint with low-computational machines in its deployment and
unavailability of parallel (paired) data between source and tar-
get speakers in its development.

To develop LLRT VC [9], the costs from input waveform
analysis, conversion step, and output waveform generation are
taken into account to obtain the acceptable amount of total de-
lay. On the waveform analysis, several works use simple fast
Fourier transform (FFT) [9, 10, 11, 12]. On the conversion mod-
ule, where the spectral characteristics of speech waveform are
usually modeled, a Gaussian mixture model is employed in [9],
a simple multi layer perceptron is employed in [11, 12], while
convolutional neural network (CNN) and recurrent neural net-

work (RNN) are employed in [10]. On the waveform gener-
ation, source-filter vocoder based on STRAIGHT [13] is used
in [9, 10], while WORLD [14] is used in [11], and direct wave-
form filtering is utilized in [5]. In all cases, parallel training data
is required to develop the conversion model, while the quality
of the waveform generation module is still limited. In this pa-
per, we work to achieve flexible and high-quality LLRT VC,
where it can be developed with non-parallel data and provide
high-quality waveform using also neural network for waveform
generation, i.e., neural vocoder.

Neural vocoder could provide high-quality speech wave-
form in copy-synthesis [15], in text-to-speech (TTS) [16], and
in VC [8] systems, albeit, high computational cost impedes
most of its use on LLRT applications. Essentially, neural
vocoder architectures can be categorized into autoregressive
(AR) [17, 18] and non-autoregressive (non-AR) [19, 20] mod-
els, on which the former depends on the previously generated
waveform samples. In practice, AR models based on RNN (Wa-
veRNN) [17, 18] can be developed with less layers than non-AR
ones, which are built with multiple layers (deep) of CNN. In
LLRT applications, where waveform synthesis is sequentially
performed depending on the availability of input stream, it is
more difficult for the deeper non-AR models to achieve this
constraint while still preserving high-quality waveform. In this
work, to reliably achieve LLRT VC, we utilize a high-quality
AR model called multiband WaveRNN with data-driven linear
prediction (MWDLP) [21], which has been proven to be ca-
pable of producing high-fidelity waveform in the most adverse
conditions including on LLRT constraint.

On the other hand, to develop non-parallel VC, a shared
space between speakers (speaker-independent) can be utilized
as a reference point on which the linguistic contents of speech
are generated. For instance, several works have employed the
use of explicit text/phonetic space [22, 23]. An alternative
way is to employ a linguistically unsupervised latent space that
serves as a point of distribution for the content generation, such
as in variational autoencoder (VAE) [24, 25] or generative ad-
versarial network [26]. The unsupervised approach has more
flexibility in terms of independency from linguistic features in
its development, which could be of higher value in situations
where reliable transcriptions are difficult to be obtained. In this
work, we focus on the use of a robust model based on VAE
called cyclic variational autoencoder (CycleVAE) [27] that is
capable of handling non-parallel multispeaker data.

To achieve flexible and high-quality LLRT VC, we propose
to combine CycleVAE-based spectral model and MWDLP-
based neural vocoder. First, we propose to modify the spectral
features of CycleVAE to be that of mel-spectrogram. Second,
as in [17, 18, 21], we propose to employ sparsification for the
CycleVAE network. Finally, to achieve high-performance VC,
we propose a novel fine-tuning for the CycleVAE model with
the use of waveform domain loss from the MWDLP.
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Figure 1: Diagram of proposed CycleVAE model for mel-spectrogram (melsp) spectral features (left) with its fine-tuned architecture
(right), where the second decoder θ̃ (excitation) is discarded, while keeping the related second encoder φ̃; Dotted lines denote sam-
pling; Latent features are sampled from estimated posteriors; Reconstructed (reconst.) / converted (conv.) mel-spectrogram is sampled
with estimated Gaussian parameters; Paths for speaker classifier (variational posterior of speaker-code) are omitted for brevity.

2. MWDLP-based neural vocoder
Let s = [s1, . . . , sts , . . . , sTs ]

> be the sequence of speech
waveform samples, where ts and Ts respectively denotes the
time indices and the length of the waveform samples. At
band-level, the sequence of speech waveform samples is de-
noted as s(m) = [s

(m)
1 , . . . , s

(m)
τ , . . . , s

(m)
T ]>, where m de-

notes the mth band index, τ denotes the band-level time in-
dex, T = Ts/M denotes the length of the band-level wave-
form samples, which is downsampled from Ts by a factor of
M [28], and the total number of bands is denoted as M . At
frame-level, the sequence of conditioning feature vectors is de-
noted as x = [x>1 , . . . ,x

>
t , . . . ,x

>
T ]
>, where T denotes the

length of the frame-level conditioning feature vector sequence,
and at band-level, the sequence of conditioning feature vectors
is denoted as x̃ = [x̃1, . . . , x̃τ , . . . , x̃T ].

In MWDLP [21], the likelihood of the sequence of wave-
form samples s is defined by the probability mass function
(p.m.f.) of the discrete waveform samples as follows:

p(s) =
M∏

m=1

T∏

τ=1

p(s(m)
τ |s(M)

1:τ−1, x̃τ ) =
M∏

m=1

T∏

τ=1

p(m)>
τ v(m)

τ , (1)

where s(M)
1:τ−1 denotes the past samples of all band-levels wave-

form, p(m)
τ = [p

(m)
τ [1], . . . , p

(m)
τ [b], . . . , p

(m)
τ [B]]>denotes the

probability vector, the number of sample bins is denoted as B,
and v(m)

τ denotes a one-hot vector. Of the probability vector
p(m)
τ , the probability of each sample bin p(m)

τ [b] is given by

p(m)
τ [b] =

exp(ô
(m)
τ [b])

∑B
j=1 exp(ô

(m)
τ [j])

, (2)

where exp(·) denotes the exponential function, ô(m)
τ [b] is the

unnormalized probability (logit) of the bth sample bin for the
mth band, and the vector of logits is denoted as ô(m)

τ =

[ô
(m)
τ [1], . . . , ô

(m)
τ [b], . . . , ô

(m)
τ [B]]>.

The linear prediction (LP) [29] is performed in the logit
space of the discrete waveform samples as follows:

ô(m)
τ =

K∑

k=1

a(m)
τ [k]r

(m)
τ−k + o

(m)
τ , (3)

where the residual logit vector is denoted as o(m)
τ , the kth data-

driven LP coefficient of the mth band is denoted as a(m)
τ [k], k

denotes the index of LP coefficient, and the total number of co-
efficients is denoted asK. {r(m)

τ−1, . . . , r
(m)
τ−K} are the trainable

logit basis vectors corresponding to pastK discrete samples. In
Eq. 3, the network outputs are a(m)

τ [k] and o(m)
τ .

3. Proposed LLRT VC based on CycleVAE
spectral model and MWDLP

3.1. CycleVAE model with mel-spectrogram features

To realize LLRT VC, in this work, we propose to use mel-
spectrogram as the spectral features for CycleVAE model,
where we extend the CycleVAE [25, 27] to incorporate estima-
tion of intermediate excitation features, e.g., fundamental fre-
quency (F0). Diagram of the proposed model is illustrated in
the left side of Fig. 1.

Let xt = [x1[1], . . . , xt[d], . . . , xt[D]]> and yt =
[y1[1], . . . , yt[d], . . . , yt[D]]> be the D-dimensional spectral
feature vectors of an input speaker x and that of a converted
speaker y at time t, respectively. The likelihood function of the
input spectral feature vector xt is defined as follows:

pθ,θ̃(xt, e
(x)
t |c(x)t ) =

∫∫
pθ(xt|zt, z̃t, c(x)t , e

(x)
t )pθ̃(e

(x)
t |z̃t, c(x)t )

pθ(zt)pθ̃(z̃t)dz̃tdzt, (4)

where {zt, z̃t} denotes the latent feature vectors, c(x)t denotes
a speaker-code vector of the input speaker x, and e(x)t denotes
the excitation features. In VAE [30], posterior form of latent

features pθ,θ̃(zt, z̃t|xt) =
p
θ,θ̃

(xt,zt,z̃t)

p
θ,θ̃

(xt)
is utilized to handle

the likelihood of Eq. (4) with Gibbs’ inequality as follows:

log pθ,θ̃(xt, e
(x)
t |c(x)t ) ≥ L(Ψ;xt, c

(x)
t , e

(x)
t ), (5)

where Ψ = {θ, θ̃,φ, φ̃} and the variational/evidence lower
bound (ELBO) L(Ψ;xt, c

(x)
t , e

(x)
t ) is given by

Eq
φ,φ̃

(zt,z̃t|xt)[log pθ(xt|zt,z̃t,c(x),e
(x)
t )]−KL(qφ(zt|xt)||pθ(zt))

+Eq
φ̃
(z̃t|xt)[log pθ̃(e

(x)
t |z̃t,c(x))]−KL(qφ̃(z̃t|xt)||pθ̃(z̃t)),(6)

and c(x) denotes a time-invariant speaker-code of the input
speaker x. The sets of encoder and decoder parameters are re-
spectively denoted as {φ, φ̃} and {θ, θ̃}. The prior distribu-
tions of latent features are denoted as pθ(zt) and pθ̃(z̃t). The
variational posteriors are denoted as qφ(zt|xt) and qφ̃(z̃t|xt).
In addition, to improve the latent disentanglement performance,
we also utilize variational posterior qφ,φ̃(c

(x)
t |xt).

From Eq. (6), the conditional probability density function
(p.d.f.) of the input spectral features xt, as well as of the con-
verted spectral features yt, are given by

pθ(xt|zt, z̃t, c(x), e(x)t ) = N (xt;µ
(x)
t ,Σ

(x)
t ), (7)

pθ(yt|zt, z̃t, c(y), e(y)t ) = N (yt;µ
(y)
t ,Σ

(y)
t ), (8)
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Figure 2: Proposed model development steps: separately pre-
train CycleVAE spectral model and MWDLP neural vocoder
(left), then fine-tune CycleVAE modules with fixed MWDLP to
utilize its waveform domain loss (right).

where c(y) denotes the time-invariant speaker-code of the con-
verted speaker y, e(y)t denotes the converted excitation features,
e.g., linearly converted log-F0 [31], and

zt=µ
(z)
t − σ(z)

t � ε, z̃t=µ(z̃)
t −σ(z̃)

t � ε, ε ∼L(0,1), (9)

the Hadamard product is denoted as �, L(0,1) denotes the
standard Laplacian distribution. The Gaussian distribution with
a mean vector µ and a covariance matrix Σ is denoted as
N (;µ,Σ). The output of encoders {φ, φ̃} are denoted as
{µ(z)

t ,σ
(z)
t ,µ

(z̃)
t ,σ

(z̃)
t }, while the output of decoder θ is de-

noted as {µ(x)
t , diag(Σ

(x)
t )} or {µ(y)

t , diag(Σ
(y)
t )}. To im-

prove the conversion performance, we also utilize the p.d.f.
of converted excitation pθ̃(e

(y)
t |z̃t, c(y)) in a similar manner

as in Eq. (6) of the excitation of input speaker. The recon-
structed/converted mel-spectrogram is generated from sampling
the Gaussian p.d.f. in Eq.(7) or (8), respectively.

To provide network regularization with cycle-consistency,
an auxiliary for the likelihood of Eq. (4) is defined as follows:

pθ,θ̃(xt, e
(x)
t |e(y)t , c

(x)
t , c

(y)
t ) =

∫∫∫
pθ(xt|yt,zt,z̃t, e(x)t , c

(x)
t )

pθ(yt|xt,zt, z̃t, e(y)t , c
(y)
t )pθ̃(e

(x)
t |z̃t, c(x)t )dz̃tdztdyt,

(10)

where by taking the expected values of the converted spectral
yt through sampling from Eq. (8), Eq. (10) is rewritten as

pθ,θ̃(xt,e
(x)
t |e(y)t , c

(x)
t , c

(y)
t )=

∫∫
E
pθ(yt|xt,e

(y)
t ,c

(y)
t )

[pθ(xt|yt,zt,z̃t, e(x)t ,c
(x)
t )]

pθ̃(e
(x)
t |z̃t, c(x)t )pθ(zt)pθ̃(z̃t)dz̃tdzt. (11)

Therefore, as in Eq. (5), we approximate the true posterior
pθ,θ̃(zt, z̃t|xt,yt) through the following form

log pθ,θ̃(xt,e
(x)
t ,e

(y)
t |c(x)t ,c

(y)
t )≥L(Ψ;xt,yt,e

(x)
t ,e

(y)
t ,c

(x)
t ,c

(y)
t )

(12)
where the ELBO L(Ψ;xt,yt,e

(x)
t ,e

(y)
t ,c

(x)
t ,c

(y)
t ) is given by

E
pθ(yt|xt,e

(y)
t ,c

(y)
t )

[
Eq

φ,φ̃
(zt,z̃t|xt,yt)

[log pθ(xt|zt,z̃t,c(x), e(x)t )]]

−KL(qφ(zt|xt,yt)||pθ(zt))−KL(qφ̃(z̃t|xt,yt)||pθ̃(z̃t))
+ Eq

φ̃
(z̃t|yt)

[log pθ̃(e
(x)
t |z̃t, c(x))]

]
. (13)

Hence, the optimization of network parameters Ψ̂ =

{θ̂, ˆ̃θ, φ̂, ˆ̃φ} is performed with Eqs. (5) and (12) as follows:

Ψ̂ = argmax
θ,θ̃,φ,φ̃

T∑

t=1

L(Ψ;xt,yt,e
(x)
t ,e

(y)
t ,c

(x)
t ,c

(y)
t )

+ L(Ψ;xt, c
(x)
t , e

(x)
t ) (14)
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Figure 3: Network structure of encoders {φ, φ̃} and decoder
θ with a base GRU size of 512 and 640, respectively, which
are sparsified to 75% density. Segmental convolution is made
to take into account p previous and n succeeding frames, as in
[21], with p = 3, n = 1 and p = 4, n = 0 for encoders and
decoders, respectively.

3.2. Fine-tuning with MWDLP-based waveform loss

As illustrated on the right side of Fig. 1 and Fig. (2), to perform
fine-tuning with MWDLP loss, we discard the estimation of ex-
citation, where the likelihood in Eq. (4) is rewritten as follows:

pθ(xt|c(x)t )=

∫∫
pθ(xt|zt,z̃t,c(x)t )pθ(zt)pθ(z̃t)dz̃tdzt. (15)

As in Eqs. (5) and (6), the inequality form to approximate the
true posterior pθ(zt, z̃t|xt) is as follows:

log pθ(xt|c(x)t ) ≥ L(Λ;xt, c
(x)
t ) (16)

where Λ = {θ,φ, φ̃}, and the ELBO L(Λ;xt, c
(x)
t ) is given

by

Eq
φ,φ̃

(zt,z̃t|xt)[log pθ(xt|zt,z̃t, c(x))]−KL(qφ(zt|xt||pθ(zt))
−KL(qφ̃(z̃t|xt)||pθ(z̃t)). (17)

Likewise, following Eq. (11), the auxiliary form of Eq. (15),
to provide cycle-consistency, is defined as follows:

pθ(xt|c(x)t , c
(y)
t ) =

∫∫
E
pθ(yt|xt,c

(y)
t )

[pθ(xt|yt,zt,z̃t,c(x)t )]

pθ(zt)pθ(z̃t)dz̃tdzt. (18)

Following Eqs. (12) and (13), the inequality form to approxi-
mate the true posterior pθ(zt, z̃t|xt,yt) is defined as

log pθ(xt|c(x)t , c
(y)
t ) ≥ L(Λ;xt,yt, c

(x)
t , c

(y)
t ) (19)

where the ELBO L(Λ;xt,yt, c
(x)
t , c

(y)
t ) is given by

E
pθ(yt|xt,c

(y)
t )

[
Eq

φ,φ̃
(zt,z̃t|xt,yt)

[log pθ(xt|zt, z̃t, c(x))]]

−KL(qφ(zt|xt,yt)||pθ(zt))−KL(qφ̃(z̃t|xt,yt)||pθ(z̃t))
]
.

(20)

Finally, the set of updated parameters Λ̂ = {θ̂, φ̂, ˆ̃φ} is ob-
tained by combining Eqs. (16), (19), and Eq. (1), i.e., the likeli-
hood of the waveform samples from MWDLP, as follows:

{Λ̂}=argmax
θ,φ,φ̃

T∑

t=1

L(Λ;xt,yt, c
(x)
t , c

(y)
t )+L(Λ;xt, c

(x)
t )

+
M∑

m=1

T∑

τ=1

log p(s(m)
τ |s(M)

1:τ−1, x̃τ ), (21)

where the conditioning feature vector x̃τ is built from the sam-
pled reconstructed mel-spectrogram xt of the input speaker x.
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Table 1: Results of accuracy (acc.) measurement on log-global-
variance distance of mel-cepstrum (LGD), mel-cepstral distor-
tion (MCD), unvoiced/voiced decision error (U/V), and root-
mean-square-error of F0 between converted and target wave-
form on intra-lingual pairs.

Intra-lingual acc. LGD MCD [dB] U/V [%] F0 [Hz]

ASR+TTS [22] 0.29 6.91 16.20 22.29
CycVAE+PWG [27] 0.34 6.67 14.36 24.91

NU T23 [32] 0.28 7.50 18.94 23.20

LLRT CycVAE 0.36 7.41 15.35 25.74
LLRT CycVAE+FT 0.28 7.51 17.27 25.17

Table 2: Results of accuracy (acc.) measurement on log-global-
variance distance of mel-cepstrum (LGD), mel-cepstral distor-
tion (MCD), unvoiced/voiced decision error (U/V), and root-
mean-square-error of F0 between converted and target wave-
form on cross-lingual pairs.

Cross-lingual acc. LGD MCD [dB] U/V [%] F0 [Hz]

ASR+TTS [22] 0.39 8.78 14.84 21.12
CycVAE+PWG [27] 0.34 7.56 13.86 22.83

NU T23 [32] 0.24 8.50 16.33 22.68

LLRT CycVAE 0.39 8.22 15.25 20.91
LLRT CycVAE+FT 0.30 8.44 15.81 20.91

3.3. Network architecture and sparsification

The network architecture of the encoders and decoders of the
proposed CycleVAE is illustrated in Fig.3. As in [21], a seg-
mental convolution is utilized to take into account p preced-
ing and n succeeding frames. To realize LLRT VC, we use
p = 3, n = 1 for encoders of CycleVAE, p = 4, n = 0 for de-
coder of CycleVAE, and p = 5, n = 1 for the MWDLP neural
vocoder, which yields a total of 2 lookup frames.

In addition, a sparsification procedure for CycleVAE net-
work is also performed, as in [18, 21], with 75% target density
for the gated recurrent unit (GRU) modules of encoders {φ, φ̃}
and decoder θ. The base hidden units size of GRU encoders
is 512, while that of the decoder is 640. The target density ra-
tios for each reset, update, and new gates of the GRU recurrent
matrices are respectively 0.685, 0.685, 0.88.

4. Experimental evaluation
4.1. Experimental conditions

We used the Voice Conversion Challenge (VCC) 2020 [8]
dataset, which consisted of 8 English speakers, 2 German
speakers, 2 Finnish speakers, and 2 Mandarin speakers, each
uttered 70 sentences in their languages. For the training set,
60 sentences were used, while the remaining 10 sentences were
for the development set. Additional 25 English utterances from
each speaker were provided for evaluation. In the evaluation,
we utilized two baseline systems of VCC 2020: cascaded au-
tomatic speech recognition (ASR) with TTS (ASR+TTS) [22]
and CycleVAE with Parallel WaveGAN (CycVAE+PWG) [27],
as well as Nagoya University (NU) T23 system [32]. 2 En-
glish source, 2 English target (intra-lingual), and 2 German tar-
get (cross-lingual) speakers were utilized in the evaluation.

As spectral features, we used 80-dimensional mel-
spectrogram, which was extracted frame-by-frame from magni-
tude spectra. The number of FFT length in analysis was 2048.
27.5 ms Hanning window with 10 ms frame shift were used.
The sampling rate was 24, 000 Hz. As the target intermediate
excitation features used in Section 3.1, we used F0, aperiodici-
ties, and their voicing decisions, which were extracted from the

Table 3: Result on automatic speech recognition accuracy (ASR
acc.) on intra- and cross-lingual conversions with word error
rate (WER) and character error rate (CER) measurements.

ASR acc. Intra-lingual Cross-lingual
WER CER WER CER

Source 18.5 3.7 - -
Target 17.5 3.0 19.2 4.1

ASR+TTS [22] 25.1 7.5 30.3 12.2
CycVAE+PWG [27] 28.2 9.6 29.6 10.3

NU T23 [32] 37.3 14.9 25.2 7.6

LLRT CycVAE 33.8 13.6 34.0 12.4
LLRT CycVAE+FT 25.2 7.9 26.1 7.9

speech waveform using WORLD [14]. The excitation e(y)t of
converted speaker y was set to linearly converted log-F0 [31].

Other than the configuration of segmental convolution in
Section 3.3, the hyperparameters of MWDLP neural vocoder
was the same as in [21] with the use of K = 8 data-driven LP
coefficients and STFT loss. As well as for the CycleVAE-based
spectral model, the encoders {φ, φ̃} and the decoder θ were set
the same as in 3.3. On the other hand, the excitation decoder
θ̃ described in Section 3.1 used the same structure as the other
encoders/decoder, but utilizing a dense GRU with 128 hidden
units. A classifier network with similar structure utilizing a
GRU with 32 hidden units was employed to handle the varia-
tional speaker posteriors q(c(x)t |xt) and q(c(y)t |yt). Addition-
ally, each of the encoders was also set to estimate the speaker
posteriors along with the latent posteriors.

The training procedure was as described in Sections 3.1
and 3.2, where the standard Laplacian prior was replaced with
the posterior of the pretrained CycleVAE. In addition, we per-
formed final fine-tuning of CycleVAE by fixing the encoders
and updating only decoder θ (LLRT CycVAE+FT). In all Cy-
cleVAE optimizations, the spectral loss included Gaussian p.d.f.
term and the loss of the sampled mel-spectrogram. Further,
in the fine-tuning steps, we included loss from full-resolution
magnitude spectra, which was obtained using inverted mel-
filterbank and the sampled mel-spectrogram. The waveform do-
main loss included the set of loss in [21] and the differences of
the output of all MWDLP layers when fed with original spectra
and generated spectra (layer-wise loss).

We used a single-core of Intel Xeon Gold 6230 2.1 GHz,
Intel Xeon Gold 6142 2.6 GHz, and Intel i7-7500U 2.7 GHz
CPUs to measure the real-time factor (RTF), which respec-
tively yield 0.87, 0.87, and 0.95 RTFs. The total delay is
23.75 ms, which was the sum of the half of the window length
(1st frame) and one frame shift, i.e., 2 lookup frames. The
model development software, real-time implementation, and
audio samples have been made available at https://github.

com/patrickltobing/cyclevae-vc-neuralvoco.

4.2. Objective evaluation

In the objective evaluation, we measured the accuracies of the
generated waveforms to the target ground truth and the accura-
cies of automatic speech recognition (ASR) output. The former
was measured with the use of mel-cepstral distortion (MCD),
root-mean-square error of F0, unvoiced/voiced decision error
(U/V), and log of global variance [31] distance of the mel-
cepstrum (LGD). The latter was measured with word error rate
(WER) and character error rate (CER). 28-dimensional mel-
cepstral coefficients were extracted from WORLD [14] spec-
tral envelope to compute the MCD. For ASR, we used ESPnet’s
[33] latest pretrained model on LibriSpeech [34] data.
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Table 4: Result of mean opinion score (MOS) test on natural-
ness for intra- and cross-lingual conversions in same-gender
(SGD) and cross-gender (XGD) pairs. ∗ denotes systems with
statistically significant different values (α < 0.05) compared to
LLRT CycleVAE+FT in each conversion categories.

MOS All Intra-lingual Cross-lingual
SGD XGD SGD XGD

Source 4.68 - - - -
Target 4.69 - - - -

ASR+TTS [22] 4.01 4.32∗ 4.15∗ 3.84 3.72
CycVAE+PWG [27] 3.85∗ 3.85∗ 3.75 3.94 3.87

NU T23 [32] 4.23∗ 4.30∗ 4.21∗ 4.23∗ 4.21∗

LLRT CycVAE 3.33∗ 3.30∗ 3.19∗ 3.48∗ 3.19∗

LLRT CycVAE+FT 3.96 3.99 3.85 4.02 3.96

The results on the accuracies of the generated waveforms
are shown in Tables 1 and 2, which correspond to the intra-
and the cross-lingual conversion pairs, respectively. It can be
observed that the proposed LLRT system based on CycleVAE
and MWDLP utilizing fine-tuning with waveform domain loss
(LLRT CycVAE+FT) achieves better LGD values (less over-
smoothed) in intra- and cross-lingual conversions than the pro-
posed system without fine-tuning (LLRT CycleVAE) with val-
ues of 0.28 and 0.36, respectively, in intra-lingual, and 0.30 and
0.39, respectively, in cross-lingual. Furthermore, it beats the
LGD values of CycVAE+PWG that uses non-LLRT system, and
beats NU T23 system in MCD, U/V, and F0 for cross-lingual,
which uses non-LLRT CycleVAE with WaveNet.

Lastly, the ASR result is shown in Table 3, which shows
WERs and CERs for the intra- and the cross-lingual conver-
sions. It can be clearly observed that the proposed LLRT Cyc-
VAE+FT outperforms the proposed system without fine-tuning
LLRT CycVAE with WER and CER values of 26.1 and 7.9 in
intra-lingual and of 25.2 and 7.9 in cross-lingual. These val-
ues are also lower than the non-LLRT CycleVAE system of the
VCC 2020 baseline (CycVAE+PWG) and similar to that of the
non-LLRT CycleVAE of NU T23 in cross-lingual conversions.

4.3. Subjective evaluation

In the subjective evaluation, we conducted two listening tests,
each to judge the naturalness of speech waveform and the
speaker similarity to a reference target speech. The former is
conducted with a mean opinion score (MOS) test using a 5-
scaled score ranging from 1 (very bad) to 5 (very good). The
latter is conducted with a speaker similarity test as in [8], where
”same” or ”not-same” decision had to be chosen along with
”sure” or ”not-sure” decision as a confidence measure. 10 utter-
ances from the evaluation set was used. The number of partici-
pants on Amazon Mechanical Turk was 19 and 13, respectively,
for MOS and speaker similarity tests.

The result of MOS test on naturalness is shown in Ta-
ble 4. It can be observed that the proposed LLRT VC system
benefits from the fine-tuning approach (LLRT CycleVAE+FT),
yielding significantly higher naturalness in all categories than
the LLRT CycleVAE system, with values of 3.96, 3.99, 3.85,
4.02, and 3.96 for all, intra-lingual same-gender (SGD), intra-
lingual cross-gender (XGD), cross-lingual SGD and cross-
lingual XGD, respectively. On the other hand, the result of
speaker similarity test is shown in Table 5. The tendency is also
similar, where the proposed LLRT CycleVAE+FT system has
better speaker accuracy than the LLRT CycleVAE in all cate-
gories, while achieving similar accuracies to the non-LLRT Cy-
cleVAE systems: CycVAE+PWG and NU T23 (cross-lingual).

Table 5: Result of speaker similarity [%] test for intra- and
cross-lingual conversions in same-gender (SGD) and cross-
gender (XGD) pairs. ∗ denotes systems with statistically sig-
nificant different values (α < 0.05) compared to LLRT Cycle-
VAE+FT in each conversion categories.

Speaker All Intra-lingual Cross-lingual
similarity [%] SGD XGD SGD XGD

Source 8.01 - - - -
Target 90.05 - - - -

ASR+TTS [22] 89.43∗ 91.80 87.10∗ 84.12∗ 87.90∗
CycVAE+PWG [27] 78.63 85.25 77.42 74.19 77.78

NU T23 [32] 80.24∗ 93.50∗ 89.60∗ 71.77 66.13∗

LLRT CycVAE 70.22 76.99 70.49 67.20 66.13∗

LLRT CycVAE+FT 77.55 86.18 74.16 75.24 74.60

5. Discussion
The proposed method of fine-tuning the CycleVAE-based spec-
tral model with MWDLP-based waveform modeling signifi-
cantly improves the converted speech waveform. From our in-
vestigation, the use of mel-spectrogram sampling from Gaus-
sian p.d.f. in Eqs.(7) and (8) works very well with the waveform
domain loss. In addition, we also found that layer-wise loss
from neural vocoder helps to provide more natural outcome.
Our reasoning is that the generated spectra will not be exactly
the same as the natural spectra that corresponds to the natural
waveform, but we assume that there is a domain for generated
spectra that could provide quite reasonable approximation for
generating the natural waveform by explicitly guiding through
all layers of the neural vocoder in addition of the waveform loss.

The largest average RTF factors for each module are as
follows: 0.14 for two encoders, 0.13 for decoder, 0.56 for
MWDLP, and 0.12 for others including input/output, memory
allocation, etc. The total of these RTF values, i.e., ∼9.5 ms,
should be lower than the length of the frame shift, which is
10 ms. However, in practical situation, a larger margin is re-
quired to avoid glitching caused by outliers of RTF values that
are larger than the frame shift. In future work, we will investi-
gate lower size of MWDLP and/or 8-bit model quantization.

6. Conclusions
We have presented a novel low-latency real-time (LLRT) non-
parallel voice conversion (VC) framework based on cyclic vari-
ational autoencoder (CycleVAE) and multiband WaveRNN with
data-driven linear prediction (MWDLP). The proposed system
utilizes mel-spectrogram features as the spectral parameters of
the speech waveform, which are used in the CycleVAE-based
spectral model and the MWDLP neural vocoder. To realize
LLRT VC, CycleVAE modules undergo a sparsification proce-
dure with respect to their recurrent matrices. In addition, we
propose to use waveform domain loss from a fixed pretrained
MWDLP to fine-tune the CycleVAE modules. The experimen-
tal resuts have demonstrated that the proposed system is capa-
ble of achieving high-performance VC, while allowing its usage
for LLRT applications with 0.87–0.95 real-time factor using a
single-core of 2.1–2.7 GHz CPU on 27.5 ms window length,
10 ms frame shift, and 2 lookup frames.
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Abstract
Text-to-Speech synthesis is approaching the limit of naturalness
that is possible from an isolated sentence. The focus of research
is shifting to modelling contextual information, typically with
the goal of producing better prosodic realisations by accounting
for longer-range text dependencies from preceding sentences.
But current evaluation methods were developed for single sen-
tences and it is not yet clear how the evaluation of longer texts
should be approached. Previous work suggests that evaluation
of utterances in context can lead to an increase in Mean Opinion
Score ratings, even when the synthesis technique is not context-
aware. We investigated several factors that might explain this
increase. Three experiments manipulated: the wording of in-
structions that participants received; the textual characteristics
of context-stimulus pairs; and the prosodic realisation of the
synthetic speech. We found that the wording of instructions
has an impact on listeners’ ratings of stimuli presented in con-
text. The between-sentence context dependency of stimulus text
has no impact on ratings. Listeners are, however, sensitive to
prosodic differences, both in context and in isolation.
Index Terms: long-form Text-to-Speech, Text-to-Speech eval-
uation, context-aware Text-to-Speech

1. Introduction
Recent improvements in Text-to-Speech (TTS) modelling have
paved the way for approaches which can take textual [1, 2]
or acoustic context beyond the current utterance into account
[3, 4]. Accounting for context has the potential to capture long-
range text dependencies, discourse [5] and paragraph informa-
tion [6], which are known to affect the prosodic realisation of an
utterance. Context-sensitive prosody should exhibit increased
variation compared to ‘default’ prosody generated for isolated
sentences, and thus better long-form TTS [7]. However, in pre-
vious work, TTS output has been almost exclusively generated
utterance-by-utterance and has therefore also been evaluated us-
ing isolated utterances [8, 9]. For context-sensitive TTS, appro-
priate evaluation paradigms are not yet fully developed.

One difficulty when rating prosodic variability is that count-
less realisations may be equally valid given a specific context
[9]. Rating an utterance in context is a fundamentally different
task to rating an utterance in isolation: varying the context can
change the rating of the utterance. Conversely, in isolation the
listener does not have access to any contextual information [8]
(although participants might be able to imagine it [10]). This
could potentially cause marked prosodic forms, elicited by a
very specific context, to be rated lower when presented out of
context, where listeners would expect default prosody. The op-
posite could also be true: perfectly natural and well-spoken ut-
terances are rated highly in isolation, but when heard in an in-
felicitous context they are rated lower.

Clark et al. [8] found that utterances presented in isolation
vs. in context had significantly different Mean Opinion Scores

(MOS), with those heard in context receiving a higher rating
when both the context and target were synthetic speech. Impor-
tantly, the synthetic speech used in their study was not context-
sensitive. This boost in MOS score calls into question whether
the MOS paradigm is the right way to evaluate synthetic speech
in context.

The goal of this study is to discover what factors lead to
such differences in MOS ratings. We conducted three experi-
ments investigating various factors of interest.
• In experiment one, we test whether the instructions have an

effect on MOS ratings of utterances presented in context.
• In experiment two, we assess whether between-sentence tex-

tual context dependency has an effect on MOS ratings.
• In experiment three, we test whether the MOS paradigm is

suitable for rating prosodically varied synthetic speech.
Although Clark et al. tested a range of presentation types,

including paragraphs, we will focus on a comparison between
isolated utterances and context-target pairs in which an utter-
ance is presented after a single context utterance. Finally, al-
though prosodic realisation changes as a function of much more
than the preceding sentence, e.g., pragmatic context, emotional
state of the speaker, etc [9], we will concentrate on prosodic
realisations which are determined by the textual context alone.

2. Related Work
As Text-to-Speech synthesis approaches its limit of naturalness,
there is more and more focus on prosodic variability [10, 11,
12, for example] including the use of surrounding context to
condition the realisation of the current utterance [1, 2, 3]. There
is, however, little agreement on the best method for evaluating
such prosodically-varied synthetic speech.

Some opt to use a qualitative approach. After testing
whether prosodic realisations were perceptually distinct using
a discriminative task, Hodari et al. asked participants to judge
what effect different prosodic renditions had on the interpreta-
tion of the sentence, i.e., subtle differences in meaning or intent
[10]. They found that participants were able to describe dif-
ferent contexts or situations where the prosodic variant would
be found. A different qualitative approach was taken by Xu et
al. who constructed different textual contexts and used these to
generate different prosodic realisations of a single sentence in
order to determine what effect their BERT-based context-aware
model had on the prosody of a sentence [2].

Others opt for quantitative subjective evaluation using a
MUSHRA-like paradigm. For example, Tyagi et al. used lin-
guistic information, such as syntactic information and word em-
beddings to generate richer prosodic variability and evaluated
both isolated utterances and long-form material [12]. In order
to assess the quality of the prosodic output of individual sen-
tences, they asked ten linguists to judge the appropriateness of
the prosody in isolation. They stated that judging prosody re-
quires domain-specific knowledge. This raises an issue with
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devising appropriate metrics for prosodic felicity, if using non-
expert listeners requires them to have an awareness of this di-
mension of the speech signal. Even among experts, however,
it has been shown that inter-annotator agreement can be quite
low [13]. For long-form evaluation, Tyagi et al. used crowd-
sourced listeners and asked them to rate whole news stories for
the suitability of the speaker’s style, which they said would as-
sess naturalness. As we will see from the results of experiment
one, changing just one word in the task instructions can lead
to different ratings. Many studies have used instructions such
as suitability and appropriateness as synonyms for naturalness
when they are in fact asking something quite different [8, 12].

Another option is a preference test to determine which sys-
tem or prosodic realisation listeners prefer. For example, Aubin
et al. tested the difference between a TTS system using dis-
course relations and a baseline system, using a preference test
in which the target sentence was presented in a natural speech
context [5]. Oplustil et al. also used a preference test in or-
der to evaluate whether systems which take acoustic context
into account from the preceding sentence perform better than
a non-context-aware baseline [3]. While preference tests and
MUSHRA both ask participants to make direct comparisons of
stimuli with differing prosodic renditions, MOS tests do not.
By asking listeners to provide ‘absolute’ ratings, many stimuli
could receive the same MOS score.

Clark et al. [8] were the first to systematically evaluate the
use of MOS for long-form evaluation. They compared differ-
ences in MOS ratings for utterances presented in isolation, in a
context-target pair, or in a paragraph. They asked participants
to rate the naturalness of utterances presented in isolation, but
for context-target pairs, they asked participants to rate appro-
priateness of the target utterance given the context. The type
of context was also varied, being either text, synthetic speech,
or natural speech. They found that target utterances presented
in context were rated significantly higher than the same utter-
ances presented in isolation, when the context was in the form
of text or synthetic speech. It is important to re-iterate that the
synthetic speech was not context-dependent.

Clark et al. postulated that the increase in rating might be
due to the task specification, and indeed other work has found
that instructions can have an impact on MOS rating [14]. They
also suggested that this may be due to ‘the fact that the content
of a paragraph non-initial sentence sounds less natural when
presented out of context.’ [8, Section 5.1]. They found no
increase in ratings when the preceding context utterance was
(non-vocoded) natural speech, reasoning that mismatches in
quality between natural and synthetic speech make the synthetic
speech sound of lower quality.

In the study reported in this paper, we focus exclusively
on the MOS paradigm and investigate what factors lead to dif-
fering MOS scores between utterances presented in isolation
vs. in context. Clark et al. used different wording of instruc-
tions when presenting isolated utterances than when presenting
them in context. One of our experiments investigates the ef-
fect of wording alone, to avoid this confound. We restrict the
investigation to the case of both target and context being syn-
thetic speech. We also investigate whether the paradigm is sen-
sitive enough to differentiate prosodically-different renditions
of a sentence by a single system, something that Clark et al. did
not do.

3. Research Questions
3.1. Effect of instructions

As noted in [8], the increase in MOS rating between the isolated
condition and the TTS context condition was rather unexpected,
given that the TTS model in question was not context-aware.
One factor that might have influenced MOS was the task spec-
ification. Specifically, participants were asked to rate the natu-
ralness of isolated utterances but the appropriateness of utter-
ances presented in context. By wording the instructions to ask
for either naturalness or appropriateness ratings, our first exper-
iment tests whether this difference leads to changes in rating,
independent of how the stimuli are presented.

3.2. Effect of between-sentence textual context dependency

Although [8] suggested that the increase in MOS rating may
have been due to the task, they also suggested that utterances
from non-paragraph-initial position may benefit from being pre-
sented with a preceding context. This is because non-initial
sentences more often contain anaphoric references, such as
pronouns, and therefore need a context in order to be fully
understood. In experiment two, we manipulate the context-
dependency of the target sentence text to test whether sen-
tences containing anaphora receive higher MOS ratings when
presented in a context that provides the referent, than non-
anaphoric versions that do not need context in order to be fully
understood.

3.3. Sensitivity of MOS to prosodic differences

While [8] investigated the effect of synthetic spoken context,
natural spoken context and text context, they did not investi-
gate whether participants are sensitive to changes in prosodic
realisation when both context and target are synthetic and dif-
fer only in their prosody. [12] suggests that rating speech in
context is difficult because there is no correct realisation and
multiple variations will be equally acceptable. Therefore, in ex-
periment three, we make one stimulus obviously non-canonical
and ill-fitting to the context, in order to evaluate whether such a
mismatch is salient for participants. If participants rate both the
non-canonical and canonical highly in context, that would be
evidence that this task is ill-suited to evaluating prosodic varia-
tion.

4. Methods
4.1. Data and models

We used the LJ Speech corpus, which consists of roughly
13 000 sentences read by a female speaker [15], for training
all models. The model used in all experiments was the Ophelia
implementation [16] of DC-TTS [17] . For experiment 3, we
needed to manipulate prosody. We used the publicly-available
training data used in [18] which is the LJ Speech corpus marked
up with prosodic labels automatically generated using contin-
uous wavelet transform (CWT) features which correlate with
prosodic attributes such as prominence and boundaries. By
marking up the training data with these labels, we obtained a
model that offered control over prosody during inference, sim-
ply by changing the labels. Suni et al. used three strength
levels of both accent and boundary labels, with accent level 0
signifying a de-accented word and boundary level 0 signifying
no prosodic boundary. Level 2 accent signifies an emphasised
word and level 2 boundary is roughly equivalent to an intona-
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Condition

Context-dependent Context-independent

Context Storms have been
named in the US since
the 1700s, for the UK
it’s a relatively new
thing.

Storms have been
named in the US since
the 1700s, for the UK
it’s a relatively new
thing.

Target The first one to receive
a name in the UK was
storm Abigail in 2015.

The first storm to re-
ceive a name in the UK
was storm Abigail in
2015.

Table 1: Example of context-dependent (left column) and
context-independent (right column) sentence pairs.

tional phrase boundary [18]. The LJ Speech recordings contain
some background noise and reverberation, which we mitigated
by post-processing all generated synthetic speech with the Au-
tomatic Sound Engineer (ASE) [19].

4.2. Stimuli

We created 110 pairs1 of sentences each comprising a con-
text sentence followed by a target sentence, using facts from
Wikipedia. An example of two context-target pairs is given
in Table 1. The same sentences were used in all experiments.
We did not create test material using held out utterances from
LJ Speech because this was too restrictive for carefully crafting
suitable sentence pairs. All sentences were phonetised using
[20] manually corrected, then synthesised.

Stimuli comprising a context-target pair were created by
synthesising the two sentences separately then concatenating
them into a single audio file separated by a 400 ms pause, a du-
ration chosen through informal listening. This differs from [8],
who asked listeners to click separate buttons to play context and
target utterances.

4.2.1. Text manipulation

Each stimulus is the synthesised speech of a context sentence
followed by one of two possible sentences: either the context-
dependent follow-up (CD) or context-independent follow-up
(CI). Table 1 provides an example. The CD target sen-
tence needs the context sentence for the listener to resolve the
anaphoric reference, such as it or they. In the CI condition, the
target sentence has the referent filled in. The only difference
between CI and CD conditions is the referent. Any two-word
referents were matched with a two-word anaphoric reference so
that the number of words in both conditions is the same.

4.2.2. Prosodic manipulation

To achieve prosodic manipulation, we manually modified the
CWT labels on the input to the TTS model in order to create
a canonical and a non-canonical rendition of each target sen-
tence. Non-canonical renditions (as judged by one of the au-
thors) were created by changing the accent and phrase boundary
structure of the target utterances such that accents were placed
on unexpected words (e.g., function words) or placing prosodic
phrase boundaries in unexpected places. Figure 1 provides an

1Stimuli can be found: https://johannahom.github.io/
SSW-samples/index.html

Please, read the instructions carefully:
• You will be presented with one sentence at a time.

• We want you to rate how natural the sentence sounds.

(a) Rating naturalness of utterances presented in isolation

Please, read the instructions carefully:
• You will listen to two sentences.

• The second sentence will be highlighted in bold text.
• We want you to rate how natural the second sentence

sounds, given the first sentence.

(b) Rating naturalness of target utterances presented in context

Please, read the instructions carefully:
• You will listen to two sentences.

• The second sentence will be highlighted in bold text.
• We want you to rate how appropriate the second sen-

tence sounds, given the first sentence.

(c) Rating appropriateness of target utterances presented in context

Table 2: Participant instructions.

example: first is de-accented in the non-canonical renditions,
but accented in the canonical renditions; and receives a strong
emphasis in the non-canonical renditions, but is de-accented in
the canonical renditions. The creation of prosodic variants was
constrained by the ability of the model, which did not render in-
telligible speech for every possible combination of accents and
boundaries.

4.3. Participants

Listeners who self-reported to have no hearing impairment, be
resident in the United States and have English as their first lan-
guage were recruited through Prolific.2 No other demographic
information was asked for. None were allowed to participate
more than once within this study. They received monetary com-
pensation for taking part. Participants were asked whether they
were using headphones. The responses from anyone who an-
swered no were removed from analysis, following [8], as were
those from participants who took less than 10 minutes (the min-
imum time required to listen to all stimuli).

4.4. MOS task

We implemented the MOS task in Qualtrics.3 Following [8],
participants were asked to rate stimuli on a scale of 1-5 in 0.5
increments (i.e., a 9-point scale). Points 1 to 5 were labelled as
poor, bad, fair, good and excellent.

4.4.1. Experiment 1 - Effect of instructions

Each participant was assigned to one of 3 conditions. All par-
ticipants in any given condition rated the same stimuli.

2https://www.prolific.co
3https://www.qualtrics.com/
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Figure 1: Time-normalised F0 contour of a canonical and non-canonical stimulus from experiment 3.

Condition 1: each participant was given the instructions in Table
2a, then rated 110 isolated sentences comprising all 55 unique
context sentences, and 55 target sentences (a mixture of CI and
CD) presented in randomised order. Condition 2: each par-
ticipant was given the instructions in Table 2b then rated 55
context-target pairs presented in a random order. Condition 3:
identical to condition 2, except using the instructions in Table
2c.

4.4.2. Experiment 2 - Effect of between-sentence textual con-
text dependency

Each participant rated one of 4 sets of stimuli: Set 1: each par-
ticipant was given the instructions in Table 2a, then rated 110
isolated sentences comprising all 55 unique context sentences,
and 55 target sentences (a mixture of CI and CD) presented in
randomised order. (Since this is identical to experiment 1 con-
dition 1, the same participant responses were re-used.) Set 2:
identical to set 1, and also using all 55 unique context sentences,
except now using the remaining 55 target sentences not pre-
sented in condition 1 (also a mixture of CI and CD), to coun-
terbalance. Set 3: each participant was given the instructions
in Table 2c then rated all 55 context-target pairs presented in a
random order. (Since this is identical to experiment 1 condition
3, the same participant responses were re-used.) Set 4: identi-
cal to set 3, except using the remaining 55 sentence pairs not
presented in set 3, to counterbalance.

4.4.3. Experiment 3 - Sensitivity of MOS to prosodic differ-
ences

Each participant rated one of 4 sets of stimuli: Set 1: each
participant was given the instructions in Table 2a, then rated
110 isolated sentences comprising all 55 unique context sen-
tences rendered canonically, and 55 target sentences of which
around half were rendered canonically and the rest rendered
non-canonically, all presented in randomised order. Set 2: iden-
tical to set 1, with the same canonical renditions of all 55 unique
context sentences, except with the canonical vs. non-canonical
renditions of the target sentences swapped, to counterbalance.
Set 3: each participant was given the instructions in Table 2c
then rated 55 context-target pairs presented in a random order.
Context sentences were always rendered canonically. Around
half the target sentences were rendered canonically and the rest
rendered non-canonically. Set 4: identical to set 3, except with
the canonical vs. non-canonical renditions of the target sen-
tences swapped, to counterbalance.

5. Results
All analyses were done in a by-items fashion such that, for each
stimulus, the MOS rating is the mean of all participants’ ratings
for that stimulus. All data were found to be normally distributed
following an insignificant Sharpiro-Wilk test and we therefore
used two-tailed paired t-tests. Whenever making multiple pair-
wise comparisons, p-values were adjusted with Bonferroni co-
efficients.
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Figure 2: Results for experiment one: MOS ratings of appro-
priateness and naturalness for utterances presented in isolation
and in context.

5.1. Experiment one

The experiment tests whether the instruction to listeners affects
their ratings. A total of 108 participants took part of which 8
(7.4%) were removed using exclusion criteria from Section 4.3.
As we see in Figure 2, stimuli were rated lower on the 5-point
MOS scale when presented in isolation (M = 3.66 SD = 0.239)
than in context. However this is only the case when using the
instructions in Table 2c which asked them to rate how appro-
priate they sounded in context (M = 3.91 SD = 0.220) but not
when using the instructions in Table 2b which asked them to rate
how natural they sounded in context (M = 3.65 SD = 0.219).
Ratings obtained with the ‘how appropriate’ instructions were
significantly higher than those obtained with the ‘how natural’
instructions: t(54) = 9.94, p < 0.001. When using the ‘how
natural’ instructions, there is no significant difference in ratings
for stimuli presented in isolation vs. in context: t(54) = -0.16,
p = 1. This refutes Clark et al.’s [8] hypothesis that it is the
quality of the context and the match in quality (i.e., both con-
text and target are synthetic speech) which leads to an increase
in MOS rating.
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Figure 3: Results for experiment two: MOS ratings for context-
dependent and context-independent utterances presented in iso-
lation and in context.

A better explanation, also mentioned in [8], is that differ-
ences in ratings arise because participants interpret ‘appropri-
ate’ differently to ‘natural’. This implies that, in the condition
from [8] where a synthetic utterance is presented after a natu-
ral spoken context utterance, listeners were rating the target as
less appropriate rather than less natural: it is not appropriate
for speech to change from natural to synthetic. We conclude
that asking for ratings of appropriateness is different to asking
for ratings of naturalness, for stimuli presented in context.

5.2. Experiment two

This experiment tests whether ratings of appropriateness are af-
fected by textual dependence between the target and its con-
text. A total of 144 participants took part of which 10 (6.9%)
were removed using the exclusion criteria in Section 4.3. Re-
sults are shown in Figure 3. First, for utterances presented in
isolation, there is no significant difference in ratings of natural-
ness for context-dependent (M = 3.63 SD = 0.262) and context-
independent (M = 3.64 SD = 0.240) sentences (t(54) = -0.34,
p = 1). When rated in context, there is no significant differ-
ence in ratings of appropriateness between context-dependent
(M = 3.95 SD = 0.212) and context-independent utterances (M
= 3.94 SD = 0.219): t(54) = 0.048, p = 1. Finally, consis-
tent with the results from experiment 1, there is a significant
difference between ratings of isolated utterances and utterances
presented in context. This is true regardless of whether the ut-
terance is context-dependent or is context-independent: t(54) =
-8.30, p < 0.001 and t(54) = -10.48, p < 0.001 respectively.
We conclude that textual context dependence does not affect
listeners’ ratings. However, as in experiment one, ratings of ap-
propriateness for utterances presented in context are higher than
ratings of naturalness for utterances presented in isolation.

5.3. Experiment three

This experiment tests whether MOS rating is sensitive to dif-
ferences in prosodic realisation. A total of 144 participants
took part of which 13 (9.0%) were removed using the exclusion
criteria in Section 4.3. Results are shown in Figure 4. When
presented in isolation, naturalness ratings of non-canonical ren-
ditions (M = 3.33, SD = 0.318) were significantly lower than
of canonical renditions (M = 3.77 , SD = 0.231), t(54) = 9.41,
p < 0.0001. This also holds true when these stimuli were pre-
sented in context and rated for appropriateness, although ratings
of non-canonical (M= 3.86 SD= 0.273) and canonical (M = 4.02
SD = 0.237) are closer: t(54) = 3.86, p = 0.001. Both canonical
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Figure 4: Results for experiment three: MOS ratings for prosod-
ically canonical and non-canonical renditions, presented in iso-
lation and in context.

renditions and non-canonical renditions received higher appro-
priateness ratings when presented in context than naturalness
ratings when presented in isolation: t(54) = -7.29, p < 0.001
and t(54) = -18.33, p < 0.001 respectively. This is consistent
with the findings reported in [8] and our results in experiments
one and two. We conclude that MOS is sensitive enough to
measure prosodic differences. As in experiments one and two,
we once again conclude that appropriateness ratings for utter-
ances presented in context are higher than naturalness ratings
for utterances presented in isolation.

6. Discussion
Like Clark et al. [8], we found that utterances presented in con-
text receive higher ratings of appropriateness than when pre-
sented in isolation, across all three experiments. In experiment
one, we concluded asking whether an utterance sounds appro-
priate in context is not the same as asking whether it sounds
natural. We believe the boost in rating is caused by the task
specification, as Clark et al. suggested. This could be because
the term appropriate is open to interpretation by listeners as
textual appropriateness or prosodic appropriateness.

We tested whether context dependent targets received a
boost in rating when their context was provided. The results
from experiment two suggest this is not the case: this context-
dependency of text does not play a significant role in listeners’
ratings. This does not mean that participants were not taking
the text into account at all. All our sentence pairs (an example is
in Table 1) fitted together contextually, whether the target con-
tained anaphoric reference or not: so all target sentences were
appropriate in context, and listeners’ ratings may reflect that.
Of course, if they were only rating the text, we would expect
the same high MOS across all stimuli, which was not the case:
the speech did also matter. A future experiment could manipu-
late semantic or syntactic mismatch between context and target.

In experiment three, we tested whether MOS is sufficiently
sensitive to measure differences in prosodic realisation. Clark et
al [8] showed that varying the contexts between natural speech,
synthetic speech and just text led to changes in MOS rating.
They postulated that this was due to quality mismatches, with
natural speech lowering the perceived quality of the following
synthetic target. Our experiments exclusively used synthetic
speech and did not vary the context utterance, so we can rule
out any effects caused by differing contexts. We found that
participants rated prosodically non-canonical targets as signifi-
cantly less natural in isolation than canonical targets: so MOS
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is sensitive to the difference. Our stimuli generally had sub-
stantial prosodic differences (the non-canonical renditions were
very different to the canonical ones), so we are unable to say
whether MOS would be sensitive to more subtle differences.

But, unexpectedly, both non-canonical and canonical tar-
get utterance received significantly higher ratings for appro-
priateness when presented in context, than identical utterances
presented in isolation and rated for naturalness. Sometimes,
a non-canonical form may indeed sound unnatural if heard in
isolation, unless a very specific context is provided in which it
sounds felicitous. Our stimuli, however, were constructed to en-
sure that the non-canonical renditions were infelicitous to their
contexts, which is why we did not expect ratings of appropri-
ateness to still be higher.

We would also like to extend this study to implicit measures
of speech processing, such as reaction time word monitoring
tasks, for example to evaluate which prosodic realisation leads
fastest processing.

7. Conclusions
We replicated the most interesting finding in [8]: that synthetic
speech is rated more highly in context. We investigated the
source of this effect, considering the instructions to listeners,
textual context-dependence and prosodic felicity. We found that
the wording of instructions had a significant effect on the final
MOS score. Instructions that asked listeners to rate natural-
ness resulted in the same rating regardless of whether utterances
were presented in isolation or in context. In contrast, asking
listeners to rate appropriateness of utterances presented in con-
text resulted in a rating higher than the naturalness score, as in
[8]. Naturalness and appropriateness are fundamentally differ-
ent things. It is important, when reporting listening test results,
to also report the exact wording of instructions to listeners.

To understand how listeners are interpreting appropriate-
ness, we manipulated the target sentence text. We found no
significant difference in the ratings of context-dependent and
context-independent text. This does not mean that text plays no
role in appropriateness rating. Future research could manipulate
semantic and syntactic factors to gain a better understanding.

We investigated whether MOS is sensitive to prosody,
which will be the main difference between the output of a
context-aware model and a context-independent one. We found
that, for utterances presented in isolation, participants exhibited
a greater preference for canonical renditions, a preference that
was maintained for utterances presented in context. MOS is an
appropriate paradigm for evaluating prosodic differences. This
increase in MOS was also found for non-canonical items, al-
though they were constructed to be less felicitous in context. It
is therefore still unclear what is exactly taken into account in
the appropriateness rating. We would like to extend this work
by including other variations in the instructions to participants,
such as attempting to focus their attention on prosody.
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Abstract
Bilingual English speakers speak English as one of their

languages. Their English is of a non-native kind, and their con-
versations are of a code-mixed fashion. The intelligibility of a
bilingual text-to-speech (TTS) system for such non-native En-
glish speakers depends on a lexicon that captures the phoneme
sequence used by non-native speakers. However, due to the lack
of non-native English lexicon, existing bilingual TTS systems
employ native English lexicons that are widely available, in ad-
dition to their native language lexicon. Due to the inconsistency
between the non-native English pronunciation in the audio and
native English lexicon in the text, the intelligibility of synthe-
sized speech in such TTS systems is significantly reduced.

This paper is motivated by the knowledge that the native
language of the speaker highly influences non-native English
pronunciation. We propose a generic approach to obtain rules
based on letter to phoneme alignment to map native English
lexicon to their non-native version. The effectiveness of such
mapping is studied by comparing bilingual (Indian English and
Hindi) TTS systems trained with and without the proposed
rules. The subjective evaluation shows that the bilingual TTS
system trained with the proposed non-native English lexicon
rules obtains a 6% absolute improvement in preference.
Index Terms: Bilingual speech synthesis, non-native English,
L2 English, lexicon creation, Common phones

1. Introduction
Developing a bilingual text-to-speech (TTS) system [1] is nec-
essary for countries like India where the majority of the pop-
ulation speak more than one language. Generally, this popu-
lation speaks their native language as the first and English as
their second language. The pronunciation of English words by
a non-native speaker is strongly influenced by their native lan-
guage and is most often different from the native English pro-
nunciation [2]. Indian languages, which have a high grapheme
to phoneme correlation (phonemic language), derive pronunci-
ation directly from the spellings of the word. On the contrary,
English is an alphabetic and highly non-phonemic language.
Hence native phonemic language speakers whose pronuncia-
tion is influenced by the spelling of the word often pronounce
English words differently from native English speakers. This
mispronunciation is further enhanced for native speakers from
languages whose phonemes are different from the English lan-
guage. These speakers generally replace the English phoneme
with the closest phoneme in their native language. Given these
challenges, building a TTS system for such non-native English
bilingual speakers requires a lexicon that handles the influence
of the first language on the native English lexicon. However,
due to the lack of availability of such a non-native English lex-
icon [3], existing bilingual TTS systems employ widely avail-
able native English lexicon, in addition to their native language

lexicon, which results in reduced intelligibility and heavily ac-
cented synthesized speech.

Yarra et al. [4] proposed to collect Indian English lexi-
con from the mispronunciations of Indian speakers recording
sentences from the TIMIT database. Multiple phonemes- and
letter-specific context rules were manually identified through
observing pronunciation variations between Indian and origi-
nal TIMIT speakers. The proposed lexicon was evaluated on
the speech recognition task and shown to improve the overall
recognition. However, collecting such parallel data for a large
vocabulary and manually finding the mispronunciation between
the two is a tedious and expensive task. Anju et al. [5] proposed
a transliteration-based method for developing speech synthesiz-
ers for Bilingual Indian English. A mapping was obtained be-
tween native English CMU dictionary phonemes and the Indian
common phone Label Set (CLS) [6] shared across the Indian
languages. The stress markers of the CMU phoneset were re-
moved before this mapping. Further, the words not part of the
CMU dictionary were first transliterated to a phonemic Indian
language. The CLS phoneme sequence was obtained using the
unified parser [7] grapheme to phoneme (G2P) model. In [8],
the phoneme sequence of the CMU dictionary was manually
corrected for the Assamese language accent to develop an As-
samese English TTS system. However, the manual effort of
editing the lexicon is an expensive and time-consuming opera-
tion. In [9], a sequence labelling approach is employed to gener-
ate a pronunciation dictionary using Conditional Random Fields
(CRFs). However, this method needs a substantial parallel cor-
pus of phone sequence mapping between native and non-native
lexicon to train the CRF network.

In this paper, we propose a generic framework to obtain
the rules for mapping the phone sequence of a native English
lexicon to a non-native one. Specifically, the framework aims
to derive non-native English pronunciation for speakers from
native languages that follow phonemic orthography. Although
we study the framework on native Hindi language speaker,
the framework itself should be adaptable to speakers of other
phonemic languages. As the first step, we identify a subset of
highly frequent English words. For these words, a three-way
alignment is obtained between a) the English letter sequence, b)
the CMU phoneme sequence from native English CMU dictio-
nary, and c) the CLS phoneme sequence obtained using unified
parser [7] from the (manually curated) transliterated version of
the English word. Repeating patterns of the aligned triplets of
letter-CMU-CLS phonemes that produce mispronunciations are
manually identified. After that, rules are devised which, wher-
ever relevant, will substitute an original CMU phoneme in a
word pronunciation with a new phoneme that produces the cor-
rect non-native English pronunciation. These rules are applied
on the entire native English lexicon to obtain the corresponding
non-Native English lexicon. We show that the proposed frame-
work provides better non-native English pronunciation than the
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existing frameworks through subjective listening tests.

2. Proposed approach
The proposed approach is studied on a bilingual Indian English-
Hindi dataset [10]. This dataset contains monolingual record-
ings in English and Hindi from the same Male speaker (More
about the dataset in Section 3.1). The English transcripts are
in Roman script, while Hindi is in Devanagari script. The pro-
nunciations for English words were obtained from g2p en1 G2P
model which uses the 39 CMU phoneset. Similarly, the Uni-
fied Parser [7] was employed to obtain the pronunciations for
the Hindi words, that used the 59 CLS phonemes, amount-
ing to 98 phonemes in total for the bilingual dataset. Fur-
ther, motivated by the works of [5], we merged acoustically
similar CMU and CLS phonemes [11]. This merging is in-
tended to address non-native English speakers substituting sim-
ilar phonemes from their native language in place for native
English phonemes. Additionally, reduced phoneset results in
increased training data per phoneme, and consequently better
phoneme modelling. This reduced phoneset has 73 phonemes
and is referred to “EngHinCommon” hereafter. While merging,
care was taken not to merge phonemes whose realization is au-
dibly distinct across Hindi and English languages. The merged
CMU and CLS phonemes are listed in Table 1.

As the baseline for the proposed approach, we trained sep-
arate bilingual TTS systems with the above 98 CMU and CLS
phoneset (Model 1 in Section 3) and the reduced EngHinCom-
mon phoneset (Model 2 in Section 3). The results showed
that the quality of synthesis of Hindi words remained con-
sistent between the two models. However, for the English
words, contrary to the motivation of employing the reduced
phoneset, the non-native English pronunciation improved only
for a few English words compared to Model 1. More de-
tails of these experiments are discussed in Section 3.4.3. As
discussed earlier, a non-native English speaker (whose native
language follows phonemic orthography) takes a cue from the
spelling of the word for pronunciation. For example, The CMU
phone sequence for word /CITED/ is /S AY T AH D/, whereas
a phonemic language speaker, takes a cue from the spelling
and pronounces it as /S AY T EH D/. However, similar to
EngHinCommon phoneset creation, a universal mapping of all
/AH/ to /EH/ will create more problems than it solves. We need
a nuanced approach that goes beyond one-to-one phoneme map-
ping. Motivated by this, in the following section, we explain the
proposed approach to map phonemes based on additional infor-
mation such as English letter identity, position within a syllable,
and letter context.

2.1. Selection of words

The bilingual dataset has a vocabulary of about 7 k words, of
these, around 6.5 k words are English words that are not proper
nouns of Indian origin. A subset of 2 k words from 6.5 k words
of the dataset is chosen based on their being present in the top
10 k most frequent words in an independently obtained Indian
newspaper text archive. It is crucial to select a large number of
words to arrive at accurate and exhaustive rules.

This paper does not study proper nouns of Indian origin be-
cause the native English G2P models fail on these words, mak-
ing it impossible to recover from these errors even after using a
rule-based phoneme mapping. The best way to derive pronun-
ciation for such Indian origin proper nouns is to transliterate

1https://pypi.org/project/g2p-en/

Table 1: Subset of EngHinCommon phonemes that are obtained
by merging CMU and CLS phoneset. Rest of the CMU and CLS
phonemes are used as unique phonemes of EngHinCommon.

them into a phonemic language script and obtain the phoneme
sequence using a G2P model like Unified Parser [7].

2.2. Process of deriving rules

The process of deriving phoneme mapping rules from the above
subset of 2 k English words is described in Figure 1. To obtain
the CLS phoneme sequence for these English words as pro-
nounced by native Hindi speakers we used an online English-
Hindi Dictionary2, which has Devanagari transliteration for sev-
eral of these words. Four native Hindi speakers conducted a
manual verification to match the transliteration with the ac-
tual pronunciation of native Hindi speakers. To avoid any bias
toward the speaker in the training dataset, the verification of
transliteration was done purely based on text. Finally, the CLS
phoneme sequences were obtained from these transliterations
using the Unified Parser [7]. We employ the transliterations
only for the creation of rules. Once the rules are created, they
can be directly applied to any native English lexicon to obtain
their non-native English versions without the requirement of
any transliteration.

Next, we used an alignment algorithm (explained in sec-
tion 2.3) to align the English letters in the words, the CMU
phonemes for the word, and the target CLS phonemes. While
in a large number of cases, source CMU phonemes are exclu-
sively aligned with a single CLS phoneme. In some cases, the
mapping was not exclusive, i.e., the same CMU phoneme was
mapped to different CLS phonemes which are acoustically dis-
tant (e.g. /AH/ → /a/ in some words and /AH/ → /o/ in other

2https://dict.hinkhoj.com/english-to-hindi/
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Figure 1: Block diagram showing the process of deriving rules
and the creation of non-native English lexicon.

words). This ambiguity is the primary reason behind the incon-
sistency between native and non-native English lexicon. In such
cases, we analyzed them further to devise rules for correcting
the lexicons. These rules are based on knowledge of the source
English letter, its position within a syllable, source CMU phone,
and letter sequence context. We aim to propose rules that will
reduce this phoneme mapping ambiguity and come up with con-
ditions under which a particular target phoneme should be used
(explained in the following sections). Finally, after correcting
the lexicon using the proposed rules, all the ambiguous condi-
tions discussed above are handled. After that, the remaining
phonemes in the lexicon that are not yet modified with the pro-
posed rules, are directly mapped to EngHinCommon phoneset
as shown in Table 1.

2.3. Alignment Algorithm

One of the key steps of the proposed approach is to align the
phoneme sequences with the letters. If the number of letters
in English words were precisely the same as the number of
phonemes, their alignment would be straightforward. However,
this is not always the case. Hence we made use of a. Letter
Grouping Heuristics and b. Heuristics for zero distance letter-
phoneme pairs.

a. Letter Grouping: The aim of this grouping is to ob-
tain units of letter sequences that usually correspond to a single
phoneme. The following consecutive letters are always consid-
ered as a single unit - ph, ch, ng, sh, th, er, ow. Further, any du-
plicated consecutive non-vowel letters (Regex: [∧aeiou]{2}),
and sequence of a single vowel letter followed by a vowel let-
ter or letter y (Regex: [aeiou][aeiouy]), are also considered as
single unit.

b. Heuristics for zero distance letter-phoneme pairs: Cer-
tain letter-phoneme pairs are considered as equivalent (eg. let-
ter p ↔ CMU phoneme P, letter unit ph ↔ CMU phoneme F,
letter c ↔ CMU phoneme K, and so on). This equivalence in-

Figure 2: The example illustrates the three-way alignment be-
tween English letters, CMU phone sequence, and CLS phone
sequence obtained from the transliterated English word in De-
vanagari script

formation helps the dynamic programming-based alignment al-
gorithm to output more accurate alignments with better causal
correspondence between letters and phonemes.

Similar equivalence relation between certain CMU and
CLS phoneme pairs is used to finally get a three-way alignment
between English letter sequence ↔ CMU phoneme sequence
↔ CLS Phoneme Sequence. A sample illustration of our align-
ment algorithm is shown in Figure 2 for the word /CALLED/.
Each column of the alignment in Figure 2 is hereafter referred
to as a triplet.

2.4. Triplet Analysis

We analyse the triplets which contain non-exclusive CMU to
CLS phone mapping to identify phoneme mapping patterns.
For example, Figure 3 illustrates patterns where CMU phoneme
/AA/ was aligned either with CLS phoneme /ax/ or with CLS
phoneme /aa/ based on letter context present in triplets. We
check if this knowledge about letters aligned with the CMU
phoneme /AA/ can resolve this ambiguity. After going through
a significant number of words resulting in such triplets, we de-
velop a rule that applies to a large subset of words.

In some cases, to develop a specific rule, we have to refer
to the position of the CMU phoneme within the syllable. The

Figure 3: Simplified illustration of triplet analysis used to derive
the rule which states the condition under which we can modify
phoneme /AA/ to phoneme /ax/
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Table 2: Illustration of sample examples showing sub-set of rules and corrections at phone-level with triplet letter-CMU-CLS phoneme
alignment. Modifications at the phoneme level are displayed in bold font.

Table 3: Summary of proposed rules to map native English lex-
icon to corresponding non-native version.

Source
English
Letter

Source
Phoneme

Sequence(CMU)

Target
Phoneme

Sequence(CLS)

Position
in

syllable

Corrected
words in

CMUdict (%)
Syll rule1 E AH i end 1.9
Syll rule2 O AA ax anywhere 6.4
Syll rule3 O AH o end 2.7
Syll rule4 I AH i end 2.5
Syll rule5 A EH AH end 0.7
Seq rule1 (* U L) (Y AH L) (* u l) anywhere 0.2

Prefix rules sub word old sequence new sequence NA 1
Suffix rules sub word old sequence new sequence NA 19.8

syllable boundaries are obtained using tsylb2 tool3. Syllable
start and end boundaries within a CMU phone sequence are de-
noted using square brackets in Figure 1 and Figure 3. Apart
from syllable level corrections, in some cases, the rule is de-
pendent upon the letter context (letters to the left and right) and
whether that letter sequence occurs within the word or at suf-
fix/prefix locations. From the triplet analysis, it was observed
that for most high-frequency suffixes and prefixes (e.g. auto-,
-ted, -less, -ness, -ment), the Indian English speakers’ pronunci-
ation followed a consistent pattern. Therefore, additional rules
for these suffixes and prefixes (40 rules) were identified from
this analysis. A subset of these rules are depicted in Table 2 and
Table 3.

In general, we have derived three kinds of rules – 1. Syl-
lable level rules, 2. Letter sequence rules, and 3. Prefix/Suffix-
based rules. Finally, using these rules the native English lexicon
is mapped to non-native English lexicon for the Indian English
- Hindi bilingual speaker as shown in Figure 1. It is observed
from these rules that most of the differences between native and
Indian English pronunciation are among vowels, this finding is
consistent with prior work [11, 12].

3. Experiments
3.1. Dataset

We selected a native Hindi Bilingual Male speaker from
IndicTTS [10] database for our experimentation. This dataset
consists of two parts, 9 hours each of monolingual Hindi and
monolingual English dataset, amounting to 18 hours of studio-
quality recording by a professional voice-over artist. The orig-
inal recordings are at a 48 kHz sampling rate. However, all the
studies in this paper are performed at 16 kHz. The genre of the
spoken text is fiction and children’s stories. The transcripts for

3https://www.nist.gov/itl/iad/mig/tools

English is in Roman, and Hindi is in Devanagri script.

3.2. TTS modeling

A neural network-based TTS system is used for all the ex-
periments. A neural TTS system is generally comprised of
a front end and a vocoder. As the fronted, we use the
Tacotron2 (v3) recipe of ESPnet [13], which is an auto-
regressive-based sequence-to-sequence model with a location-
sensitive and guided attention mechanism [14]. The front end
is trained with the phone sequence of the input text and the
80-band Mel spectrogram feature of the corresponding audio,
computed with a 1024 point discrete Fourier transform and 256
sample hop-length. The front end is trained for 250 epochs with
a batch size of 56 on 4 GPUs. The Mel spectrogram output of
the front end is mapped to waveform using the parallel wavegan
(PWG) vocoder [15]. The PWG vocoder is a non-autoregressive
variant of the WaveNet [16] vocoder that has a significantly
faster inference time. We use the publicly available implemen-
tation of PWG, whose code is accessible here4.

3.3. Systems

We train three separate Tacotron2 models with different phone-
sets to evaluate the efficacy of the proposed method while keep-
ing the vocoder fixed across all our experiments.

3.3.1. Model 1

As the first baseline TTS model, we employ CMU phoneset
(unstressed) for English data and CLS phoneset for Hindi. The
unstressed version of CMU is used because Indian languages
are syllable-timed and Indian speakers don’t differentiate for
different stress level [17]. Here a total of 98 unique phonemes
(39 CMU + 59 CLS) are used for training the Tacotron model
and develop bilingual TTS. Refer to Section 2 for more details.

3.3.2. Model 2

A second TTS model is trained to study the effect of using 73
phonemes EngHinCommon phoneset (Refer to Section 2 for
more details) on the pronunciation of English words. Apart
from the number of phonemes, all other model parameters are
identical to Model 1.

4https://github.com/kan-bayashi/ParallelWaveGAN
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Figure 4: Sample of subjective evaluation webpage employed to
compare the pronunciation quality between two TTS models.

3.3.3. Model 3

Finally, we train a TTS model with the proposed phone map-
ping rules as described in Section 2. After that, we map the
exclusively aligned CMU and CLS phones as discussed in Sec-
tion 2.2 to the EngHinCommon phoneset. The proposed rules
correct around 40% of the training data. Model 3 has an identi-
cal phoneset as Model 2.

3.4. Evaluations

Three different subjective evaluations are performed to assess
the above TTS models. The evaluation is restricted to iso-
lated words instead of a sentence to avoid any influence on
the evaluator’s rating by other words in the sentence. During
each evaluation, a subset of English words are synthesized us-
ing two of the above models, and a preference test between
the two is carried out as shown in Figure 4. During the test,
ten native Hindi speakers (also proficient in English) evaluate
the synthesis of the models based on the closeness to the pro-
nunciation of a bilingual Indian English-Hindi speaker. If the
pronunciation of both the models were comparable, the listen-
ers could choose the ‘Both Good’ option, on the other hand,
if both the pronunciations were bad, they could choose the
‘Both Bad’ option. The synthesized recordings of the two mod-
els were shuffled and did not appear in the same order across
the test. All evaluations are done with headphones to ensure
clear perception, and the listeners were allowed to playback
the audio any number of times. The synthesized recordings
used for the subjective evaluations in our paper are available
at https://www.zapr.in/ssw2021/samples.

3.4.1. Evaluation 1

As the first subjective evaluation, we compare Model 1 and
Model 2 to study the effectiveness of the EngHinCommon
phoneme mapping. The listeners rate a randomly chosen subset
of 200 English words.

3.4.2. Evaluation 2

As the second subjective evaluation, Model 2 is compared
against Model 3 to study the effectiveness of the proposed non-
native English lexicon creation. For this evaluation, the listen-
ing test is carried out on three different subsets of 200 words: a)
English words part of the training vocabulary, hereafter referred
to as ‘Dict’ words. b) English words not in the training vocabu-
lary, but the rules have been applied (‘Rules’). c) English words
that were neither part of the training vocabulary nor modified
by any rules (‘OOR’: Out-of-rules).

Figure 5: Results of subjective evaluation indicating the lis-
tener’s preference. The number indicates the percentage of
words in a given evaluation set, falling in one of the categories
– Words for which first model synthesis is preferred; Words for
which second model synthesis is preferred; Words for which
both the models are good; Words for which both the models
are bad.

3.4.3. Evaluation 3

Finally, to complete the comparisons between the three mod-
els, Model 3 is compared with the baseline Model 1. Similar
to Evaluation 2, three comparisons are made with Dict words,
Rules words, and OOR words, respectively.

4. Results and Discussion
All the proposed phoneme mapping rules in this paper directly
influence the lexicon of only the English words. However, to
study if this has affected the modelling of Hindi words during
the bilingual TTS system training, we conducted listening tests
on randomly chosen 200 Hindi words for the three Evaluations.
We observed that the pronunciation was comparable across the
three evaluations.

The summary of the three evaluations conducted on the En-
glish words are shown in Figure 5. In evaluation 1, for 28.9%
of words the listeners preferred synthesis using the CMU and
CLS phonemes, compared to only 9.8% of the words for which
they preferred synthesis using EngHinCommon phoneset. This
suggests that directly mapping individual CMU phonemes to
similar-sounding CLS phonemes does not fix the pronunciation
errors in non-Native English lexicon.

The three listening tests of evaluation 2 shown in Figure 5
prefer pronunciations of the proposed rules (Model 3) over the
EngHinCommon phonemes (Model 2). The Model 3 prefer-
ence is significantly higher for words not part of training vo-
cabulary (‘Rules’), achieving an absolute improvement of 35%
over Model 2. This indicates the effectiveness of the proposed
rules in correcting the native English lexicon for non-native En-
glish speakers. The words in OOR, which had not undergone
any of these rules, also improved slightly. This might be a re-
sult of reduced confusion between lexicon and pronunciation in
the recordings in Model 2. In the Dict words case as well lis-
teners preferred Model 3 over Model 2 (25.1% vs. 17.1%). Ide-
ally, since the ‘dict’ words are phonetically corrected for non-
native English, Model 3 should have got 100% preference over
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Model 2. However, since the lexicon corrections are not speaker
specific, the inconsistency in the speaker’s pronunciation with
the lexicon can be the explanation for this result.

In evaluation 3, we compare the proposed phone rules
(Model 3) with the baseline phones without any mapping
(Model 1). From Figure 5 it is clear that the listeners preferred
the proposed phone rules over the baseline across the three cat-
egories of words. On average the proposed rules obtain a 6%
absolute improvement compared to the baseline.

A statistics of the percentage of the words undergoing each
category of the proposed rules are shown in the last column
of Table 3. We generated the statistics on the standard CMU
dictionary of 130 k unique words. Here we see that around
35% of the words are getting corrected by the proposed rules
(these numbers are excluding the EngHinCommon phoneme
mapping). A category-wise statistics are also shown in that ta-
ble. Further, the actual percentage of training corpus words that
get changed depends on the frequency of these dictionary words
in the corpus.

5. Conclusion
In this work, we have proposed a method to create a non-native
English lexicon for Bilingual TTS. We came up with a system-
atic approach to do triplet analysis which helped uncover incon-
sistency between native and non-native English lexicons. The
proposed method involved limited manual effort in the translit-
eration of English words from Roman script to Devanagari
script. An additional manual effort was required for the analysis
of the mismatch between the phoneme sequence of native and
non-native pronunciation, to create multiple rules. Formulating
these rules based on this mismatch doesn’t require a phoneti-
cian’s expertise. Finally, we showed that proposed non-native
lexicon creation helped to improve the synthesis quality of bilin-
gual TTS models with Indian-English and Hindi language pairs.
This method can be easily applied to any phonetically ortho-
graphic language. Moreover, a reduced phoneset, as used in
the proposed method, will improve the speech synthesis in low
resource languages. With more data per phoneme, the trained
model will be robust. While we have tried to come up with
an exhaustive set of rules, some undiscovered rules may still
be there, which can be considered as part of future work. The
proposed lexicon generation approach can be extended to im-
prove the performance of an Indian English Automatic Speech
Recognition system.
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Abstract

Previous work on cross-lingual transfer learning in text-to-
speech has shown the effectiveness of fine-tuning phonemic
representations on small amounts of target language data. In
other contexts, phonological features (PFs) have been suggested
as a more suitable input representation than phonemes for shar-
ing acoustic information between languages, for example in
multilingual model training or for code-switching synthesis
where an utterance may contain words from multiple languages.
Starting from a model trained on 14 hours of English, we find
that cross-lingual fine-tuning with 15 minutes of German data
can produce speech with subjective naturalness ratings compa-
rable to a model trained from scratch on 4 hours of German,
using either phonemes or PFs. We also find a modest but sta-
tistically significant improvement in naturalness ratings using
PFs over phonemes when training from scratch on 4 hours of
German.
Index Terms: speech synthesis, low-resource, cross-lingual,
transfer learning

1. Introduction
Phonemes are often used as atomic input symbols to text-to-
speech (TTS) systems as an explicit representation of the pro-
nunciation of input text [1]. This is useful even for large neu-
ral sequence-to-sequence models which have the capacity to
learn implicit pronunciation models directly from text inputs but
which may make mistakes compared to grapheme-to-phoneme
(g2p) conversion models trained on high-quality lexicons [2, 3].
Such large TTS models are typically trained using tens of hours
of audio data with associated text transcriptions, which along-
side the specialist linguistic knowledge required to convert raw
text into phoneme strings are expensive resources to attain and
limit the application of these models to a small proportion of
the world’s 7,000 languages.

For languages with minimal data resources for TTS model
training, we might instead consider fine-tuning an existing
model from another language with much more data available. In
a phoneme-based system, input embeddings for phonemes com-
mon to both languages may be initialised in the target-language
model by copying source-language parameters directly. For
phonemes unique to the target language, however, some ad-
ditional method is required to determine whether any particu-
lar source phoneme may provide a suitable starting point. In
[4], a learned mapping is compared to a unified symbol space
constructed by aligning phoneme symbols in each language us-
ing linguistic expertise, with both approaches achieving similar
naturalness ratings when initialised from a model of 24 hours
of English speech and fine-tuned with 15 minutes of Mandarin
data. These fine-tuning approaches outperform a baseline with

random initialisation of Mandarin phoneme embeddings.While
the learned phoneme mappings were found largely to corre-
spond with expert mappings, some target-language phonemes
went unmapped due to low confidence in the suggested source
phoneme and still had to be initialised from scratch. This fol-
lows from the atomic nature of phonemic input symbols, such
that automatic phoneme mapping is an all-or-nothing approach.

An alternative approach is to decompose phonemic symbols
into sets of distinctive phonological features (PFs) correspond-
ing to articulatory attributes such as tongue position, degree
of closure and voicing [5]. This representation reveals shared
characteristics between phonemes which are not evident when
considering only their atomic symbols in a transcription sys-
tem such as the International Phonetic Alphabet (IPA) [6], and
makes it possible to transfer learned embeddings for individ-
ual features between languages and so compose representations
for target-language phonemes completely unseen during source
model training. Previous work has used PF representations to
share acoustic information between languages during multilin-
gual model training for LSTM-RNN [7, 8] or feed-forward [9]
neural network acoustic models. These models typically in-
clude PFs as part of a wider set of linguistic features, sometimes
including phoneme labels as well, drawn from a unified symbol
space across all training languages. In [7], for example, this data
pooling approach using PFs was found to improve naturalness
ratings for low-resource languages relative to individual voices
trained using only data from those languages.

Our work is closest to that of [10], who use PFs in an
encoder-decoder model with attention based on [11] to enable
zero-shot synthesis of code-switched speech. They showed that
a model trained on one language can be used to generate intel-
ligible speech in a completely unseen target language with no
acoustic training data available. Although they evaluated their
system in an extreme setting with entire utterances comprised
of target-language words, the work was motivated by the need
to handle individual vocabulary items being embedded within
source-language utterances, for example foreign names. We are
directly interested in synthesising full utterances in the target
language, and so apply a similar method in a transfer learn-
ing context, starting from a high-resource English source model
and fine-tuning with either 15 minutes or 4 hours of transcribed
German data. Also similar to [10], we rely on considerable lex-
ical resources for g2p conversion prior to PF expansion, so that
‘low-resource’ in our case refers primarily to this relatively lim-
ited availability of transcribed speech data.

2. Phonological features
We use a set of binary phonological features derived from those
introduced in Chomsky and Halle’s Sound Pattern of English
(SPE) [5]. In this formalism, each phoneme is represented as a
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binary vector of 24 features as listed in Table 1. Of these, 19
are a selection of SPE features which adequately describe the
phonetic inventories of English and German, and are essentially
phonological in nature. We also add 5 features to capture as-
pects of input text strings, for example representing the end of
a sentence or other prosodically-relevant punctuation types.

Table 1: SPE-style phonological features.

Category Features

Major class syllabic, consonantal, sonorant
Cavity coronal, anterior, high, low, front, back,

round, nasal, lateral, constricted glottis
Manner continuant, tense, delayed release
Source voice, strident, subglottal pressure
Text space, end of sentence, question, exclama-

tion, other punctuation

Following discussion in [5, pp. 353–355] on the treatment
of glides relative to high vowels, e.g. /j/ vs. /i/, and to ac-
count for syllabic consonants, e.g. /n

"
/ in ‘button’, we replace

the original SPE vocalic feature with syllabic. We also add an
explicit front feature for horizontal tongue body position along-
side back to allow for distinction of central vowels in our feature
system, e.g. open-mid front /E/ [+front, −back] vs. central /3/
[−front,−back]. All other features and mappings between pho-
netic segments and phonological feature vectors follow closely
with those laid out in [5].

For a concrete example, consider our scenario of fine-
tuning a high-resource English model using a small amount of
German data. Both languages’ phonemic inventories include an
unvoiced velar plosive /k/, while only German natively makes
use of an unvoiced velar fricative /x/. These two sounds share
many features, both being produced at the same place of ar-
ticulation in the mouth with the back of the tongue raised and
without vibration of the vocal folds. The main difference be-
tween the two is the degree of closure in the oral cavity, with
transient but complete interruption of airflow in the case of /k/
compared to narrowing of the vocal tract enough to generate
turbulent airflow and constant noise for /x/. If we were only to
consider the atomic symbols /k/ and /x/, for example by con-
verting them to one-hot indices in a neural embedding table,
these similarities may not be apparent, and we would have to
make hard decisions about a possible mapping between these
sounds if we wanted to transfer acoustic information learned on
English data to our German model, as in [4]. In our PF represen-
tation, on the other hand, these two phonemes differ only in the
specification of the feature continuant, which is − for /k/ and
+ for /x/. As such, at the beginning of our fine-tuning regime
the encoder of our German model is initialised with a represen-
tation of /x/ which already contains much information learned
from the English /k/, supplemented by [+continuant] English
phonemes such as /s/. Although we do not test it formally here,
we find these initial representations to produce somewhat intel-
ligible German speech even before any target-language data has
been seen by the model, as in [10], albeit retaining our English
source speaker’s vocal quality and accent.

Our binary feature representation largely overlaps with that
used in PanPhon [12], and differs from the multi-valued fea-
tures used in [10], which map more directly to IPA categories
such as vowel frontness or consonant place. While our feature
set gives a more compact representation, with 24 features vs.

60 in [10] (after conversion to binary vectors), it is perhaps
less interpretable in familiar linguistic terms, for example with
the palatal place of articulation feature in a multi-valued repre-
sentation instead being composed from [+high, −low, −back]
feature specifications in our system. Previous work on phono-
logical feature detection from speech [13] found similar perfor-
mance between an SPE-style binary feature system like ours
and multi-valued features, and [8] showed improvements for
multilingual TTS training using inputs augmented with PFs of
both kinds, suggesting that either formalism may be adequate
for speech processing tasks.

3. Methodology
3.1. Speech data

For our English voice we use part of the M-AILABS Speech
Dataset [14], from the female US speaker mary ann. We only
use recordings from the northandsouth text, as other recordings
from this speaker have a slight reverberant quality. For Ger-
man, we use the CSS10 dataset [15], which provides a single
female speaker. Both corpora are drawn from non-professional
audiobook recordings made as part of the LibriVox project [16].

The CSS10 German corpus comprises 16 hours of speech
sampled at 22.05 kHz, whereas M-AILABS provides 18 hours
sampled at 16 kHz. For our English source models we ran-
domly sample 14 hours (hereafter labelled 840 minutes) from
M-AILABS as a training set and 90 minutes for validation. For
German, we sample training sets of 15 minutes and 4 hours (240
minutes) and validation sets of 5 and 20 minutes respectively to
match the low-resource training setting [17]. A disjoint set of
70 utterances is held out to synthesise listening test stimuli. All
German utterances are downsampled to 16 kHz to match the
English data. Table 2 summarises these data partitions.

Table 2: Dataset summary: total number of utterances, average
length in phonemes and average duration in seconds.

Dataset Utterances Phones Duration

EN-train-840 6975 97 7.23
EN-val-90 754 98 7.16

DE-train-240 1698 102 8.48
DE-val-20 153 94 7.85

DE-train-15 103 106 8.76
DE-val-5 38 98 8.12

DE-test 70 87 7.51

As part of dataset selection, we exclude from the English
data any utterances with raw text transcriptions longer than 200
characters, and from the German any transcripts longer than
170 characters. This only serves to remove outliers from each
dataset, and does not affect the overall distribution of observed
transcript lengths. We also exclude any utterances from M-
AILABS with digits in their raw transcripts, since we found the
normalised transcripts provided did not match the words spo-
ken in several instances. For German test utterances, we select
only those with transcripts ending in some kind of intonational
phrase-final punctuation p ∈ {.!?; }. We do this to increase the
proportion of test stimuli which correspond to complete sen-
tences, given that the CSS10 corpus was created by automati-
cally segmenting long audiobook chapters and is not guaranteed
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Figure 1: German-specific phoneme frequencies for different
subsets of CSS10 data.

to have a one-to-one correspondence between segmented utter-
ances and source text sentences.

When sampling German training subsets, we first sort utter-
ances by how many phonemes they contain which are specific
to German and therefore unseen during English source model
training. We then select utterances starting with the most unseen
phoneme types (out of 9 total) until the target dataset duration
is met, so maximising training examples for these phones in our
low-resource setting. We consider this a valid approach when
some lexical resources are available in the target language, since
prompt selection in this way can be done before recording any
audio. Sorting by unseen phoneme type counts tends to give
a greater increase in relative frequency of the least frequent
phones, whereas sorting by token counts instead boosts the most
frequent unseen phones. Figure 1 shows the effect of this proce-
dure when sampling 15 minutes of German audio; the effect is
reduced for 240 minute subsets, as even random sampling be-
gins to exhaust the supply of the least frequent phones in the
data. Type counts also restrain the tendency to select longer ut-
terances compared to token counts, although as seen in Table
2 German training utterances are still slightly longer on aver-
age than validation utterances, which are not sorted by unseen
phoneme counts before sampling.

3.2. Grapheme-to-phoneme conversion

To encode inputs using phonological features, we first need to
convert input text to IPA phoneme strings. Where possible, we
look up pronunciations in a lexicon: the General American sur-
face form of Combilex [18] for English and the German lexi-
con from MaryTTS [19], mapping their individual phone sets
to IPA symbols. To handle out-of-vocabulary items in each
language we train g2p models from these lexicons using the
Phonetisaurus toolkit [20].

3.3. Model details

We use a modified Tacotron 2 [11] architecture to predict acous-
tic features from text, based on the Mozilla TTS implementa-
tion [21]. Following [10], in our PF-based models we replace
phoneme embeddings with a single linear layer over binary fea-
ture inputs, with matching 512-dimensional hidden represen-
tations. Mozilla TTS retains the reduction factor used in the
original Tacotron [22], predicting r output frames per decoder
step. We had better results training our English source model
with r = 2, predicting frames in pairs rather than individually
as in [11], and use the same reduction factor when fine-tuning
German models. All other architectural details match [11].

We train English source models for 100k steps, using a Rec-

tified Adam optimiser [23] with batch size 32 and learning rate
1 × 10−4. German-only models use the same training hyper-
parameters but run for 60k steps, and fine-tuned models run for
60k steps with a learning rate of 3 × 10−5. In this way, all
German models using the same data split have equal exposure
to training examples in that language, and we can evaluate the
potential of each model and training scheme in matched data
settings. As 240 minutes of speech is much less than is typ-
ically used to train sequence-to-sequence neural TTS models
such as ours, we were concerned to ensure that our German-
only models were adequately trained for fair comparison with
the fine-tuned models which also see 14 hours of English data.
The cutoff at 60k training steps was chosen to enable strong
alignments between input and output timesteps to be learned by
the German-only models, which we found to be the major factor
preventing gross synthesis errors for those systems.

When fine-tuning phonological feature-based models,
which we label F-{15,240}-ft depending on amount of German
data used, all model parameters are copied directly from the
English source model, since PF inputs are completely shared
between the two languages. For phoneme-based models (P-
{15,240}-ft), we copy learned English embeddings directly for
all shared phonemes. For German-specific phonemes, we fol-
low [10] and initialise their embeddings with the closest English
phoneme largely according to PF specifications. This presents a
stronger baseline to test PF systems against compared to leaving
them with untouched random initialisations from the English
pre-training stage. Figure 3(b) indicates the English phonemes
selected to initialise German-specific phoneme embeddings.

We found that stop token prediction did not fare well when
transferring from English to German. Fine-tuning this compo-
nent led to 69% of synthesised utterances from 240-ft systems
and 17% from 15-ft hitting an upper limit on decoder steps,
often producing audible ‘babbling’ for the additional duration
following synthesis of text prompts. This may be caused by
mismatches in utterance-final prosody or other acoustic differ-
ences between English and German, or perhaps the increased
proportion of sentence-fragment utterances in the German data
compared to English. Models trained from scratch on our Ger-
man data didn’t exhibit this issue to the same degree, and re-
initialising stop token projection weights rather than transfer-
ring from English source parameters during fine-tuning largely
addresses the problem. Synthesis of our final 15-ft test stimuli
saw no utterances reaching the maximum decoder steps, while
the proportion in 240-ft systems was reduced to 17%.

We also train a Parallel WaveGAN vocoder [24] on our En-
glish dataset to generate audio from predicted acoustic features
(implementation based on [25]). This model is trained as de-
scribed in [24], for 400k training steps. We find the vocoder to
transfer well to the unseen speaker in our German data with-
out additional fine-tuning (cf. discussion in [26]), though since
vocoder training requires only audio and extracted acoustic fea-
tures and not aligned text transcripts, target-language vocoder
training could be viable even in a low-resource setting.

3.4. Listening tests

We evaluate system performance by conducting MUSHRA-
style listening tests [27]. Each test panel comprises multiple
versions of the same utterance synthesised by each system un-
der test, plus a natural speech reference (recorded by the same
speaker used in training) and vocoded speech using mel spectral
features extracted from the reference (copy synthesis). Natural
speech is presented as an explicit reference and also included as
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Figure 2: MUSHRA naturalness ratings per system. Central
bars indicate median ratings with 99% confidence intervals,
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sults for each system. Outliers are marked with +.

a hidden reference among other test samples, randomly ordered.
Given the difficulty in identifying a suitable ‘anchor’ stimulus to
serve as a lower bound for expected quality in speech synthesis,
no such stimulus is included in our tests; each panel therefore
contains 9 audio samples in total. Participants are asked to lis-
ten to the reference and then to provide a rating from 0–100 for
each test sample reflecting how ‘natural’ they sound compared
to the reference. To proceed to the next panel, at least one sam-
ple must be rated at 100 on the naturalness scale.

We recruited 40 participants through Prolific, filtering for
native speakers of German, and conducted listening tests on the
Qualtrics survey platform. Each participant completed 16 pan-
els randomly allocated from our held-out set of 70 test utter-
ances, with each utterance being rated by 9 or 10 participants
in total. The average test duration was 35 minutes, and partici-
pants were paid £5 for their time.

4. Results
4.1. Subjective evaluation

The MUSHRA naturalness ratings for each system gathered
through our subjective listening tests are shown in Figure 2. All
systems present a wide range of participant ratings, including
copy synthesis and even the hidden reference natural speech to
some extent. We did not find any systematic source for this
(e.g. particular stimuli or participants), and attribute it to natu-
ral variation in subjective ratings. Audio samples of test stimuli
are available online.1

We test for significant differences between systems using
double-sided pairwise Wilcoxon signed-rank comparisons, ap-
plying the Bonferroni correction with α = 0.01 (for 28 pair-
wise comparisons, significance is found at p < 0.00036). Both
F-240-ft and P-240-ft are significantly more natural than all
other TTS systems, but there is no significant difference be-
tween them. The two systems fine-tuned with 15 minutes of
German data are not significantly different from each other or
either of the two systems trained on 240 minutes of German data

1https://dan-wells.github.io/pf-tts

only. The German-only system trained with PF inputs (F-240)
is significantly more natural than the equivalent system using
phonemes (P-240).

From these results, we see that by fine-tuning a source
model trained on a high-resource language with as little as 15
minutes of annotated speech data in the target language, it is
possible to match peformance against a system trained on 240
minutes of data from the target language alone. Furthermore,
significant improvements in naturalness of the synthesised voice
can be found by increasing the amount of fine-tuning data to 240
minutes. This is true for both phoneme- and PF-based systems,
confirming previous results on fine-tuning from phoneme inputs
in [4] and effectively extending the method to PFs with their
more flexible and straightforward method for initialising target-
language encoder representations compared to atomic phoneme
mappings. We also find that, in the absence of a source model
in another language, PFs can give a significant boost to natu-
ralness ratings compared to phonemes in a low-resource setting
with 240 minutes of target-language data.

4.2. Input embeddings

To analyse the learned representations of phonemes in our mod-
els, we project input embeddings to two dimensions using
UMAP [28], as shown in Figure 3. We encourage somewhat
more local structure in our projections by reducing the default
number of neighbouring points considered in the reference im-
plementation of UMAP from 15 to 5, based on the intuition
that individual phonemes are typically more closely related to a
small subset of other sounds in any particular phoneme inven-
tory in which they may be found. For clarity in Figures 3(a) EN
P-840 and 3(c) DE P-240, we exclude the randomly-initialised
embeddings of phonemes from the other language (which are
never updated during training for these systems) when project-
ing the embedding spaces. Although UMAP is a stochastic al-
gorithm, we found the projections of our learned embeddings to
be quite consistent across multiple runs.

There is some apparent structure for both phoneme and
PF representations, with vowels and consonants grouped sep-
arately, distinct consonant classes grouped together (plosives,
fricatives and nasals especially) and voiced and unvoiced con-
sonants at the same place of articulation lying close together.
Some higher-level relationships appear important for PF pro-
jections, for example with vowels seemingly arrayed primar-
ily along an axis of rounding and within those [±round] clus-
ters by frontness and height. For consonants, the back feature
also appears to be significant above manner of articulation, with
[+back] plosives /k/ and /g/, fricatives /ç/ and /x/ and the nasal
/N/ tending to be separated from their anterior counterparts.

Interesting differences may be seen in the behaviour of the
two German-specific fricatives, velar /x/ and palatal /ç/, be-
tween the P-240 model trained only on German data and P-240-
ft which was fine-tuned from English phoneme representations.
In P-240, these sounds are grouped closely together with other
fricatives, and are quite apart from any plosive consonants. In
the fine-tuned model, on the other hand, the separation between
fricative and plosive is less clear, specifically with velar plo-
sives /k/ and /g/ appearing close to /x/, while /ç/ is somewhat
separated from the other fricatives along with /S/. Notably, these
two phonemes were initialised from the learned English embed-
dings for /k/ and /S/, respectively. If we consider other German-
specific phonemes and the corresponding English phonemes
from which they were initialised, there is apparently very lit-
tle movement from the English starting points in all cases. This
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Figure 3: UMAP projections of input symbol embeddings for English and German models using phonemes (a–c) and PFs (d–f).
German-specific phonemes are marked by circular outlines, and English phonemes used to initialise their representations in (b) by
squares. Unseen German phonemes are included in (d) to show that novel combinations of PFs also produce sensible representations.

could be a result of the high-dimensional (512) phoneme em-
bedding space used: in such a large representational space,
it may be possible to adapt a plosive /k/ to sound adequately
like its corresponding fricative /x/ by making small perturba-
tions in many dimensions. This high-dimensional perturbation
might not then be preserved during low-dimensional projection
as we have done here. By comparison, these phonemes pat-
tern consistently across both DE models trained from scratch
and through fine-tuning when using PFs, as well as in EN F-
840, where they were completely unseen during training. This
supports the notion that PFs should be a stable representation
cross-linguistically, backing up observed improvements in mul-
tilingual training contexts in [7, 8].

5. Conclusion
In this work, we experimented with phonological feature vector
inputs to TTS models in a transfer learning context. We con-
firmed previous results which showed that cross-lingual fine-
tuning is a viable method for training synthetic voices with lim-
ited amounts of target language data, with source models trained
on 14 hours of English being adapted using 15 minutes of Ger-
man data matching the subjective naturalness ratings of models
trained from scratch using 4 hours of German data only. We
found this result to hold for PFs as well as phonemes, but con-
sider PFs to bring practical benefits with regard to ease of pa-
rameter sharing in this transfer learning context. We also found

a small but statistically significant improvement in naturalness
ratings when training a voice from scratch on 4 hours of German
data using PFs over phonemes.

While the models trained here may be called ‘low-resource’
in terms of annotated speech data available in the target lan-
guage, we still rely on considerable lexical resources for
grapheme-to-phoneme conversion of input text before we can
expand IPA symbols to PFs. Future work may consider the
application of recent approaches to multilingual g2p systems
[29] as part of this low-resource pipeline, or make use of ad-
ditional pre-existing linguistic resources such as the PHOIBLE
phonological inventory database [30]. Following our analysis
of learned input embeddings, we would also like to investigate
more constrained embedding spaces to encourage more effi-
cient parameter sharing, especially for phonemes which remain
a common choice of input representation for TTS.
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Abstract
Obstruent consonants have been investigated in speech qual-
ity assessment studies of natural speech, where enhancing their
perception has improved overall speech quality. This paper
presents a comparative analysis of acoustic-phonetic features of
obstruent consonants in synthetic speech. Features for obstru-
ent consonants are identified where TTS systems differ signifi-
cantly from a natural human voice, as a function of quality.

The synthetic speech voices from the Blizzard Challenge of
2013 are used for this investigation. TTS systems were first as-
signed groups based on their MOS rating (quality) and shared
TTS technique (family). Then, acoustic-phonetic features char-
acteristic of contrastive properties in obstruents, were extracted
from all systems. While quality differences between low-rated
systems and high-rated systems were observed in a large num-
ber of features, we report those where statistically significant
differences (p-val < 0.001) were observed between the systems.
Where quality effects were not found, we investigated whether
systems of the same family exhibit similar behaviour. Finally,
individual systems within a group were examined for their dif-
fering influence on the acoustic-phonetic feature set of obstru-
ents. Here, we found that HMM systems with similar MOS
ratings do not differ in their acoustic realization of obstruents,
while Unit Selection systems showed stronger individual sys-
tem variability.

A comparative analysis of obstruent consonants across
TTS systems applies techniques from the domain of corpus-
phonetics to the task of speech synthesis evaluation. Identify-
ing phonologically relevant acoustic features, may indicate the
underlying articulatory process compromised in those systems,
that correlates with the distorted acoustics.

1. Introduction
Methods in speech synthesis evaluation have looked at a va-
riety of tools and techniques to analyze synthetic speech in
recent years. Some techniques assess the efficacy and scala-
bility in real-world scenarios, like interactive avatar-based set-
tings [1] and long-form, paragraph-level sentences [2]. Ob-
jective measurement-based techniques use comparative features
like mel cepstral distortion, and the PESQ family of ITU-T stan-
dards to predict speech quality compared to a natural voice
as reference. Such tests reduce the dependence on expen-
sive human-based listening tests. Machine-learning based tech-
niques such as AutoMOS [3] go even further in modelling hu-
man responses and reduce the dependence on parallel natural
speech as reference [4,5]. Electroencephalography (EEG) [6,7]
and pupillometry [8] based measurements have explored the re-
lationship between behavioural/neuronal responses of human
participants and synthetic speech quality. To compare the per-
ceived qualities of different TTS techniques, comparative MOS

and MUSHRA based perceptual judgements have been con-
ducted [9, 10].

Each of these techniques has advantages - ranging from
practical environments, to cost-effective techniques, to con-
tributing to knowledge of quality in speech perception. How-
ever, a feature-based comparison of systems using acoustic-
phonetic attributes of the signal is largely missing from the dis-
cussion.

A central question in the domain of acoustic-phonetics is
to identify those features in the signal that can contribute to the
perception of contrast between speech sounds. For example, the
low-frequency energy region before the release of the consonant
allows us to perceive the difference between the utterances ”take
a pull” and ”take a bull”. While contrast may not necessarily be
the target percept in studies of speech naturalness or quality,
contrastive features encode rich information about the charac-
teristics of speech sounds. Comparing TTS systems using these
features can provide us with insights into system weaknesses,
such as poor reproduction characteristics for specific types of
consonants.

This paper is the first work we know of that applies tech-
niques from the domain of corpus-phonetics to the task of
speech synthesis evaluation. The dataset used for this anal-
ysis is the Blizzard Challenge 2013 (BC-2013), which is a
single-speaker, parallel database, covering a variety of TTS
techniques. Systems of BC-2013, have been grouped on the ba-
sis of their shared TTS technique (family) and MOS (quality).
Comparative analysis between these groups has been conducted
across each obstruent feature, with the original human voice as
the reference. The method used is fully automatic, inexpen-
sive and easily reproducible, even at a large scale. We envis-
age that such an approach can give speech synthesis researchers
much greater insights into how the synthetic speech their sys-
tem produces may be perceived, before conducting subjective
evaluation. Features identified in this analysis can be used for
comparison between different TTS techniques, system qualities
and individual differences between systems.

The paper is organized as follows: Section 2 discusses the
properties of obstruent consonants, and the motivation for their
choice in this study. Section 3 gives a detailed description of
the experimental procedure, entailing the dataset, the feature ex-
traction, and the statistical model. Section 4 presents the results
and Section 5 the discussion. Section 6 concludes the paper.

2. Why study obstruents?
Obstruent consonants are a major phonological class of conso-
nants, accounting for 6 distinct phoneme types for stops, [p, t,
k, b, d, g], 9 for fricatives, [f, v, T, D, s, z, S, Z, h], and 2 for
affricates [Ù, Ã] in English. Obstruents cover a large portion
of the consonantal region in any language or dataset. Cross-
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Bilabial Labiodental Dental Alveolar Postalveolar Velar Glottal

Stop p b t d k g
122 130 519 402 191 78

Affricate Ù Ã
35 32

Fricative f v T D s z S Z h
130 122 53 219 314 172 96 1 218

Table 1: Frequency distribution of obstruent consonants in the 100 sentences of BC-2013 corpus. Each system has an identical
distribution. The rows represent the manners of articulation, while the columns represent the places of articulation.

linguistic evidence [11] suggests that obstruents cover between
two-thirds and three-quarters of the frequency in phoneme in-
ventories across different language groups. In the BC-2013
dataset, obstruents cover 63.9% of the total consonantal pop-
ulation. Their statistical dominance in the dataset makes a com-
pelling case for their analysis.

In addition to their widespread coverage, obstruent con-
sonants have also been evaluated for their contribution to im-
proved speech quality, and poor recognition in noise. In a se-
quence of studies, Li and Loizou [12–14] report that improved
access to obstruents improves intelligibility of speech in noise.
Additionally, obstruent recognition has also been found to be
more impaired in degraded listening conditions [15, 16], com-
pared to sonorants and vowels, whereas the manipulation of
their target cues [17] results in improved recognition. Each of
these studies underscore the critical role that preserving obstru-
ents can play in speech perception in non-ideal listening con-
ditions. In this paper, we postulate that synthetic speech may
be considered as another such non-ideal scenario. Finally, ob-
struents contain many acoustic properties of the speech signal,
which are not found in sonorants. For instance, stops are char-
acterized by complete obstruction of airflow, which results in
a region of silence, followed by a short, high-energy transient
region known as burst. Analyzing stops gives us insights into
how rapid changes of energy within the acoustic spectrum are
handled across different systems. Fricatives do not obstruct the
air completely, but force the air through a narrow constriction.
This results in air flowing out at high volume velocity, resulting
in aperiodic signal with amplitude in high frequencies.

Synthetic speech in BC-2013 contains a range of speech-
qualities, and a large proportion of obstruents. Thus we can
compare systems in terms of their influence on obstruent prop-
erties and explore whether we can uncover relationships with
quality that have been established in natural speech. The next
section describes the details of BC-2013, our feature extraction
procedure and explains the statistical model used for this anal-
ysis.

3. Experimental setup
3.1. Dataset

The Blizzard Challenge (BC) is an international task designed
to compare state of the art corpus-based speech synthesis sys-
tems1. All participating teams are given the same training
dataset. To participate in the challenge, all teams submit the
same prescribed sentences as outputted by a TTS system of their
own design. A subset of these sentences are then evaluated with
subjective listener tests using MOS.

1https://www.synsig.org/index.php/Blizzard_
Challenge

In this study, we use data from Blizzard Challenge 2013
(BC-2013). To generate the test sentences, 5 teams used para-
metric HMM-based techniques (systems C, F, H, I, P), 3 used
Unit-Selection (systems B, L, N), and 2 used Hybrid method
(systems K,M) for synthesis. Each team submitted the same
100 test sentences, which made BC-2013 a rich source for par-
allel synthetic speech, with controlled variability.

For the subjective listener test, 11 sentences were evaluated
by 426 listeners. While many attributes of speech quality were
evaluated, in this work, we focus on the perceived naturalness
of the systems. Overall, system M was rated as the most natural
and most similar to human speech, with a median MOS of 4
on a 5-point scale. Systems K (Hybrid), I, C (HMM) and L, N
(Unit Selection) were the next most highly ranked. System P
(HMM) was considered the least natural, and received a MOS
of 1.2. In our analysis, the full 100 sentences submitted by each
system were used for comparative analysis.

3.2. Feature extraction

This section discusses the feature extraction procedure. First,
we discuss the phoneme and sub-phonemic boundary identifi-
cation in the time domain. Then, we detail the signal processing
specifications required for extraction of features from the noisy
region of obstruents.

3.2.1. Temporal boundary identification

For phoneme boundary estimation, all systems were forced-
aligned using the Montreal Forced Aligner (MFA) [18]. Re-
gions marked for obstruents could now be extracted from the
resultant phoneme boundaries. The most important acoustic
correlates of obstruent consonants are features extracted from
the noisy region of the consonants. While noise continues in
fricatives through the length of the consonant, in affricates and
stops, it follows a region of silence. Therefore, a sub-phonemic
demarcation of the noise region, separated from the silent re-
gion needed to be identified.

While most studies on obstruent contrasts depend on care-
ful, hand-corrected methods for the analysis, it would have
rendered our corpus-based approaches quite unscalable. Sim-
ilarly, toolkits such as AutoVOT [19] require a sample of hand-
annotated training data, and did not provide the best results for
pre-vocalic and intervocalic consonants. However, visually ex-
amining the spectrographic properties of stops and affricates,
we found a sharp increase in amplitude, representing the burst.
To extract this location automatically, we first converted the
consonantal signal to its frequency domain. Then, all ampli-
tude values <1.5 kHz were removed, because energy from the
low-frequency voicing-bar interfered with the estimation of the
energy of the burst. Finally, the remaining frequency-domain
signal was passed through a moving-average filter. Where en-
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ergy of the signal exceeded a threshold of 50-55 dB, and the
point of the highest amplitude in that interval was marked as
the beginning of the noise region. The threshold was decided
upon after examining 20% of the sentences manually.

3.2.2. Feature-set

Acoustic-phonetic properties of obstruents across durational
[20–22] , amplitudinal, spectral [23–25] and transitional cues
[26–28] are well-established in the literature. The feature ex-
traction procedure closely follows the methodologies presented
in Jongman et al.’s seminal work on fricatives [24], and their
recent, and more comprehensive extension into all manners of
obstruents [29]. The present discussion omits transitional cues
and limits the analyses only to the consonantal portion of ob-
struents. The RMS amplitude has also been calculated in the
frequency domain. Also, those cues which cannot be compared
across all manners of articulation (for example, closure duration
is only relevant for stops and affricates) are excluded.

To extract the spectral parameters, all instances of obstru-
ents were first passed through a high-pass filter, so that the anal-
ysis spectrum remains between 550 Hz and 10,000 Hz, to sep-
arate source and filter characteristics [30, 31]. For fricatives, a
full Hamming window was placed at the center of the frication
noise. For stops and affricates, a half Hamming window was
placed at the start of the burst, such that the silence region was
not included. Then, spectral properties were computed using
an 512-point FFT taken over these windowed signals. A brief
description is provided below:-

• Consonant duration:- The duration of the consonantal re-
gion, as returned by the MFA. In the pre-vocalic position, this
region starts with the beginning of the closure, and ends with
the onset of the vowel. Conversely in the post-vocalic posi-
tion, it begins at the offset of the vowel, and follows to the end
of the consonant. The unit of measurement was milliseconds
(ms).

• Noise duration:- For stops and affricates, as described
above. For fricatives, since noise persists through the length
of consonant, the entire region was included. The unit of mea-
surement was milliseconds (ms).

• RMS amplitude:- The root-mean-squared amplitude of the
power spectrum.

• Peak amplitude:- The value of the highest amplitude in the
spectrum. The unit of measurement is dB.

• Peak frequency:- This is the spectral frequency at which
peak amplitude was identified. Its value was measured in Hz.

• Dynamic amplitude:- The difference between the peak am-
plitude, and the minimum amplitude below 2 kHz. The unit
of measurement was dB.

• Spectral tilt:- The frequency domain of the spectrum was
log-transformed, and then a least-squares regression line was
fitted through it. The slope of this line returned the spectral
tilt.

These features were extracted for obstruent consonants
across all the systems, as well as the natural voice, indepen-
dently. The purpose of such an extraction was to compare
these features across all the systems, and to identify those fea-
tures, where the system (or groups of systems, See Section 3.3)
showed significant differences from the natural voice.

R Group Sys. Description

R1 Hybrid-R1 M Hybrid systems with MOS 3-4K

R2
HMM-R2 I HMM systems with MOS 2-3C

UnS-R2 L UnS systems with MOS 2-3N

R3 HMM-R3 H HMM systems with MOS 1-2F
UnS-R3 B UnS systems with MOS 1-2

R4 HMM-R4 P HMM systems with MOS 1
Table 2: Grouping strategy. Rank(R) of the system is decided by
MOS for naturalness. The groups correspond to the intersection
of the rank and the system family (Hybrid, HMM, Unit Selection
(UnS).

3.3. Grouping strategy

As mentioned in the previous section, the BC-2013 provides a
variety of synthetic speech systems, which differ both in fam-
ily and quality. To achieve this comparative analysis, a group-
ing strategy between systems was created. The explanation for
each of the schemes is described below, and a concise descrip-
tion is displayed in Table 2. Systems were first divided into
4 groups: R1, R2, R3 and R4. R denotes ”rank”, which was
decided simply by the obtained naturalness MOS for a given
system. Systems that received MOS in the same interval, i.e,
shared the system quality attribute, were assigned the same
rank. A comparison based only on rank would not have yielded
any family specific insights. Therefore, these groups were fur-
ther subdivided, so that all systems of the same rank and same
family were grouped together. Therefore, the resultant groups
were: Hybrid-R1, HMM-R2, UnS-R2, HMM-R3, UnS-R3 and
HMM-R4, where UnS means Unit Selection. This strategy al-
lowed us to compare high-rated systems with low-rated systems
from the same family. HMM-R4 received poor ratings, and has
not been discussed in this paper.

3.4. Statistical model

A linear regression analysis models the relationship between
two variables. A linear regression analysis with feature value as
the dependent variable, and system group as the predictor vari-
able was conducted for each of the features described in Sec-
tion 3.2. Separate models were created for each feature, such
that the dependent variable changed with every feature in the
model, while the independent variable remained system groups
each time.

It must be carefully noted here, that the feature value calcu-
lated for the natural voice was considered the reference point
(the intercept) in each case. The deviation from this voice
was the comparative metric across which different behaviours
of groups were recorded. A univariate analysis of this type al-
lowed for a descriptive model of system group against features,
where effect of system groups on each feature could be inde-
pendently analyzed, and comparative results could be reported.

4. Results
4.1. Experiment I : Comparing the same families of differ-
ent ranks

The purpose of this experiment is to explore quality differences
between groups of the same family. The groups under compar-
ison are HMM-R2 vs HMM-R3, and UnS-R2 vs UnS-R3. Fea-
tures which showed the most statistically significant differences
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between groups have been identified. Comparative influences of
groups on such features is presented in the subsequent sections.

4.1.1. Comparison between HMM-R2 and HMM-R3

The most informative features for observing quality differences
between HMM-R2 and HMM-R3 were RMS amplitude, peak
amplitude and spectral tilt.

On the basis of RMS Amplitude, we see differences be-
tween HMM-R2 and HMM-R3 across each manner of articu-
lation. In affricates and fricatives, the HMM-R3 systems were
observed to lower the RMS Amplitude. HMM-R2, on the other
hand, did not differ significantly from the natural voice in any
manner of articulation. RMS Amplitude dropped in affricates
by 1.8 dB, and in fricatives by 1.5 dB, with strongly significant
effects (p-val < 0.001). In stops, HMM-R3 systems were found
to increase the amplitude by 0.51 dB, with a moderately signif-
icant effect (p-val < 0.05). Therefore, through these results we
can conclude that poor-quality HMM-R3 systems show lower
amplitude in affricates and fricatives, and marginally higher am-
plitude compared to natural voice. In each case, HMM-R2 was
not found significantly different from natural voice.

The second feature under consideration is the peak ampli-
tude. Similarly as above, HMM-R3 systems are found to lower
the peak amplitude in the context of affricates and in frica-
tives. The peak amplitude dropped in affricates by 2.4 dB, and
in fricatives by 1.4 dB, with significant effects (p-val < 0.01).
HMM-R2 systems, on the other hand, do not differ from the
natural voice in affricates. On the contrary, they are seen to in-
crease the amplitude for fricatives. The behaviour of the two
groups was not different in stops. Therefore, we can learn that
fricatives in HMM-R2 systems exhibit louder maxima of am-
plitude, and HMM-R3 have softer peak amplitudes in affricates
and fricatives alike.

The third feature considered important is the spectral tilt.
In all the manners of articulation, low-quality HMM-R3 sys-
tems increase the spectral tilt with strongly significant effects.
The magnitude of this increase is 1.93 dB in affricates, 4.14
dB in fricatives, and 3.14 dB in stops (p-val < 0.001). In af-
fricates and fricatives, HMM-R2 systems do not differ signifi-
cantly from the natural voice. But in stops, HMM-R2 also in-
crease the spectral tilt. However, groups can still be separable
within this context, because the magnitude of this increase is
much lesser (0.95 dB) than in HMM-R3. Therefore, we observe
that fricatives and affricates have steeper slopes in low-quality
HMM systems across all manners of articulation. But in the
context of stops, HMM-R2 also contribute to this effect.

4.1.2. Comparison between UnS-R2 and UnS-R3

The most important features for comparison between UnS
groups are consonant duration, noise duration and spectral tilt.

Both UnS-R2 and UnS-R3 systems shorten the consonant
duration in the context of fricatives and stops, while affricates
do not show differences in groups for consonant duration. How-
ever, the shortening in high-quality UnS-R2 systems is seen
with a stronger effect (p-val < 0.001), compared to UnS-R3 sys-
tems. In UnS-R2, fricatives are shortened by 7.5 ms and stops
by 5.8 ms. In UnS-R3, on the other hand, fricatives and stops
are shortened by 4.4 ms and 2.6 ms, respectively (p-val < 0.01).
Therefore, we observe here that high-quality UnS-R2 systems
shorten fricatives and stops more than low-quality UnS-R3.

The second feature considered important for UnS quality
comparison is noise duration. Similar to observations for noise
duration, a decrease of noise duration is found in both UnS-

R2 and UnS-R3 groups for all manners of articulation. How-
ever, there are two differences. Firstly, stops show compara-
ble decrease of noise duration between UnS-R2 and UnS-R3,
and therefore are not deemed a reliable context for group dif-
ferentiation. Secondly, although both fricatives and affricates
have different influences of groups, they do so in different di-
rections. UnS-R2 systems reduce the duration of fricatives with
stronger significance, but affricates are shortened in UnS-R3
more strongly. Fricatives in UnS-R2 are shortened by 7.5 ms
(p-val < 0.001), compared to 4.4 ms in UnS-R3 (p-val < 0.01).
On the other hand, affricates are shorter by 7.4 ms in UnS-R2
(p-val < 0.05), and 9.8 ms (p-val < 0.01) in UnS-R3. So here,
we can learn that noise duration is reduced in both UnS-R2 and
UnS-R3 groups, across all manners of articulation. Group dif-
ferences can be seen within fricatives and affricates. But the
direction of influence is not consistent across manners.

The third feature under consideration is the spectral tilt.
Here we see, that UnS systems on the whole lower the spec-
tral tilt, instead of the increasing effect found in HMM systems.
While the effect of lowering is strong and significant in all man-
ners of articulation alike (p-val < 0.001), affricates and frica-
tives show greater separation between UnS-R2 and UnS-R3. In
affricates, UnS-R2 decrease the tilt by 3.3 dB, and UnS-R3 by
7.3 dB. Similarly for fricatives, UnS-R2 decrease the tilt by 5.43
dB, and UnS-R3 by 8.7 dB. Stops, on the other hand, show com-
parable lowering in both UnS-R2 and UnS-R3 groups. There-
fore, this result indicates that low-quality UnS-R3 systems flat-
ten the spectral tilt more than UnS-R2 system, especially for
fricatives and affricates.

4.2. Experiment II : Comparing individual differences be-
tween systems of a group

The purpose of this experiment is to explore individual differ-
ences between systems of the same group. Comparison will
be made under Hybrid-R1 between M and K, under HMM-R2
between I and C, and under UnS-R2 between L and N.

4.2.1. Comparison between individual systems of Hybrid-R1

It is important to note that although M and K are in the same
group, with obtained MOS of 3.9 and 3.4 respectively, that dif-
ference was statistically significant in the BC-2013 evaluations.
The three most important features identified for systemic differ-
ences are RMS amplitude, peak frequency and spectral tilt.

Regarding RMS Amplitude, in the context of affricates, M
was found to lower the RMS Amplitude by 1.7 dB (p-val <
0.001), but K was not found to be significantly different from
the natural voice. However, this trend completely reversed in
the context of fricatives and stops. K was observed to influ-
ence a strongly significant increase the amplitude of 1.72 dB
(p-val < 0.001). But in both of these contexts, M was not found
different from the natural voice. Therefore, affricates are softer
than natural voice in M, and fricatives and stops are louder in K.
So we can see that, although each manner of articulation shows
systemic differences between Hybrid systems, affricates oppose
the trend exhibited by fricatives and stops.

The second feature considered reliable for systemic differ-
ences within Hybrid-R1 is peak frequency. K shows a sta-
tistically significant raising of peak frequency in all affricates,
fricatives and stops context. In affricates, the increase is by
946.23 Hz, while in fricatives, we see an increase of 337.46 Hz.
Finally in stops, although the increase is smallest, of 201.8 Hz
compared to other places, the effect is still strongly significant.
In no context does M differ from the natural voice. Therefore,
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K exhibits maximum amplitude at higher frequencies, while M
remains closer to natural.

Finally, K shows a statistically significant raising of spectral
tilt in each context. The increase was of 1.2 dB in affricates, 5.4
dB in fricatives, and 3.5 dB in stops. M does not differ signif-
icantly from the natural voice in fricatives and stops. However,
greater separation in systems can be seen in affricates, where M
shows a moderately significant lowering of the spectral tilt (p-
val < 0.05). Therefore, K shows a steeper slope in the spectrum,
while M does not differ significantly from the natural voice.

4.2.2. Comparison between individual systems of HMM-R2

Differences between I and C were not found in any feature,
across any manner of articulation. This indicates that systems
I and C have consistent patterns of influence on all the features
across manners of articulation.

4.2.3. Comparison between individual systems of UnS-R2

The first feature to compare differences between L and N is
RMS Amplitude. Differences on the basis of RMS Amplitude
can be seen in all three classes of Manner - i.e., in affricates,
fricatives and stops. In affricates and fricatives, N shows a
strongly significant lowering of RMS Amplitude. The magni-
tude of this lowering is 3.0 dB and 2.9 dB in affricates and frica-
tives respectively (p-val < 0.001). L, on the other hand, does
not differ significantly from the natural voice. Among stops,
the difference is less distinct, because N brings about only a
modest lowering of 0.56 dB (p-val < 0.05).

The second feature under consideration is peak frequency.
Systemic differences can be seen predominantly in affricates,
and modestly in Stops. In affricates, L shows a moderately sig-
nificant lowering of 211.86 Hz (p-val < 0.05), while N does not
differ much from the natural voice. Among stops, although the
systems differ individually, the pattern of affricates is not repli-
cated. Here, both L and N show a lowering of the frequency.
The effect although, is stronger in N, with a lowering of 173.14
Hz (p-val < 0.001), compared to L which lowers by 142.76 Hz
(p-val < 0.01).

Finally, differences based on spectral tilt can be seen in
all three classes of Manner. In affricates and stops, N shows
a strongly significant lowering of 5.55 dB (p-val < 0.001) and
3.15 db (p-val < 0.001) respectively, and L does not differ from
the natural voice. In fricatives, the difference between systems
is less clearer, because both N and L show lowering. However,
a greater magnitude of lowering can be observed in N, of 8.7
dB with a strongly significant effect.

5. Discussion
In the previous section, we saw a detailed description of results
gathered from the two experiments. Spectral tilt can clearly be
seen to show important differences for each of the phenom-
ena under consideration. From Experiment I, it can be seen
that HMM-R3 show increased spectral tilts, while HMM-R2 do
not differ significantly. Similarly, in Experiment II, compara-
tively lower-rated K, and N showed increased spectral tilts, in
the Hybrid-R1 and UnS-R2 groups, respectively. This is con-
sistent with previous findings on flatter spectral tilt contributing
to improved intelligibility [32]. Although there is little agree-
ment on the relationship between naturalness and intelligibility,
we find that spectral tilt appears to differentiate system-groups
based on naturalness as well.

System-family specific results can also be observed on the

basis of spectral tilt, and on consonantal duration. In HMM-
R3 systems, spectral tilt increases from the natural voice. How-
ever, in low-quality UnS-R3 systems, it is seen to decrease more
steeply. Therefore, spectral tilt exhibits quality-specific differ-
ences, but the influence is family-dependent. In terms of per-
ceived speech quality, this indicates a preference for preserving
the spectral tilt, and that deviation in either direction compro-
mises quality.

Another important result can be seen is that UnS systems
show differences based on quality in durational cues, while
HMM systems on the other hand, impact spectral features more.
It may be speculated here that statistical averaging practised in
HMM systems, compromises the necessary variation required
to retain spectral features. From these results, we can also spec-
ulate that the cost function of the unit selection systems favors
shorter units over longer ones. A deeper investigation about
which units have been selected would bring a better insight
about the reason of this trend.

Finally, from Experiment II, we see important individual
variation between UnS-R2 systems, and none whatsoever be-
tween HMM-R2 systems. While systems of HMM-R2 are more
closely rated in naturalness and intelligibility, UnS-R2 have
also received quite similar ratings [33]. Therefore, good-quality
HMM systems rigidly approach statistical averaging and filter
out variation between systems.

6. Conclusion
In this study, we have presented a comparative analysis of TTS
systems from the BC-2013, using acoustic-phonetic measure-
ments extracted from obstruent consonants. 10 systems from
BC-2013 were grouped on the basis of their quality and family.
A linear regression analysis was conducted to establish a re-
lationship between system groups and acoustic measurements,
with the natural voice as reference. Spectral tilt emerged as
the most informative feature, where several different phenom-
ena of quality, family and individual system differences could
be observed. In general, better-rated systems were found to be
associated with flatter spectral tilts, and higher RMS amplitude
values for obstruents. These results were consistent with previ-
ous studies on improved intelligibility.

Avoiding the use of expensive behavioural equipment, we
have been able to connect the domains of phonetics and speech
technology. We have shown that the use of phonetic measure-
ments is useful for a variety of comparison tasks, and the results
are meaningful from a speech production and perception stand-
point. For future work, we will incorporate transitional cues
from adjacent vowels to gain deeper insights into the obstru-
ent behaviour across different systems, especially for analyzing
their concatenative ability. The dataset from BC-2013 will be
extended to include neural voices built using systems such as
Tacotron [34] and FastPitch [35]. A long-term goal of this ap-
proach is to identify more acoustic-phonetic features across dif-
ferent phonetic segments, including non-obstruent consonants,
vowels and dipthongs.

A complete description of segmental properties of paral-
lel synthetic speech can give speech synthesis researchers im-
mediate feedback about the expectation of naturalness in their
systems. These studies can precede subjective evaluation tests,
by informing speech technologists about signal distortion at a
segment and co-articulation level. Finally, from an acoustic-
phonetic point of view, these studies allow us to understand
phonemic properties that remain intact in the signal, despite a
loss in naturalness.
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Abstract

It is still quite challenging for polyglot speech synthesis sys-
tems to synthesise speech with the same pronunciations and ac-
cent as a native speaker, especially when there are fewer speak-
ers per language. In this work, we target an extreme version
of the polyglot synthesis problem, where we have only one
speaker per language, and the system has to learn to disen-
tangle speaker from language features from just one speaker-
language pair. To tackle this problem, we propose a novel ap-
proach based on a combination of multi-task learning and adver-
sarial learning to help the model produce more realistic acoustic
features for speaker-language combinations for which we have
no data. Our proposed system improves the overall naturalness
of synthesised speech achieving upto 4.2% higher naturalness
over a multispeaker baseline. Our qualitative listening tests also
demonstrate that system produces speech which sounds less ac-
cented and more natural to a native speaker.
Index Terms: TTS, speech synthesis, multilingual, multi-task
learning, generative adversarial networks

1. Introduction
The holy grail of Multilingual TTS is to build a truly ‘poly-
glot’ system, which can synthesise native-sounding speech in
multiple languages using any of its voices. This polyglot ca-
pability would enable simple sharing of voices from high re-
sourced languages to low resourced ones, resulting in an overall
improvement of synthesis quality for low-resourced languages
due to transfer learning. However, existing systems are far from
this goal, since existing systems either require using a paral-
lel multilingual corpora, which is expensive to record, or fail to
fully disentangle speaker from language in synthesised speech if
trained on a dataset with only monolingual speakers. In this pa-
per we pursue model-based improvements to multilingual TTS
in the extreme scenario where only one speaker per language is
available.

It is important to tackle the limitations of existing sys-
tems since doing so would enable applications previously not
possible that are both inclusive and key to connecting people
across the globe. For example, polyglot TTS systems can al-
low the creation of personal voices, friends & family voices,
and even celebrity voices in languages not spoken by each re-
spective person. This is very exciting in the case of voice assis-
tants, where it allows users to receive the same voice experience
while maintaining speaker identity across multiple languages.
In the scenarios above, we are usually familiar with the speaker,
which makes us skilled at recognising a speaker’s identity, sub-

∗Work performed while interning at Facebook AI.
† Correspondence to Qing He

sequently this makes the problem of maintaining speaker simi-
larity even more challenging[1].

Both unit-selection [2] and deep neural network [3] based
Multilingual TTS approaches have shown good results lever-
aging large parallel corpora, consisting of 1000s of utterances
per language per speaker. Parallel corpora improve polyglot
synthesis by providing a wide coverage of how a speaker iden-
tity would pronounce phones in each target language. How-
ever, such parallel corpora are costly or sometimes impossible
to procure since voice talents speaking multiple languages are
rare and almost non-existent if we go beyond the most-spoken
languages. Furthermore, even if multilingual voice talents are
available, their proficiencies in their languages are unlikely to
all be at a native level as the authors of [3] found.

Subsequently newer approaches to polyglot TTS have fo-
cused on lessening the need for native-level parallel corpora.
Some approaches have tried using cross-lingual voice cloning
to augment monolingual recordings thereby creating artificial
parallel datasets [4] but these approaches require explicit voice
cloning models, which have faced issues with producing good
quality cross-lingual output.

More recent approaches have sought to train using only
monolingual corpora. The difficulty of training on only mono-
lingual corpora however is that of speaker and language factor
entanglement. Since speakers only speak one language, there is
perfect correlation between speaker identity and language in the
data, making factorisation difficult, and potentially resulting in
the model ignoring the language conditioning feature. This is
problematic however as an acoustic factorisation [5] of speaker
identity and language must be obtained in order for a model
to be able to then generate arbitrary combinations of speaker
and language. The approaches of [6, 7, 8] attempt to achieve
factorisation by representing speaker and language factors as
distinct transformations that are then applied sequentially to in-
put linguistic features. [9, 10] alternatively use speaker and lan-
guage features to condition the decoder of seq2seq TTS systems
and then attempt to achieve a speaker-language factorisation by
training with multiple speakers from multiple languages. The
advantage of this approach is that it forgoes the need for adding
separate modules or layers for different speakers and languages.

In this paper, we focus on the problem of building poly-
glot TTS systems using solely monolingual corpora. Our main
contribution is to further improve cross-lingual voice quality
through the use of additional training losses and tasks. Our
approach, in a similar vein as [9], uses an adversarial loss to
improve multilingual performance, however we apply it to pre-
dicted acoustics to improve the realisation of acoustics in gen-
eral and phones in particular.

Our model architecture is novel but is slightly similar in
concept to [11] that uses a loss term to preserve speaker identity,
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Figure 1: Proposed model overview. Our baseline acous-
tic model is coloured blue, and proposed model additions are
coloured in yellow.

but this is performed over speaker embeddings only, whereas
we do it using a multi-task speaker-language prediction task
over predicted acoustics. They do this to avoid the problem of
speaker embeddings also encoding language information. Their
model doesn’t use language-based conditioning features, and
instead relies on using language specific text encoders. They
train in a scheduled manner, first training the network to syn-
thesise multilingual speech and then optimising the speaker
embedding space for polyglot synthesis using unseen speaker-
language combinations. In our model we do not perform such
scheduling. [12] similarly tries to resolve language dependency
in the speaker space by viewing cross-lingual TTS as a domain
adaptation problem and attempt to learn a language independent
speaker space.

The main contribution of this work is in improving the nat-
uralness and quality of speech in a language foreign to the orig-
inal voice talent. We demonstrate that multi-task learning over
speaker and language features combined with a GAN inspired
adversarial loss can be fruitful when little data is available but
polyglot systems are required.

2. Proposed Multilingual Acoustic Model
At the core of our proposed model is a seq2seq acoustic model
(AM) that predicts output vocoder features from input linguis-
tic features concatenated with speaker/language one-hot vec-
tors. To improve the AM’s Speaker Language Factorisation
(SLF), its core acoustic loss function is augmented with addi-
tional losses obtained from supplementary tasks. An overview
of the losses and tasks in our proposed model is found in Fig-
ure 1 and the following subsections detail the AM and each of
its augmentations. To keep the notation of our various losses
clear we use the following notation: a loss L’s subscript de-
notes which model it is used to help train, and its superscript
denotes where it is obtained from.

Since the augmentations detailed in the subsequent subsec-
tions work with the AM’s outputs and are not tied to our partic-
ular AM architecture they are subsequently likely usable with
other AM architectures, such as transformers or feed forward
networks for example.

2.1. Multilingual Acoustic model (AM)

The AM receives as input a series of T frame-wise linguistic
features (x1:T ) and is trained to output a corresponding series of
frame-wise ‘vocoder’ features (ŷ1:T ), such as MFCCs, f0, and
periodicity features that can be fed to a signal processing based
vocoder [13, 14], or mel-spectrograms that can be used to con-
dition a neural vocoder [15, 16, 17]. We define a forward pass

through the acoustic model as follows: ŷ1:T = AM(x1:T ).
Further description of the linguistic and acoustic features used
to train models for our experiments is deferred to Subsection
3.1.

The AM uses the encoder-decoder with multi-rate attention
architecture of [18]. The encoder and decoder are both unidi-
rectional single-layer LSTMs with 512 hidden dimensions. The
decoder additionally uses a multi-rate attention mechanism to
attend over the hidden states of three encoders, providing con-
textual information relevant to a particular decoder timestep by
attending over frame, syllable, and word-level features.

The AM, is primarily trained using an acoustic L2 loss be-
tween ground truth and predicted vocoder features. We denote
this primary loss component as Lacoustic

AM =
∑T

t=1 L
2(yt, ŷt)

where yt is a particular frame of ground truth acoustics, and
ŷt is its corresponding predicted frame. Additional loss com-
ponents detailed in the following subsections are used with
Lacoustic

AM in order to obtain Equation 1 which is the final loss
function used to update the AM’s weights during training:

LAM = Lacoustic
AM + αLMT

AM + βLadv
AM (1)

where α = 0.025 and β = 20.0 are weights for each loss
component discovered from hyperparameter search.

2.2. Speaker & Language Multi-task prediction heads

Along with the AM we train speaker and language multi-task
(MT) prediction heads for one core reason: such prediction
tasks serve as an inductive bias [19] that can encourage the AM
to utilise speaker and language features. Both prediction heads
use the same series of T frame-wise acoustic predictions from
the AM to make a downsampled series of U categorical predic-
tions over k classes (kS speaker classes or kL language classes).

The architecture of each prediction head consists of 5 1D
convolutional layers each with 256 filters, a stride of 3, kernel
size 5, and a padding of 2. Book-ending the 5 convolutional lay-
ers are two linear projection layers: an input layer projects fea-
tures from Dimin to Dimhid dimensions, and an output layer
projects features from Dimhid to Dimout dimensions. Addi-
tionally we apply a dropout of 0.2 to the input features before
the first linear projection layer and each convolutional layer uses
the Leaky ReLU [20] activation function with a leakiness of 0.2
and slope of -0.1.

We train the prediction heads’ weights using a Cross-
Entropy loss between their output logits and ground-truth one-
hot targets. The loss for each prediction head is LMT =∑U

u=1 CE(cu, ĉu) where ĉ1:U = MT (ŷ1:T ) represents
speaker or language predictions obtained from passing pre-
dicted acoustics through the multi-task heads, c1:U represents
a corresponding series of one-hot ground truth classes, and
CE(.) is the Cross-Entropy loss function.

Note that we train the prediction heads using predicted
acoustics ŷ1:T rather than ground truth acoustics y1:T in or-
der to avoid train-test mismatch that can be caused by teacher-
forcing.

By default we do not detach the acoustic predictions from
the computation graph before feeding them to the multi-task
heads so that LMT also updates the AM’s weights during train-
ing. Therefore we also refer to LMT as LMT

AM . We also exper-
imented with detached multi-task losses, in which case LMT

does not update the AM, but found that in doing so our model
does not improve over our baseline.
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2.3. Adversarial training of AM

To complement the multi-task prediction heads we introduce a
GAN discriminator that is trained to predict whether a series of
acoustic features are either ground truth (‘real’) or predictions
generated by the AM (‘fake’). We use the GAN discrimina-
tor to help ensure that the AM uses speaker/language inputs in
a perceptual way rather than cheating by minimising LMT in
non-perceptual ways. That is, by encoding speaker and lan-
guage information into the predicted acoustics in a acoustically
non-perceivable way.

The architecture of the discriminator follows that of [21],
consisting of 10 1D convolutional layers each with 128 filters,
a stride of 1, kernel size 3, and a linearly increasing dilation
rate (dilation increases by 1 per layer). Identical to the multi-
task prediction heads detailed in Subsection 2.2 the discrimina-
tor’s convolutional layers are each followed by LeakyRELU ac-
tivation functions and are book-ended by linear projection lay-
ers. The final projection layer which projects from Dimhid to
Dimout, whereDimout is equal to 1, is followed by a Sigmoid
activation function, collapsing the model’s output to the range
[0, 1] and as such its output can be interpreted as the probability
that the discriminator’s input is real acoustic data.

To train the discriminator to differentiate between real and
fake acoustics we adopt a two component loss LD = Lreal

D +
Lfake

D . We train the discriminator to output 1 when it recog-
nises real acoustics with Lreal

D =
∑T

t=1 L
2(rt, 1), and train

it to output 0 when it recognises fake acoustics with Lfake
D =∑T

t=1 L
2(ft, 0) where r1:T = D(y1:T ) and f1:T = D(ŷ1:T )

are generated from the discriminator by feeding it ground truth
and predicted acoustics respectively.

Finally we obtain from the discriminator an adversarial loss
Ladv

AM =
∑T

t=1 L
2(ft, 1) that is incorporated into the AM’s loss

function to help ensure its predicted acoustics are high quality
and perceptually synthesise speaker and language. This loss is
minimised when the AM successfully generates acoustics that
fool the discriminator into believing that they are real.

2.4. Training loop

In this Subsection we define one iteration of the training loop
for our proposed model.

1. Use inputs x̂1:T to get AM predictions ŷ1:T .

2. Use ŷ1:T to a) get the acoustic loss Lacoustic
AM , b) get the

GAN discriminator adversarial loss Ladv
AM , and c) calcu-

late speaker and prediction losses through the multi-task
heads to obtain LMT and use this loss to train the heads.

3. Combine all of the AM’s losses to get Equation 1 and
use it to update the AM.

4. Use the inputs x̂1:T again to get a new set of AM pre-
dictions and use them to obtain LD and train the GAN
discriminator.

3. Experimental setup
To evaluate the efficacy of our proposed model, we perform a
subjective listening test to compare its performance against two
baseline models. A monospeaker baseline and a multispeaker
baseline. This section describes the details of these experi-
ments.

3.1. Input representations

The framewise input features used by our AM are obtained
by up-scaling the output of our linguistic front-end. This up-
scaling is performed using durations obtained from a prosodic
model that predicts both the duration and f0 of each phone
aligned frame of contextual linguistic features.

In order to improve multilingual TTS performance by en-
couraging the model to share language-independent acoustic
knowledge across languages, our front-end produces a shared
phone representation common to all our languages. Previous
work has approached this by using a phone set that is com-
mon across all languages [11]. Recent work [22] however uses
‘phonological features’ (PFs) as input to a neural TTS system.
These PFs features have been shown to enable zero-shot multi-
lingual TTS to unseen languages, and [23] also show that using
PFs improves intelligibility and naturalness for low-resourced
languages due to pooling of data, and pervasive sharing of en-
coder parameters across languages. Our model similarly uses
multidimensional PFs to represent each phone. We start with
a phone-set, which represents phonetic identity using the vari-
ous dimensions for speech production such as place of articula-
tion, and manner of articulation. This ensures that our baseline
system can produce multilingual output of reasonable quality ,
without requiring an explicit mapping between phone-sets.

3.2. Modelling

Both our baseline and proposed acoustic models share the same
core multi-rate attention architecture [18]. Acoustic or prosodic
features are predicted for every frame by a recurrent LSTM
module. Additionally contextual information at different lev-
els relevant to producing a particular timestamp of acoustics is
summarised from the entire input sequence by the multi-rate at-
tention module. Previous experiments have found that the usage
of multiple attention alignments overall improve prosody reali-
sations from input linguistic features.

The acoustic models predict spectrum features, which is a
19-dim feature vector consisting of 1-dim f0 vector, a 13-dim
MFCC vector along with a 5-dim periodicity vector. Our con-
ditional neural vocoder is a WaveRNN [16] model, with hidden
dimension 1024. It takes in the 19-dim spectrum features and
generates the audio waveform at 24kHz.

Our AMs and vocoder are additionally made multilingual
via the use of speaker and language one-hot conditioning fea-
tures. In this work we use one-hot features rather than speaker
embeddings as in this study we focus on improving polyglot
synthesis, rather than enabling multilingual synthesis for new
unseen speakers, which we leave as potential future work.

3.3. Training setup & Data

Our acoustic models are trained with the Adam optimizer with a
learning rate of 1e-4. We implemented them using Pytorch and
conduct the training with distributed GPU clusters. After some
fine-tuning, we decide to train at 500K steps with a training time
of approximately 2 days using batch size of 32.

The TTS datasets were recorded in a voice production
studio by contracted professional voice talents. Our multi-
lingual dataset 5lang-5speaker contains five voices each
speaking a different language: English (30 hours), Spanish
(23 hours), Italian (9 hours), German (8 hours) and French
(10 hours) and the data was collected at a 24kHz sampling
rate. 5lang-5speaker is used to train both the baseline
and proposed multilingual AMs, and our multilingual multi-
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speaker WaveRNN. We additionally use each individual voice
in 5lang-5speaker to train monospeaker baseline AMs that
can still perform some level of multilingual TTS due to our use
of language-independent phonological features.

3.4. Evaluation

We have designed our listening tests to answer one question
regarding our proposed AM vs baseline AMs: does adding
speaker and language prediction tasks along with adversarial
training improve the overall naturalness of speech when syn-
thesising polyglot ‘non-native’ speech.

We synthesised each language’s test set conditioning using
a non-native speaker, that is a monolingual speaker whom has
no data in that particular language. In other words in our ex-
periment we examine how well each of our dataset’s speakers
perform at ‘non-native’ polyglot synthesis. We use the follow-
ing speaker and language combinations for generating our non-
native test sets: SES-TEN , SDE-TES , SIT -TFR, SFR-TDE ,
SEN -TIT . For clarification EN is English, ES is Spanish, FR is
French, IT is Italian, and DE is German. Also SES refers to our
Spanish speaker and TEN refers to our English test set.

Using a crowdsourcing platform we recruited the following
number of participants for each test set language: 349 English,
214 Spanish, 39 French, 300 Italian, and 61 German. Partici-
pants are all native speakers of the language that they are rating.
Each participant is shown 50 stimuli from that language and are
asked to rate them from 1 to 5 in terms of naturalness as a voice
assistant. We use these ratings to obtain an averaged naturalness
MOS for each system.

3.5. Voice training and inference

We trained a total of 7 AMs for submission to listening tests:
5 monospeaker baselines, 1 multispeaker baseline, and 1 pro-
posed multispeaker model. They are each trained with the fol-
lowing data and hyper-parameters:

• Bmono: We train 5 monospeaker baselines each one
trained using a single native dataset as described in Sub-
section 3.3.

• Bmulti: We train a single multispeaker baseline using the
5lang-5speaker dataset.

• Pmulti: We train a single multispeaker proposed model
using the 5lang-5speaker dataset. It differs from
Bmulti with its use of speaker and language prediction
tasks with adversarial loss during training.

To generate listening test stimuli for our subjective eval-
uations we use the non-native speaker and language combina-
tions discussed in Subsection 3.4 to condition each multispeaker
model in order to generate the test set that matches the language.
The monospeaker models generate a non-native language for
which it never saw any training data. For example BEN is used
to generate the Italian test set, even though it used only En-
glish data during training. Again this is made possible by our
model’s use of phonological features rather than language spe-
cific phone-sets. A selection of samples used in our listening
test can be found on our webpage for this paper1.

4. Results
A summary of our MOS listening test results can be found
in Figure 2. We observe several clear trends across the three

1https://multilingual-tts.github.io/samples/
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Figure 2: Mean opinion scores obtained from our subjective
listening test described in Subsection 3.4. 95% confidence in-
tervals are depicted as black lines. Colours of the bars refer to
one of three model types: monospeaker baseline, multispeaker
baseline, and multispeaker proposed model. Further details re-
garding these models can be found in 3.5.

types of systems: First of all Bmulti consistently out-performs
Bmono, suggesting that training acoustic models with data from
multiple speakers and languages is beneficial even given we
only have one speaker per language. Secondly, except from
the SEN -TIT stimuli, Pmulti consistently out-performs Bmulti,
suggesting that our proposed model modifications make an im-
provement in both quality and naturalness. The largest gains
from using our proposed model are seen with SFR-TDE where
naturalness is improved by 4.2 % over the multispeaker base-
line. When listening to the test set stimuli we discovered that
our proposed model also makes improvements in how native
each utterance sounds and in phone intelligibility. We include
examples on our samples page reflecting these findings.

5. Conclusions

In this work, we have proposed a novel way to improve poly-
glot speech synthesis across five languages through adversarial
learning and multi-task training. According to a MOS study
using on average 200 native raters per language, our proposed
model achieved better overall quality compared with a multi-
speaker and multilingual baseline. As for future work, we plan
to extend the proposed idea to prosodic modelling and combine
it together with our proposed acoustic model. Another direc-
tion we also would like to pursue is using data augmentation
methods to further improve the overall quality using synthetic
polyglot data.
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Abstract
We propose a novel Multi-Scale Spectrogram (MSS) modelling
approach to synthesise speech with an improved coarse and
fine-grained prosody. We present a generic multi-scale spec-
trogram prediction mechanism where the system first predicts
coarser scale mel-spectrograms that capture the suprasegmental
information in speech, and later uses these coarser scale mel-
spectrograms to predict finer scale mel-spectrograms capturing
fine-grained prosody. We present details for two specific ver-
sions of MSS called Word-level MSS and Sentence-level MSS
where the scales in our system are motivated by the linguistic
units. The Word-level MSS models word, phoneme, and frame-
level spectrograms while Sentence-level MSS models sentence-
level spectrogram in addition. Subjective evaluations show that
Word-level MSS performs statistically significantly better com-
pared to the baseline on two voices.
Index Terms: neural text-to-speech, multi-scale spectrogram,
word-level, sentence-level

1. Introduction
Over the last few years, the progress in Text-To-Speech (TTS)
technology has been astounding. Specifically, neural models
such as Wavenet [1] and Tacotron [2] have revamped all the
components of a modern TTS system [3]. Due to this, the Neu-
ral Text-To-Speech (NTTS) has become a standard paradigm
where a neural sequence-to-sequence (seq2seq) model is em-
ployed to map the input text into acoustic features, and a neural
vocoder model is employed to convert the acoustic features into
a corresponding waveform. These NTTS systems are capable
of generating high-quality speech that is often indistinguishable
from human speech [4].

However, NTTS systems still struggle to produce speech
with appropriate prosody compared to human speech [5]. The
perceived prosody in the synthesized speech may sound inap-
propriate given the textual context, and includes problems such
as wrong type of intonation, pausing, or emphasis. The lack of
appropriate prosody stems from multiple reasons ranging from
the model design to the way data is processed. Although the
prosody is a suprasegmental phenomenon, the existing NTTS
systems are designed in a way that they take fine textual repre-
sentations such as phonemes as an input and predict finer-level
acoustic representations such as mel-spectrograms as an output.
Thus, the speech produced by the NTTS system can sound flat
and require more cognitive effort to process it [6].

Numerous studies have been proposed in the literature to
address the aforementioned issues [7, 8, 9, 10]. Most of these
studies focus on modelling a latent representation space of
prosody using a separate encoder called reference encoder [7].
The reference encoder guides the prosody of the output speech
signal to generate expressive speech. The reference encoder can
be designed in a variational [11] or non-variational [7] style.

Moreover, the latent embedding vectors encoded by reference
encoder can be represented either at a coarser level e.g. sen-
tence [8] or at a finer level e.g. word or phonemes [9, 10].

Along with these latent representation based methods, an-
other set of studies focus on modelling prosody in a hierarchical
manner along with a reference encoder [12, 13, 14]. Here the
input text is represented at various levels that are spanning from
coarser (e.g., sentences) to finer (e.g., phonemes) levels. Ken-
ter et al. [13] proposed such kind of hierarchical approach to
model prosodic features such as F0, energy, and duration, and
these prosodic features along with linguistic features are uti-
lized by a neural vocoder to render the final speech waveform.
However, one of the shortcomings of the prosody modelling
studies based on latent representations is that they use reference
mel-spectrograms to learn prosody embeddings during training,
whereas during the inference time they either rely on textual
based features to sample [8] or select [15] a prosody embed-
ding from a set of pre-existing latent embeddings. This results
in a mismatch between training and inference which could lead
to an inappropriate prosody in the output speech signal.

Instead of modelling the prosodic latent space, few studies
predict the conventional prosodic features (e.g., F0 and energy)
in a multi-task manner and utilize those features to control the
prosody of the synthesized speech [16, 17]. The performance
of these methods depends on the accuracy and robustness of
prosodic feature extraction and modelling. However, F0 extrac-
tion and modelling is generally prone to a number of errors [18].

Complementing to the aforementioned studies, in this pa-
per, we propose a Multi-Scale Spectrogram (MSS) modelling
technique to capture short and long-range dependencies ob-
served in the speech signal. In MSS, the mel-spectrograms are
predicted sequentially from a coarser scale capturing higher-
level representation of speech to a finer scale capturing fine-
grained prosodic details. Each subsequent finer scale is condi-
tioned by the previous scale’s predicted mel-spectrograms. This
allows the MSS modelling to produce prosody appropriate at
different linguistic units such as sentence, word and phonemes,
thereby improving the overall naturalness of the NTTS systems.

Similar to our proposed approach, Vasquez et al. [19] pre-
dict the mel-spectrograms in a multi-scale manner. They ini-
tially predict lower resolution mel-spectrograms and progres-
sively increase their resolution by 2 times at each scale irre-
spective of the semantic units in language or acoustic units
in speech. Contrary to that, we provide a generic multi-scale
mechanism to represent mel-spectrograms and later develop
two specific MSS systems where the scales correspond to lin-
guistic units which are sentences, words, and phonemes. More-
over, each scale in MSS has its own objective to learn and all
scales are learned together by multi-task learning [20].

Another major difference between [19] and our approach
is the use of explicit duration modelling instead of an atten-
tion mechanism to find alignment between text and speech.
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Due to the stability issues of the attention mechanism of neural
seq2seq models in the NTTS systems, the synthesized speech
signals could have unpleasant artifacts such as mumbling, rep-
etitions, or skipping [21]. To mitigate the stability issues, non-
attentive neural seq2seq models have recently become popular,
where the attention mechanism is replaced by an explicit dura-
tion model [8, 22, 17]. Hence, the non-attentive neural seq2seq
model based NTTS system is employed in this paper.

Our main contributions are as follows: i) We propose a
novel multi-scale mel-spectrogram modelling technique to im-
prove the overall quality and naturalness of NTTS systems by
appropriately capturing the coarse and fine-grained prosody;
ii) We conduct and present an ablation study on two specific ver-
sions of MSS, called Sentence-level MSS and Word-level MSS.
The Word-level MSS models word, phoneme, and frame-level
spectrograms while Sentence-level MSS models sentence-level
spectrogram additionally; iii) We evaluate Word-level MSS
against a baseline system that is based on external duration
model and show that it is significantly better than the baseline
on two voices.

2. The Baseline
We use the same baseline system as in [8], which is a mod-
ified version of DurIAN [23]. Figure 1 illustrates the block
diagram of our baseline system. It is composed of two ma-
jor components: a seq2seq model and a duration model. First,
the input text containing W words w = [w0, w1, . . . , wW−1]
is passed through the front-end to extract P phonemes p =
[p0, p1, . . . , pP−1] as an output. Next, the P phonemes are
passed through an encoder, which captures the relations be-
tween phonemes, and produces P phoneme embeddings as
an output. The encoder is composed of 1D convolutions fol-
lowed by a bidirectional LSTM. Finally, the decoder takes these
P phoneme embeddings and P phoneme durations in frames
d = [d0, d1, . . . , dP−1] where

∑
d∈d = T as an input, and

predicts T mel-spectrogram frames Y = [y0,y1, . . . ,yT−1]
auto-regressively as an output. There is no post-net after de-
coder as it resulted in instabilities when training with a reduc-
tion factor of 1.

During training, the phoneme durations are obtained from
a forced-alignment algorithm, whereas during inference, the
phoneme durations are predicted by a duration model trained
separately. The duration model takes P phonemes as an input
and predicts P durations. Both the acoustic and the duration
model are optimized using an L2 loss function.

3. Multi-Scale Spectrogram (MSS)
modelling

This section introduces the proposed MSS modelling technique.
As shown in Figure 1, the decoder of the baseline system pre-
dicts the mel-spectrogram frames directly from phoneme em-
beddings using phoneme durations. Contrary to this, the de-
coder based on MSS modelling technique predicts the mel-
spectrogram frames after conditioning them on all the higher-
level mel-spectrograms as illustrated in Figure 2. Specifically,
the MSS modelling technique first predicts the mel-spectrogram
vectors representing speech on a coarser scale which are later
used for the prediction of mel-spectrogram vectors representing
speech at a finer scale. The coarser scale representation captures
most of the suprasegmental aspects of the prosody resulting in a
more appropriate prosody for the given text. In principle, these
scales can be defined in both time and frequency axes of the
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Figure 1: Block diagram showing the architecture of our base-
line. The decoder module colored in red is substituted by a
multi-scale decoder in the proposed MSS modelling technique.

mel-spectrogram. However, in this paper, the scales are defined
only along the time axis while keeping the number of mel-bins
constant (= 80) along the frequency axis. Extending the scales
to the frequency axis is left as future work.

3.1. Generic multi-scale representations

Before moving to modelling, we first discuss how to construct
targets for learning a generic multi-scale model. Let us assume
that there are in total L+1 scales in the MSS modelling. At each
scale l where 0 ≤ l ≤ L, we compute a mel-spectrogram Sl =
[sl

0, s
l
1, . . . , s

l
Nl−1] of dimension Nl × 80 from the ground-

truth mel-spectrogram Y = [y0,y1, . . . ,yT−1] of dimension
T × 80. Here, the Lth scale (the highest level representation of
speech) has the least number of mel-spectrogram vectors, and
their number progressively increases on each subsequent scale
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Figure 2: Block diagram of the generic MSS decoder with L+1
scales. The scale 0 decoder depends upon the outputs of all the
previous scale decoders.
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l < L until the last scale 0 such that NL < NL−1 < · · · <
N0 = T . For example in Sentence-level MSS, NL = 1, which
is the number of sentences in an utterance.

We compute the mel-spectrogram Sl at scales l > 0 using
the following equation:

Sl = [sl
0, s

l
1, . . . , s

l
Nl−1],

where each

sl
i =





1

al
i

cli∑

j=cli−1

yj , 1 ≤ i < Nl,

1

al
i

cli∑

j=0

yj , i = 0,

(1)

clk =
k∑

i=0

al
i (2)

In Eq. 1, al = [al
0, a

l
1, . . . , a

l
Nl−1] is an alignment vec-

tor that denotes the alignments at scale l > 0 where each al
i

represents the number of mel-spectrogram frames of Y cor-
responding to the spectrogram sl

i at scale l. Thus the total
sum of

∑
al = T . The alignment vectors al

i can be com-
puted based on the definition of each scale (cf. Section 3.2).
The vector cl = [cl0, c

l
1, . . . , c

l
Nl−1] is the cumulative sum of

alignment vector al, and each element clk corresponds to the
starting frame for token k − 1 and ending frame for token k.
So each target vector sl

i at l > 0 is computed by taking the
mean of mel-spectrogram frames Y from index cli−1 to cli. The
mel-spectrogram S0 at 0th scale of MSS modelling technique
is equal to the target mel-spectrogram Y i.e. S0 = Y, thus
N0 = T . This paper considers two specific cases of MSS
modelling technique for validating our proposed approach: 1)
Sentence-level MSS and 2) Word-level MSS, named after the
coarser used linguistic unit.

3.2. Word-level MSS and Sentence-level MSS

The Word-level MSS has a total number of three scales (L = 2)
where the 1st and 2nd scales correspond to the linguistic unit
of phonemes and words respectively. The 0th scale corre-
sponds to frame-level mel-spectrogram as discussed above. The
number of mel-spectrogram vectors at each scale are given as
such: N2 = number of words in a given utterance, N1 =
number of phonemes present in an utterance, and N0 = T . In
Sentence-level MSS, L = 3 and there is an additional 3rd scale
that corresponds to sentences. The N3 = number of sentences
in a given utterance, which is equal to 1 in our case. In both
these specific systems, the alignment vectors al are obtained
from the phoneme durations and relations between phoneme,
word, and sentences, which are obtained by the front-end. More
specifically, in Sentence-level MSS, the alignment vector a1 is
equal to phoneme durations d in frames. The alignment vector
a2 is equal to the word durations in frames and a3 is equal to
the sentence duration in frames.

The multi-scale representations that need to be modelled in
Sentence-level MSS are S = [S0,S1,S2,S3]. To model 3rd

scale (sentence-level) mel-spectrogram Ŝ3, we first project P
phoneme embeddings into a sentence-level vector by taking the
last hidden state of the LSTM encoder. Later, the sentence-
level vector is passed through a sequence of 1D convolutions to

obtain sentence-level mel-spectrogram Ŝ3. The loss function at
the 3rd scale (sentence-level) is defined as:

L3 =
∥∥∥Ŝ3 − S3

∥∥∥
2

(3)

The Ŝ3 mel-spectrogram is assumed to capture the sentence-
level acoustic properties such as speaker-identity, recording en-
vironment, or speaking style of the sentence.

Similarly, to model the 2nd scale (word-level) mel-
spectrogram Ŝ2, we first project phonemes of each word into
a word-level vector. Later, the word-level vectors are con-
catenated with the upsampled sentence-level mel-spectrogram
Ŝ3
↑. Ŝ

3
↑ is computed by upsampling the predicted sentence-level

mel-spectrogram S3 to have the same dimension as S2 using an
alignment defined between 2nd and 3rd scale, i.e. between words
and the sentence they belong to. The loss function on 2nd scale
is defined as:

L2 =
∥∥∥Ŝ2 − S2

∥∥∥
2

(4)

Ŝ2 is assumed to capture the word level acoustic properties
such as word prominence, rise and fall of pitch and energy at
word level.

We follow the same procedure to predict the phoneme-level
mel-spectrogram Ŝ1 and final frame-level mel-spectrogram Ŝ0

or Ŷ. In each of the scales l, the predicted mel-spectrograms
are also conditioned on all the coarser scale predicted mel-
spectrograms. The loss function at each scale l is defined as
Ll =

∥∥∥Ŝl − Sl
∥∥∥
2
. The sentence-level MSS is trained by min-

imizing the loss at all scales. So the training loss for the whole
system is defined as:

L = L0 + L1 + L2 + L3, (5)

which can be interpreted as maximizing the likelihood of
mel-spectrograms at all scales:

p(Ŝ3, Ŝ2, Ŝ1, Ŝ0) =p(Ŝ3).p(Ŝ2|Ŝ3).p(Ŝ1|Ŝ3, Ŝ2)

.p(Ŝ0|Ŝ3, Ŝ2, Ŝ1)
(6)

4. Experiments
4.1. Data

The experiments were carried out on an internal voice dataset
that was recorded by two native US-English female voice tal-
ents. We refer to them as speaker-A and speaker-B. The train-
ing and test sets for speaker-A are 33 and 5.5 hours respectively,
while they are 32 and 3 hours for speaker-B respectively. The
test set is reserved for testing in this and future research studies.
The sampling rate of the recorded audio is 24kHz. We extracted
80 band mel-spectrograms with a frame shift of 12.5ms.

4.2. Training and inference

As mentioned in Section 3.2, we have developed two systems
based on MSS modelling technique: Sentence-level MSS and
Word-level MSS. In both systems: 1) we train the seq2seq
model according to the loss defined in Equation 5 where ora-
cle alignments al are provided to the model at each scale l ;
2) we train the duration model using L2 loss as shown in Sec-
tion 2. We optimize the loss in both the models using Adam
optimizer [24] with different learning rates. We use a learning
rate of 10−3 and 10−4 for the acoustic and the duration model
respectively.
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Figure 3: Visualisation of mel-spectrograms at different scales
in Word-level MSS given the text: “He headed straight for his
desk.”. Left panel: oracle spectrograms, right panel: predicted
spectrograms. The mel-spectrograms in bottom, middle, and top
row correspond to 2nd (word), 1st (phoneme), and 0th (frame)
scale respectively.

During inference, we follow these 2 steps in the following
order: I) we predict durations d̂ from the duration model trained
in step 2; II) we generate mel-spectrograms Ŝ0 from the seq2seq
model trained in step 1 using the predicted durations d̂ from step
I. We use Wavenet vocoder [1] to synthesize speech from Ŝ0.

4.3. Evaluations

4.3.1. Qualitative evaluation of predicted and target spectro-
grams on different scales

Figure 3 shows the target (left column) and predicted (right col-
umn) mel-spectrograms at different scales l in the Word-level
MSS for speaker-B as an example. The bottom row shows the
2nd scale (word-level) mel-spectrogram S2. There are 7 mel-
spectrogram vectors [s2

0, s
2
1, . . . , s

2
6] which represent coarse-

grained prosodic features such as prominence at word-level. We
can observe the harmonics and energy, and how they vary af-
ter each word. The middle row shows the phoneme-level mel-
spectrogram S1. On this scale, there are 29 mel-spectrogram
vectors [s1

0, s
1
1, . . . , s

1
28] which represent fine-grained prosodic

features at phoneme-level. At this scale, we can see how the
prosody varies around phonemes and can identify the stress on
phonemes based on their acoustic representations. The top row
shows frame-level mel-spectrogram S0, which is equal to the
target spectrogram Y. When comparing the target (left column)
to the predicted (right column) mel-spectrograms, the Word-
level MSS is able to capture the high-level prosodic features
at 1st and 2nd scale, albeit with a smoother representation due to
the nature of the L2 loss used in eq. 5.

4.3.2. Ablation study

A MUSHRA [25] evaluation was conducted on speaker-A to
evaluate how the number/definition of scales affects the perfor-
mance of MSS modelling. For the MUSHRA evaluation, we
selected the following three systems: the baseline from Sec-
tion 2, Word-level MSS, and Sentence-level MSS. A total of 50
utterances were selected randomly from the test set, and the du-
ration of each utterance was approximately 15 seconds. Each
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(68.93 ± 0.91)
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Figure 4: Results of the MUSHRA evaluation of ablation study
on speaker-A voice. Mean rating and 95% confidence intervals
are reported below system names.

utterance was rated by 24 native US-English professional lis-
teners. Figure 4 presents the results of the MUSHRA evalu-
ation. We have used a pairwise two-sided Wilcoxon signed-
rank test corrected for multiple comparisons to measure statis-
tical significance between the systems. The Word-level MSS
system performed statistically significantly better than both the
other systems (p-value < 10−6) while there was no statisti-
cally significant difference between the baseline and sentence-
level MSS systems (p-value = 0.27). We believe that during
training, the Sentence-level MSS system is overfitting on the
sentence-level spectrogram Ŝ3 prediction. Due to this, it fails
to capture coarse-grained prosodic features observed in the tar-
get S3, thus adversely affecting the prediction of spectrograms
in lower scales l < L which are conditioned on Ŝ3. More-
over, an utterance in our data corresponds to a sentence which
makes the prediction of Ŝ3 even more difficult because it does
not have the surrounding sentences as an input to the system
unlike scales l < L. These reasons could suggest why there is
no improvement in the Sentence-level MSS system compared
to the baseline.

4.3.3. Preference tests

As the Word-level MSS system showed a significant improve-
ment in the ablation study, we have selected it for further com-
parisons with the baseline system. A preference test was con-
ducted on speaker-A and speaker-B voices. For speaker-A, 50
utterances were selected randomly from the test set and each
utterance had a duration of approximately 15 seconds. Simi-
lar to the MUSHRA evaluation, we used a third-party vendor
to complete the test, and a total 24 listeners participated. The
results are shown in Figure 5a. We use a binomial significance
test to measure the statistical significance. The Word-level MSS
is found to be statistically significantly better than the baseline
(p-value < 10−4)

For speaker-B, 100 utterances were selected randomly from
the test set and the duration of each utterance was approximately
15 seconds. A total of 48 subjects participated in the preference
test. However, this evaluation was conducted via Clickworker
platform - a crowdsourced evaluation, unlike earlier evalua-
tions. The results of the preference test are shown in Figure 5b.
There was not a statistically significant preference for the Word-
level MSS system (p-value=0.068). However, upon removing
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(a) speaker-A

(b) speaker-B

Figure 5: The results of preference tests between the Word-level
MSS and the baseline system on two voices.

listeners that had low reliability because they did not listen com-
pletely to both samples, we found that the difference becomes
significant, i.e. Word-level MSS is preferred statistically sig-
nificantly (p-value=0.007). The results of both MUSHRA and
preference tests suggest that the Word-level MSS system is able
to produce more natural speech than the baseline system. We
observe that the Word-level MSS has more contextually appro-
priate emphasis on the words and generally better intonation
without impacting the segmental quality. Although the Word-
level MSS system is preferred over the baseline system, we do
note that on certain utterances it is unable to produce the right
kind of intonation, specifically when a question does not start
with an interrogative word.

5. Conclusion
In this paper, we presented a novel method for multi-scale mod-
elling of mel-spectrograms to improve the quality of NTTS
systems. We presented a generic MSS modelling approach
and later provided details for its two specific versions called
Sentence-level MSS and Word-level MSS where the scales cor-
respond to the linguistic units. The ablation study showed that
the Word-level MSS system performed statistically significantly
better than Sentence-level MSS. In the preference evaluations
on 2 voices, the Word-level MSS system showed statistically
significantly better results than the baseline system. In the fu-
ture, we want to introduce scales in MSS along the frequency
axis as well which could result in an even improved segmen-
tal quality. We also want to extend the sentence-level MSS
to broader linguistic units for a better modelling of the coarse-
grained prosody of speech. Furthermore, we want to introduce
another scale that corresponds to syllables as they are strongly
linked to prosodic events like stress and intonation [26].
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Abstract

Shared challenges provide a venue for comparing systems
trained on common data using a standardized evaluation, and
they also provide an invaluable resource for researchers when
the data and evaluation results are publicly released. The Bliz-
zard Challenge and Voice Conversion Challenge are two such
challenges for text-to-speech synthesis and for speaker conver-
sion, respectively, and their publicly-available system samples
and listening test results comprise a historical record of state-
of-the-art synthesis methods over the years. In this paper, we
revisit these past challenges and conduct a large-scale listening
test with samples from many challenges combined. Our aims
are to analyze and compare opinions of a large number of sys-
tems together, to determine whether and how opinions change
over time, and to collect a large-scale dataset of a diverse variety
of synthetic samples and their ratings for further research. We
found strong correlations challenge by challenge at the system
level between the original results and our new listening test. We
also observed the importance of the choice of speaker on syn-
thesis quality.
Index Terms: speech synthesis, mean opinion score, listening
test, Blizzard Challenge, Voice Conversion Challenge

1. Introduction
Since 2005, the annual Blizzard Challenge (BC) has provided
researchers with a venue to compare their methods using com-
mon datasets and standardized evaluations. Likewise, since
2016, the biennial Voice Conversion Challenge (VCC) has done
the same for the task of speaker conversion. Since the incep-
tion of the Blizzard Challenge, speech synthesis technology has
transformed immensely, progressing through a diverse range of
methods from unit selection synthesis, hidden Markov model
based synthesis, and hybrid models to present-day state-of-the-
art approaches such as end-to-end neural network based syn-
thesis. In recent years, speech synthesis technology has also
reached an overall level of acceptability to the general public
where it is now very commonly used in various everyday con-
sumer technologies.

In addition to providing shared data and evaluations for re-
searchers to compare their approaches, the Blizzard and Voice
Conversion Challenges also make the synthesized samples and
raw listening test results publicly available, which is an invalu-
able resource for studying different models and approaches over
time. Nevertheless, it is well-known that results from differ-
ent listening tests cannot be meaningfully compared to each
other [1] because the setting and conditions of the tests are
not identical – the set of systems is different, and in particular
the differing best and worst systems each year provide listeners
with a completely different context for their evaluations. For
this reason, we have gathered samples from past Blizzard and
Voice Conversion Challenges into one new large-scale listening
test which enables us to compare many past text-to-speech and

voice conversion systems together. This allows us to answer the
following research questions:

• How reproducible are MOS test results?

• How do past listening test results compare to ratings
gathered in the present day?

• Will results still correlate even though the listening test
context has changed?

• Can we observe the improvement of speech synthesis
technology over the years in this data?

• How does quality of text-to-speech synthesis and voice
conversion compare?

• What is the effect of the target speaker data on perceived
synthesis quality?

Furthermore, a dataset of many years of synthesized sam-
ples along with their ratings from a single listening test will
be a useful resource for training automatic evaluation metrics
such as MOSNet [2]. In this paper, we will describe the design
of a large-scale listening test that aims to compare quality of
a diverse range of synthesis methods from past years’ Blizzard
and Voice Conversion Challenges. We will then present what
we learned from this test in terms of synthesized speech and
listener preferences of natural speech. To the best of our knowl-
edge, this is the first time that samples from different years’
challenges, as well as a combination of both text-to-speech syn-
thesis and voice conversion samples, have been compared in
one listening test together.

2. Related Work
In a 2014 overview of a decade of past Blizzard challenges [3],
it was observed that unit selection based systems consistently
had the best naturalness ratings over the years, whereas statis-
tical parametric methods such as hidden Markov model based
synthesis produced the most intelligible speech. Hybrid systems
were beginning to show signs of incorporating the best of both
worlds. While it was noted that “naturalness” as a basis for rat-
ing speech audio is inherently poorly-defined, the consistency
of listener judgments shows that listeners are nevertheless able
to understand and complete the task. In another meta-study [4],
nine different past studies of human ratings of synthetic speech
revealed five common aspects (naturalness, prosodic quality, in-
telligibility, disturbances, and calmness) that were consistently
salient to listeners’ judgements. There have also been a num-
ber of studies that re-visit or reproduce listening tests in order to
study the reliability of MOS tests. For instance, [5] ran the same
listening test both in lab and as an online crowdsourced task and
found strong correlations between ratings in both settings, and
furthermore ran the crowdsourced test five times on five dif-
ferent days with five different sets of listeners and also found
good reliability between the sets of results. [6] also found good
agreement and strong correlations between an in-lab listening
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test and a crowdsourced one. In a 2015 re-visitation of the 2013
Blizzard Challenge results, [7] studied the stability of the signif-
icant differences between systems, finding that the results stabi-
lize and have good reliability and discriminative power when at
least 30 different listeners are included in the test.

Due to the expense and time-consuming nature of conduct-
ing subjective listening tests, there has long been interest in
the development and use of objective measures for evaluating
synthesis quality, and in particular, with the recent advances in
neural network based modeling approaches, past listening test
results can be used to train models for this purpose. For ex-
ample, MOSNet [2] trained an end-to-end model for natural-
ness assessment on the VCC 2018 listening test results to pre-
dict human ratings of voice-converted speech. They further ex-
tended their model to predict speaker similarity in addition to
MOS. While they found high correlations at the system level
but only fair correlations at the utterance level due to large vari-
ances between listeners, [8] extended MOSNet to learn from
this listener variation by incorporating a listener bias network
that takes the listener label into consideration. In addition to
improving utterance-level correlations when the appropriate lis-
tener label is given, overall system-level correlations were also
improved. Another extension of MOSNet was conducted in [9],
in which the models trained for VC were found not to generalize
well to TTS, so MOSNet models were trained on the ASVspoof
2019 Logical Access dataset [10], which contains synthesized
speech from 13 different speech synthesizers and voice conver-
sion systems trained on the same set of speakers. Eight different
feature representations were studied to determine which one is
best for this type of evaluation task. While [11] cautions that
even an objective measure depends on its context (i.e., its train-
ing data) much in the same way that human listening tests do, it
is our hope that very large-scale listening test data such as that
collected in our study will provide sufficient context to train ob-
jective measures that have good generalization capability in the
future.

3. Listening Test Design
We gathered samples and ratings from past Blizzard and Voice
Conversion Challenges1. We focused on English-language syn-
thesis and the main Hub tasks for each year. The Blizzard
Challenge years that we included were 2008 [12], 2009 [13],
2010 [14], 2011 [15], 2013 [16], and 2016 [17], as well as all
Voice Conversion Challenge years (2016 [18, 19], 2018 [20],
and 2020 [21, 22]). We also included samples from a number
of systems from ESPnet [23], which is a popular open-source
toolkit for end-to-end speech and language technologies, since
samples for a number of implemented text-to-speech architec-
tures have been released along with their listening test results
[24]. Our total number of systems, including natural speech,
was 187.

We chose 38 samples for each of the 187 systems, balanc-
ing where relevant over genre (e.g. news, audiobook, conver-
sational). We excluded semantically-unpredictable sentences,
which were used in past Blizzard challenges mainly for intelli-
gibility evaluation, as well as any other genres which were not
included in the original naturalness evaluations, and genres for
which there were no corresponding natural speech samples. For
voice conversion systems, we balanced over all combinations
of source and target speakers. Even though VCC 2020 had both
intra-lingual and cross-lingual tasks, we only included samples

1https://www.cstr.ed.ac.uk/projects/blizzard/data.html

from the intra-lingual task. Some challenges did not have 38
unique test utterances, so in those cases we included repeat sam-
ples. To avoid differing sampling rates as a confounding factor,
we downsampled all audio to 16kHz, and conducted amplitude
normalization using sv56 [25].

Each listening test set consisted of one sample from each of
the 187 different systems. Listeners could listen to each sample
as many times as they liked, but were required to play the entire
sample at least once and choose a rating for it before proceed-
ing to the next one. Listeners were asked to rate each sample on
a 5-grade Mean Opinion Score (MOS) scale from 1 (very bad)
to 5 (very good). In order to get ratings from as many different
listeners as possible, each listener was only permitted to evalu-
ate one set. Each set was rated by eight different listeners, and
overall, 304 different listeners participated in our test. Due to
the constraints of our location, we recruited Japanese native lis-
teners to participate in our test, but we also note the very strong
correlations with native English listeners reported in [21]. Lis-
tener gender demographics were 141 male, 159 female, and 4
other. Listener age demographics were 48 listeners between 18
and 29 years old, 118 listeners in their 30s, 90 listeners in their
40s, 35 listeners in their 50s, 12 listeners in their 60s, and one
listener age 70 or older. We measured significant differences be-
tween systems using the Mann-Whitney U test, following [26],
at a level of p<0.05, with Bonferroni correction for multiple
comparisons.

4. Results and Analysis
A histogram of the ratings for all 187 systems, arranged from
lowest to highest MOS, can be seen in Figure 1. We found mod-
erate listener agreement, with both Krippendorff’s alpha and
intra-class correlation equal to 0.50.

Looking at the standard deviations of each system, we no-
ticed that some systems were less agreed-upon than others.
ESPnet-Merlin, a DNN-based parametric model trained using
the Merlin toolkit [27], had the highest standard deviation, with
an almost equal number of 5 and 1 ratings. The systems with
the lowest standard deviations tended to be natural speech (very
highly rated) or the lowest-rated systems. Violin plots of the
rating distributions of the most- and least-agreed-upon systems
are in Figure 2.

4.1. Best and Worst Systems

Systems are named according to the challenge that they came
from, followed by the team letter name or other system identi-
fier. The five best synthesized systems, which were not signifi-
cantly different from one another, are the following:

• ESPnet-transformerv3

• BC2010-M

• ESPnet-transformerv1

• ESPnet-tacotron2v3

• ESPnet-nvidia

It is notable that four out of the five best-rated systems are
from ESPnet. One drawback of our listening test as compared
to the standard Blizzard evaluations is that we are mixing sys-
tems that were trained on a variety of different databases, so it
becomes more difficult to determine whether a model is inher-
ently better or if listeners simply prefer the sound of the voice
data on which it was trained. We will discuss this more in Sec-
tion 5.
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Figure 1: Histogram of MOS ratings for 187 systems. Natural speech system names are indicated in black text, TTS systems are blue,
and voice conversion systems are red.

Figure 2: Violin plots of the systems with the highest and lowest standard deviations.

The group of worst systems which are not significantly dif-
ferent from one another are as follows:

• VCC2018-N06

• VCC2018-N16

• VCC2020-T14

• VCC2016-C

• VCC2016-baseline

Text-to-speech and voice conversion systems are rarely
compared together in the same listening test, but this large-scale
test gave us the opportunity to do so. It is notable that the worst-
rated systems are all voice conversion ones. Is the state of the
art of text-to-speech synthesis better overall (in terms of natu-
ralness) than that of voice conversion? One consideration is that
voice conversion from a source speaker to a target speaker of a
different gender may produce worse speech signal quality than
the same-gender condition, since the distance between source
and target speaker is farther. So, we tried excluding samples
where the source and target speakers were different genders and
re-computed MOS. Although the ordering changes slightly, we
find that the worst systems are still voice conversion ones. Fur-
thermore, although the MOS values tend to improve slightly by
only considering same-gender conversion, we find that it is gen-
erally not statistically significant – only four out of the 73 voice
conversion systems show any significant improvement. Since
we have both TTS and VC systems from 2016, we can also com-
pare the best systems from both challenges in the same year:
BC2016-L was rated as significantly better than VCC2016-O.

Another consideration is that the Voice Conversion Chal-
lenges provide teams with much less data per speaker, often as
few as around 80 utterances, whereas Blizzard Challenge data is
typically on the order of a few hours or thousands of utterances.
These kinds of low-resource data conditions make it more chal-
lenging to achieve a high level of naturalness, which is apparent
from the listener ratings.

4.2. Correlations with past challenge results

At the system level, challenge by challenge, we found very
strong correlations, using both the Pearson correlation coef-
ficient (PCC) and the Spearman rank correlation coefficient
(SRCC), between the original listening test results and the new
ones. We report these values and also root mean squared error
(RMSE) in Table 1. At the utterance level, we find lower but
still moderately positive correlations. Individual utterance-level
scores were not available for BC2013 and BC2016.

The large RMSE values show the effects of context – even
though year-by-year correlations are strong, the overall values
of the ratings themselves compared to the original ones do vary.

4.3. Improvements of speech synthesis over time

Year by year, is the best system in each challenge better than the
previous year’s best system? At what point in time did synthe-
sized speech reach the quality where it was not rated as signif-
icantly different from natural speech? Table 2 shows the MOS
of the best system for each challenge, whether its MOS has
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Table 1: System-level and utterance-level PCC, SRCC, and
RMSE between original and new listening test results by chal-
lenge or set of systems

System-level Utterance-level
Challenge PCC SRCC RMSE PCC SRCC RMSE

BC2008 0.93 0.89 0.33 0.70 0.67 0.62
BC2009 0.97 0.95 0.48 0.76 0.72 0.64
BC2010 0.93 0.98 0.66 0.74 0.73 0.85
BC2011 0.91 0.90 0.76 0.76 0.67 0.87
BC2013 0.97 0.98 0.49 - - -
BC2016 0.97 0.93 0.40 - - -

VCC2016 0.97 0.92 0.42 0.56 0.53 1.12
VCC2018 0.96 0.91 0.77 0.55 0.53 1.10
VCC2020 0.98 0.96 0.23 0.87 0.87 0.48

ESPnet 0.99 0.98 0.09 0.73 0.61 0.59

Table 2: Best system in each challenge compared to the pre-
vious challenge’s best system and to natural speech – whether
MOS has improved since the last challenge (Impr.?), whether
the difference is significant (Sig.?), and whether the difference
in MOS to that year’s natural speech is significant (Sig. (Nat)).

Year : Best system MOS Impr.? Sig.? Sig. (Nat)

BC2008 : J 3.63 X
BC2009 : S 3.87 X x X
BC2010 : M 4.27 X X x
BC2011 : G 4.12 x x X
BC2013 : M 4.01 x x x
BC2016 : L 3.63 x X x

VCC2016 : O 2.86 X
VCC2018 : N10 3.55 X X x
VCC2020 : T10 3.88 X x x

ESPnet : transformerv3 4.33 x

improved over the previous challenge’s best system, whether
this difference is significant, and whether this challenge’s best
system is significantly different from that same year’s natural
speech. We can observe that while VCC best systems do im-
prove challenge by challenge, the best Blizzard Challenge sys-
tem from 2016 was rated as significantly worse than the best
system from BC2013. This is likely due to the effects of the
different training corpora. We can also observe that in 2010 and
onwards (excepting 2011) for TTS, and from 2018 onwards for
voice conversion, the best systems’ MOS ratings were not sig-
nificantly different from natural speech.

Since some listeners may have strong preferences about the
speaker voice chosen for a given year’s challenge, and since
these preferences will therefore skew that listener’s ratings for
all systems trained on that dataset, adjusting for these prefer-
ences may allow us to see more clearly an overall trend of
how TTS systems perform relative to the quality of natural
speech over time. Z-score normalization was conducted based
on statistics of all of a listener’s ratings for systems in a single
challenge, normalized average scores were computed for each
system from the normalized individual ratings, and differences
were computed between the normalized score of a given year’s
natural speech and of each system from that year. Results are
plotted in Figure 3. We can see that the gap between natural
speech and the best system becomes smaller year by year (with
the exception of a very good best system in 2010), and also that
a larger number of systems tend to approach natural speech over
time.
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Figure 3: Difference of each system from natural speech, com-
puted from averaged z-score-normalized ratings by listener for
each challenge. The top row of larger dots are natural speech.

4.4. Objective measures

We objectively measured all of the samples included in our lis-
tening test using a number of metrics: word error rate (WER)
using the IBM Watson speech-to-text API2, signal-to-noise ratio
(SNR) using the WADA SNR algorithm [28], the ITU-T P.563
method for objective speech quality assessment [29], and a pre-
trained MOSNet model from [9]. Although there are many pre-
trained MOSNet models to choose from, we chose this one be-
cause the fact that it was trained on a variety of TTS and VC
systems from ASVspoof makes it a good match for our domain,
and furthermore, other models which were trained on VCC data
would not be valid to use since we would be testing on those
models’ training data. Surprisingly we found that WER had
the strongest (negative, as expected) Pearson’s correlation with
MOS at r=-0.52. SNR had a weak negative corrlation of r=-
0.17. The p563 measure had a very weak correlation of r=0.05,
and surprisingly, MOSNet had the weakest correlation of all at
r=0.03. There is clearly room for improvement in terms of gen-
eralizable objective measures for synthesized speech.

5. Natural speech preferences and effects of
the corpus on TTS

In [30], the voice of the speech corpus was found to have a sig-
nificant effect on the ratings of the synthesized speech. They
caution that the selection of the speaker for the training corpus
is crucial due to the large effects that the speaker can have on
the perceived quality of the synthesized speech. [9] similarly
found that the speaker has a large effect on synthesis quality,
and that systems trained on data from certain speakers reached
a consistent quality, regardless of the type of synthesis model
used. We observe this in our listening test data as well. This is
a confounding factor that prohibits meaningful direct compar-
isons between systems from different challenges; however, for
training a system such as MOSNet, it is important to be able to
replicate these human preferences even if they are simply based
on characteristics of the speaker data.

5.1. Metadata

We have useful metadata about various speaker characteristics,
such as gender, dialect (American vs. British), and whether or
not the speaker is a professional voice talent (speakers who were
not specifically stated to be professional speakers in the data

2https://www.ibm.com/cloud/watson-speech-to-text
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descriptions were assumed not to be). We found a significant
preference for professional speech over non-professional speak-
ers, a marginally significant preference for female speakers over
male speakers at p=0.05, and no significant preference between
British and American speakers. The preference for professional
speech may account for some of the difference between voice
conversion and text-to-speech systems, since the voice conver-
sion challenges rely on non-professional speech.

According to [31], listeners tend to rate spontaneous speech
as more natural, even if not explicitly instructed to pay attention
to style. So, we consider whether the genre or style of the nat-
ural speech has an effect on perceived naturalness. The three
main genres that we included from the Blizzard Challenges are
news, book sentences, and a “conversational” genre which is
not spontaneous conversational speech, but rather meant to be
speech from a virtual conversational agent whose purpose is to
help the user search for restaurants and navigate the results. We
find that news sentences are overall rated the most natural with
a MOS of 4.36 and the conversational genre had a MOS of 4.14.
The book sentences were rated as significantly less natural than
the news sentences, with a MOS of 4.09. It is surprising that
the book speech was rated as less natural, but the highly expres-
sive style of many of the book sentences may come across as
unnatural out of context.

One interesting observation we made during these analyses
is that although the speech data came from the same speaker in
both Blizzards 2008 and 2009, there was a significant prefer-
ence for the Blizzard 2009 natural speech. In fact, even con-
trolling for genre by considering only news utterances, we still
found a significant difference. Listening to samples from these
sets, we observed that the audio quality was much better for the
2009 samples. From this we can conclude that listeners are able
to consistently pick up on such differences in recording quality.

5.2. Speaker characteristics

We next consider whether there are certain speaker characteris-
tics that listeners tend to favor when rating naturalness. For each
speaker, using Praat [32], we measure the minimum, maximum,
mean, and standard deviation of f0 and energy, as well as noise-
to-harmonic ratio (NHR), jitter, and shimmer. We found mod-
erate negative correlations with MOS for shimmer (r=-0.46),
NHR (r=-0.41), and mean energy (r=-0.37), and a moderate
positive correlation for standard deviation of energy (r=0.41).
A study of vocal attractiveness [33] also found that harmonic-
to-noise ratio (the inverse of NHR) was significantly correlated
to ratings of vocal attractiveness, suggesting that perceptions of
naturalness and vocal attractiveness may be related. Further-
more, [34] observed that selecting speakers with low mean en-
ergy for training statistical parametric speech synthesis models
resulted in more intelligible synthetic speech, which we have
also observed correlates with better naturalness ratings.

5.3. Effect of corpus on benchmark systems

Every Blizzard evaluation contains samples from two bench-
mark systems: Festival [35] and HTS [36]. The Festival bench-
mark system is the same every year, and the HTS benchmark is
that year’s HTS version. Festival and HTS are denoted as sys-
tems B and C respectively in each Blizzard challenge. The in-
clusion of these benchmarks allows us to study the effect of the
speaker data on TTS systems that are mostly consistent. Com-
paring Pearson and Spearman corrrelations between the scores
for these benchmark systems each year and the corresponding
natural audio, we find moderate correlations for Festival (Pear-

Figure 4: MOS for natural speech and benchmarks for each
Blizzard year

son r=0.33, Spearman r=0.54) and strong correlations for HTS
(Pearson r=0.87, Spearman r=0.90). This indicates that while
both systems’ synthesis output reflects preferences about the
chosen speaker used for training, HTS is more sensitive to the
choice of data. Groupings of the MOS of benchmark systems
with their respective natural speech can be seen in Figure 4.

6. Discussion and Future Work
In a large-scale listening test combining samples from various
Blizzard Challenges, Voice Conversion Challenges, and ESP-
net models, we showed the reliability of MOS tests through
their strong correlations with MOS results from past tests. In
doing so, we also produced a very large dataset of synthesized
samples from 187 different systems, each with eight human rat-
ings for naturalness, and all in the same listening test context,
with both text-to-speech and voice conversion systems rated to-
gether, which can be used for further analysis and for training
MOSNet-type systems for automatic objective evaluation. We
also observed the importance of the choice of speaker for the
training data on synthesis quality, and identified some speaker
characteristics for which listeners had preferences. By adjust-
ing for individual listener preferences and measuring distance
to natural speech, we can observe the trend of improvement in
TTS over time as more systems approach the quality of natural
speech.

We have observed that some systems have clear agreement,
whereas others, such as ESPnet-Merlin, have a wider distri-
bution of scores. For these such less-agreed-upon systems, it
would be interesting to know the source of these disagreements
and what makes them so “controversial” – e.g., if certain types
of artifacts or unnaturalness are very salient to some listeners
but not others, or if the variation comes from large differences
in quality of synthesis by utterance.

In future work, we will conduct a similar listening test with
native English listeners, and also collect ratings for speaker sim-
ilarity. These large datasets will allow us to to train or fine-tune
MOSNet models for this test context. Having similar listening
test data for both English and Japanese listeners will also en-
able us to study cross-cultural aspects of preferences for speaker
characteristics and speaking styles.
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Abstract
Realizing text-to-speech (TTS) system of dialects is useful

for personalizing TTS systems. However, TTS for many di-
alects of pitch accent languages is not realized because of low-
resourced problem. Among many dialects of pitch accent lan-
guages, this paper focuses on Osaka dialect of Japanese, one
of the most challenging pitch accent languages. For Japanese
TTS system, accent labels are known to be necessary as input
to synthesize natural speech. In rich-resourced dialect, human-
resourced approaches and dictionary-based approaches are of-
ten used to annotate accent labels for training and inference, but
such approaches are unfeasible and time-consuming for low-
resourced dialects. In this paper, we propose accent extrac-
tion model that utilizes vector quantized variational autoencoder
(VQ-VAE) to prepare accent information from speech, and ac-
cent prediction models that utilize decision tree and deep learn-
ing techniques to predict accent information from the input text.
The models were examined with corpus of Osaka dialect, whose
accent labels do not exist. The results showed that accent ex-
traction model succeeded in extracting accent information of
Osaka dialect from speech utterances as latent variable. It also
showed that the accent of synthesized speech by accent predic-
tion models were not better than baseline, but it had advantages
such as interpretability.
Index Terms: pitch accent, speech synthesis, Japanese dialect,
VQ-VAE, accent label, latent variable

1. Introduction
Text-to-speech (TTS) systems with dialects makes speech ap-
plications diverse. For example, personalizing TTS with the
speaker’s dialect can be an alternative form of voice output for
patients who have progressive dysarthria and want to speak in
their dialects [1]. For another example, dialect TTS systems
could be adopted for local characters to speak in the local di-
alects.

For pitch accent languages such as Japanese, it is known
that accent information of input texts has an important role for
TTS to synthesize natural-sounding speech [2, 3]. For exam-
ple, in Japanese, a change in pitch makes a difference between
words. Changing the pitch of “chopsticks” (/ha’shi/) differen-
tiates the meaning into “bridge” (/hashi’/) or “edge” (/hashi’/).
Though these words have the same phonemes /hashi/, Japanese
speakers distinguish them by the pitch accent. In Japanese TTS
system, without inputting the accent information as accent la-
bels, an acoustic model cannot capture the pitch fluctuations ap-
propriately, resulting in unnatural (sometimes even wrong) syn-
thetic speech. Hence, accent labels need to be correctly given
from text in pre-processing for Japanese TTS systems. For TTS
of the Tokyo dialect, accent labels are annotated typically by
professional annotators or dictionary-based approaches such as
OpenJTalk [4]. Since the Tokyo dialect is the standard dialect

of Japanese, TTS of this dialect can utilize rich resources such
as professional annotators and an accent dictionary.

However, TTS systems for many dialects of pitch accent
languages have been suffering from low resource problems.
Specifically, recorded speech data set is not sufficient for model-
ing of fundamental frequency (F0) curves of accents even if we
use an end-to-end TTS framework [2]. Although it is true that
accent labels improve the synthetic F0 curves, annotating pitch
accent labels requires professional annotators familiar with both
the target dialect and the pitch accent system. Moreover, the ac-
cents of dialects are rarely summarized as an accent dictionary.
Therefore, we should investigate the dialect TTS system under
the condition that accent labels are not sufficiently provided.

In this paper, we focus on the Osaka dialect, which is
among the dialects of Japanese and significantly different from
the Tokyo dialect. To overcome the low resource problems, we
propose two frameworks: accent extraction models for accent
modeling in training, and accent prediction models for accent
modeling in inference. The accent extraction models are used
to extract latent representations of accent from speech. As the
accent extraction models, we use not only variational autoen-
coder (VAE) [5], which was successful in extracting sentence-
level prosody representations [6], but also vector quantized VAE
(VQ-VAE) [7] to express discrete characteristics of Japanese ac-
cent. Mora-level latent variable representation of accent using
VAE and VQ-VAE enables an acoustic model to be trained with-
out annotated accent labels. The accent prediction models are
used to infer the latent variable representations. We examine the
effectiveness of two accent prediction models using recurrent
neural networks (RNNs) and decision trees. We also investigate
the use of the accent dictionary of the Tokyo dialect as the input
of the accent prediction models.

2. Japanese pitch accent of Tokyo and
Osaka dialects

The label of the accent system of Japanese is defined as high
or low for each mora, which fundamentally corresponds to a
Japanese Hiragana/Katakana character [8]. In the Tokyo dialect,
Japanese words have an accent nucleus position, where the label
changes from high to low. In the case of two-mora nouns, the
nucleus position is among “no-nucleus (0),” “1,” or “2.” An ex-
ample of accent labels of two-mora nouns for the Tokyo dialect
is shown in Figure 1. The last mora “wa” is a postpositional
particle in Japanese. In this example,“ha-shi (edge)” has no ac-
cent nucleus, “ha-shi (chopsticks)” has nucleus position of “1,”
and “ha-shi (bridge)” has that of “2.” Since these words have
different accents, their corresponding accent labels are differ-
ent. This accent information is in the accent dictionary for the
Tokyo dialect.
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Figure 1: Example of accent labels. left: “ha-shi
(edge)”+“wa”, center: “ha-shi (chopsticks)”+“wa”, right:
“ha-shi (ridge)”+“wa”.

Table 1: Corresponding relationships of accent labels of two-
mora nouns + postpositional particle “wa” between the Tokyo
and Osaka dialects (H: High, L: Low)

Tokyo dialect Osaka dialect

L - H - H (no-nucleus) H - H - H
H - L - L (nucleus position 1) L - H - L
L - H - L (nucleus position 2) H - L - L

The Osaka dialect is spoken in around Osaka prefecture1.
When constructing a TTS system for this dialect, accent labels
of the dialect are needed as the input, but the accent dictionary
of the Osaka dialect does not exist. One of the available re-
sources related to Japanese pitch accent is the accent dictionary
of the Tokyo dialect. However, since the Osaka dialect has an
accent system which is completely different from that of the
Tokyo dialect, the accent dictionary of the Tokyo dialect is not
suitable as it is for estimating the accent of the Osaka dialect.
On the other hand, there are some corresponding relationships
between the Tokyo and Osaka dialects [9]. For example, it is
known that the accents of two-mora nouns of the dialects corre-
spond to each other as Table 1 shows.

3. Related work
There have been many studies that focused on representation
learning of prosody from acoustic features, including [10, 6, 11,
12]. Zhao et al. [11] proposed a model that reconstructs speech
waveform with VQ-VAE [7] and down-sampled frame-level F0-
related latent representation extracted from F0 curve. Hodari et
al. [12] succeeded in improving prosody of synthesized speech
by learning word-level prosody representations from referenced
mel-spectrogram using VQ-VAE, and predicting them from the
context in inference. Kenter et al. [6] proposed a hierarchical
VAE [5] model that can synthesize a variety of prosodic features
such as F0 by using sentence-level prosody embeddings. In this
study, we examine VAE and VQ-VAE models for accent mod-
eling of the Osaka dialect, with mora-level latent representation
learning of pitch accent.

4. Latent-variable-based accent extraction
models for Japanese using VAE models

We propose latent-variable-based accent extraction models for
the expression of pitch accent of Osaka dialect. Specifically,
we utilize VAE and VQ-VAE, which have been successful
in prosody modeling described in the previous section. We
adopted mora-level latent representation for accent modeling,
as Japanese pitch accent of all dialects is defined for each mora
as described in Sec. 1. We assume that we only have texts and
speech utterances, and that accent labels are unavailable, which
often happens, especially when targeting at low-resourced di-
alects.

1The second-largest metropolitan area in Japan.

(a) VAE structure. Linear means linear layer, bi-LSTM means bi-
directional long short term memory (LSTM) cells layer
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(b) VQ-VAE structure. VQ means vector quantization layer which quan-
tized the output of the previous linear layer.

Figure 2: Structure of accent extraction models

4.1. Structure of accent extraction models

We propose accent extraction models that use VAE and VQ-
VAE to extract the accent information from speech samples as
latent variables. The model structures are shown in Figure 2.
First, the encoder takes time-series frame-level linguistic x and
acoustic features y as the input, and outputs latent variables z
for each mora. In the second bi-LSTM layer of the encoder, the
output of the last frame of each mora is propagated to the next
layer, which results in transforming the frame-level features into
mora-level features. The decoder takes frame-level linguistic
features x and the mora-level latent variables z as the input, and
predicts F0 curve for the speech ŷF0. By providing linguistic
features x that have no accent information of either the Tokyo
nor Osaka dialect, we expect that the latent variables represent
the accent information extracted from the acoustic features.

4.2. VAE model

In this section, we propose an accent extraction model with
VAE, which is often used in unsupervised learning of latent rep-
resentations of speech [6]. Figure 3a shows the structure of the
VAE model. The boxes of “µ” and “Σ” in the figure mean
linear layers that output mean vector µ̂ and diagonal variance
matrix Σ̂, respectively. The posterior distribution of latent vari-
able z is defined as a Gaussian distribution with mean µ̂ and
variance Σ̂. Following [5], we define the loss function LVAE as
follows:

LVAE =

Nd∑

i=1

{
‖yi

F0 − ŷi
F0‖

2
+DKL[N (µ̂i, Σ̂i)||N (0, I)]

}

(1)
where Nd is the number of speech samples,N means Gaussian
distribution and DKL means the Kullback–Leibler divergence.
I means an identity matrix.

4.3. VQ-VAE model

Since the Japanese accent information that people perceive is
discrete as described in Sec. 2, we adopt VQ-VAE, which quan-
tizes the latent space, to take advantage of this discrete charac-
teristic of the Japanese pitch accent. Figure 3b shows the struc-
ture of the VQ-VAE model. The vector quantization layer quan-
tizes the output of the previous linear layer. Following [7], we
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Figure 3: Summary of proposed models. (a) is accent extraction model and (b) and (c) are accent prediction models.

define the loss function LVQ−VAE as follows:

LVQ-VAE =

Nd∑

i=1

{
‖yi

F0 − ŷi
F0‖

2
+ ‖sg(zi

uq)− zi‖2

+β‖sg(zi)− zi
uq‖

2

}
(2)

where zuq are the values of z before quantization by the VQ
layer, and function sg(·) stops the gradient. β was set to 1 in
the experiment.

5. Accent prediction models
In this section, we propose two accent prediction models that
predict accent latent variables from linguistic features, for syn-
thesizing speech of the Osaka dialect with only text. The rela-
tionship between the proposed accent extraction models and the
accent prediction models is shown in Figure 3. The accent pre-
diction models predict accent latent variables, and the F0 curve
is synthesized by inputting the predicted accent latent variables
into the decoder. One uses RNNs and the other uses a decision
tree [13]. For both of these two models, there are two candidates
that take different input features. One takes only the linguistic
features of text as the input. The other takes the linguistic fea-
tures of the text and accent information of the Tokyo dialect.
Using accent information of the Tokyo dialect as the input is
possibly useful for the models to learn the corresponding re-
lationships between the accents of Tokyo and Osaka dialects,
hypothesizing that there generally exist the correspondences as
described in Sec. 2. We examine the impact of accent infor-
mation of the Tokyo dialect on predicting accents of the Osaka
dialect by comparing the results of these two candidates.

5.1. Accent prediction model using RNNs (APM-RNN)

This model uses RNNs to predict the accent latent variables.
Since this model adopts deep learning techniques, it can cap-
ture more complex features than the decision tree model. It
takes phoneme-level linguistic features and accent information
of the Tokyo dialect, and outputs the accent latent variables.
The structure is almost the same as the decoder of the accent
extraction models. The differences are that this model does not
take the latent variable as the input, and that the outputs of this

model are accent latent variables, not F0 curve.

5.2. Accent prediction model using decision tree (APM-DT)

This model uses a decision tree to predict the accent latent vari-
ables. For this model, we expect robustness, because the corre-
spondences as shown in Table 1 are so simple that RNN models
may be too expressive. Since the decision tree can output only
a scalar value, we define a decision tree model for each mora
index. As the input, this model takes linguistic feature vector,
and accent latent variables of preceding moras to consider time
series feature of accent. When predicting the accent latent vari-
able of a four-mora word, four decision trees are used.

6. Experiments
6.1. Experimental conditions

We used a subset of the JSUT corpus, BASIC5000 [14], which
consists of 5000 utterances of sentences spoken in the Tokyo
dialect by a female speaker, and OSAKA3696, which consists
of 3696 utterances of phrases spoken in the Osaka dialect by a
male speaker. The phrases were composed of 258 verbs, 156
adjectives and 930 nouns and each phrase consisted of one con-
tent word and a positional particle. Since Japanese verbs and
adjectives are conjugated depending on the postpositional par-
ticle or auxiliary verb, all conjugated forms were recorded for
each verb and adjective with postpositional parts. Nouns were
recorded with the postpositional particle “wa” because the ac-
cent of a noun affects the accent of a postpositional particle.
We used 3000 utterances of BASIC5000, and 3126 utterances
of OSAKA3696 for training, 285 of OSAKA3696 for valida-
tion, and 285 of OSAKA3696 for testing. The reason we also
used the Tokyo dialect corpus was to make training stable.

Based on the context label of Japanese HTS [15], the lin-
guistic feature vector for the accent extraction model was de-
fined as a 444-dimensional one, which consisted of phoneme
information, parts of speech, and one-hot speaker embedding.
The linguistic feature vector for the APM-RNN was defined as a
442-dimensional one, which consisted of phoneme information,
parts of speech. The accent information vector of the Tokyo di-
alects (Tokyo accent vector) was defined as a 91-dimensional
one. For the APM-DT model, we used a phrase-level 159-
dimensional vector including parts of speech as the linguistic
feature vector. As the accent information vector of the Tokyo
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Table 2: RMSEs of reconstructed F0 [cent] using extracted ac-
cent latent variable

model F0 RMSE [cent]

VAE 216
VQ-VAE 172
NO-ALV 247

dialect, we used the same Tokyo accent vector as the APM-
RNN.

The sampling rate of all speech signals was 48 kHz, and
the frame shift length was set to 5 ms. The acoustic features
were defined as the 0–59th mel-cepstral coefficients, continu-
ous log F0, five-band aperiodicity, first and second derivatives
of all these parameters, and a voiced/unvoiced flag. WORLD
[16] was used for parameter extraction and waveform synthe-
sis. As pre-processing of F0, trajectory smoothing [17] with
a 10 Hz cutoff frequency was used. The number of classes of
VQ-VAE latent space was set to 2, on the basis of the accent
system of Japanese as described in Sec. 2. The basic structure
of the DNN models (encoder, decoder, APM-RNN) consisted
of a linear layer, 2 × bi-directional LSTM layer with 734 cells,
and a linear layer. For the VAE encoder, the last linear layer
was replaced with two linear layers of µ and Σ as shown in
Figure 2a. For the VQ-VAE encoder, VQ layer was added as
the last layer as shown in Figure 2b. The maximum depth of
decision tree was set to 11.

6.2. Evaluations of accent extraction models

6.2.1. Objective evaluations of accent extraction models

To evaluate the performance of the accent extraction models,
we calculated the root mean squared errors (RMSEs) of the F0
curves reconstructed by the accent extraction models. The re-
sults are shown in Table 2. “NO-ALV” means a model that di-
rectly predicted F0 curve without accent latent variable (ALV),
and had the same structure as the decoder. The F0 RMSEs of
both the VAE and VQ-VAE models were smaller than NO-ALV,
which did not use the accent latent variable. This implies that
the proposed accent extraction models succeeded in extracting
accent information as latent variables. Moreover, the RMSE of
the VQ-VAE model was 172 cent, which was smaller than that
of the VAE model. This implies that the discrete representation
of the two classes was more suitable for representing high/low
Japanese accent.

6.2.2. Subjective evaluations of accent extraction models

To confirm the effectiveness of the accent extraction models
also in a subjective evaluation, we conducted an XAB test on the
accent reproducibility. The evaluation was done by 30 listen-
ers on our crowdsourcing system with speech samples vocoded
with reconstructed F0 curve, original mel-cepstrum, and origi-
nal band aperiodicity. The listeners were asked to answer which
of two accents of synthetic speech samples was closer to the
original one. Table 3 shows the results. As shown in the Table,
the F0 curves created by the VAE and VQ-VAE models were
significantly closer to the original speech than that of the NO-
ALV. Moreover, the F0 curve created by the VQ-VAE model
was significantly closer to the original than that of the VAE
model. The effectiveness of the proposed accent extraction
models and quantization were confirmed also in the subjective
evaluation.

Table 3: XAB test results of accent extraction models

model A p-value model B

VAE 0.591 vs. 0.401 < 10−5 NO-ALV
VQ-VAE 0.700 vs. 0.300 < 10−5 NO-ALV

VAE 0.375 vs. 0.625 < 10−5 VQ-VAE

n ta waa

Figure 4: F0 plot of “a-n-ta-wa” synthesized by accent extrac-
tion models. The vertical dotted lines mean the borders of mora.

6.2.3. Synthesized F0 curves

The VQ-VAE model succeeded in extracting the accent than the
VAE model. Here, we look into the the reconstructed F0 curves
of the models. Figure 4 shows F0 curves for the phrase “a-n-ta-
wa”(a noun “a-n-ta” and a postpositional particle “wa”) synthe-
sized by the accent extraction models. The accent of the original
speech signal was low/low/low/high. Since only “wa” had high
accent in the phrase, the original F0 curve had a higher value for
“wa” than the others. The predicted F0 curve of the VQ-VAE
model had the same tendency as the original one. However, the
F0 curves of the other methods were different from the original
one. The F0 curve of the VAE model had high values not only
in “wa”, but also in “n” and “ta”. The F0 curve of the NO-ALV
was a simple declination, which is far from the original one.
The VQ-VAE model succeeded better in reconstructing the F0
curve of the original speech than the other models.

6.2.4. Examples of accent latent variable of VQ-VAE model

We confirmed that the VQ-VAE model succeeded in extracting
accent information as latent variable better than the VAE model.
In this section, we check how the extracted latent variables look
like. Examples of the extracted latent variables extracted by the
VQ-VAE model are shown in Figure 5. Compared with manual
labels that we annotated to a part of the corpus, we found that,
one of the classes (Class 1) of the latent space tended to cor-
respond to high, and the other (Class 2) tended to correspond
to low. Since the VQ-VAE had better results, we adopted the
VQ-VAE model as our accent extraction model. The accent la-
tent variables extracted by the VQ-VAE model were used as the
teacher labels for the accent prediction models.

6.3. Results of accent prediction models

6.3.1. Objective evaluation of predicted F0

To measure the quality of the F0 curves predicted by the accent
prediction models, we calculated the RMSEs of the F0 curves
for three parts of speech (verbs, nouns, and adjectives) in OS-
AKA3696. Table 4 shows the objective evaluation results of the
predicted F0 curves. “W/” means that the input included accent
labels of the Tokyo dialect, and “W/O” means that the input did
not include them. The F0 RMSE of the APM-RNN W/ was
the smallest (256 cent), while that of the APM-DT W/O was
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Phrase 1: スレバ (su-re-ba)

Phrase 2: ゼンブハ (ze-n-bu-wa)

Mora ゼ (ze) ン (n) ブ (bu) ハ (wa)
Annotated accent label Low High Low Low

Class of extracted latent 
variable 2 1 2 2

Mora ス (su) レ (re) バ (ba)
Annotated accent label High Low Low

Class of extracted latent 
variable 1 2 2

Phrase 3: オイシイ (o-i-shi-i)

Mora オ (o) イ (i) シ (shi) イ (i)
Annotated accent label Low Low High Low

Class of extracted latent 
variable 2 1 1 2

Figure 5: Example of accent latent variables extracted by VQ-
VAE model
Table 4: RMSE of reconstructed F0 [cent] for each part of
speech

model all verb noun adjective

APM-DT W/ 313 289 351 323
APM-DT W/O 321 287 368 322
APM-RNN W/ 256 239 334 215

APM-RNN W/O 272 241 365 222

the largest (323 cent). The RMSEs of F0 of the APM-DT were
much larger than those of the APM-RNN, which implies that
APM-DT was not expressive enough to predict the accent la-
tent variables. All models with the Tokyo accent labels had bet-
ter prediction results compared with those without the Tokyo
accent labels. As for the difference among parts of speech, the
effect of adding accent labels of the Tokyo dialect was relatively
small in verbs and adjectives compared with nouns. One of the
causes may be that the accents of verbs and adjectives of the
Osaka dialect have a few fundamental patterns. For example,
accent labels of an n-mora adjective are fundamentally defined
as high/.../high/low/low. This may make the accent of them easy
to predict without the accent information of the Tokyo dialect.

6.3.2. Subjective evaluation of predicted F0

In addition to the objective evaluation, We conducted XAB
tests on the accent reproducibility of the predicted F0 curves
to check the prediction performance of the APMs. This sub-
jective evaluation was done by two groups with speech samples
vocoded with predicted F0 curves, original mel-cepstrum, and
original 5 band aperiodicity. One was done by 30 listeners on
our crowdsourcing system. The other was done by 30 listeners
who speaks Osaka dialect. The listeners were asked which of
two accents was similar to the original one, in the same way
as Sec. 6.2.2. Table 5 shows the results of the evaluation by
our crowdsourcing system, and Table 6 shows those by Osaka
citizens. The results of both evaluations were similar. As both
of the tables show, the APM-RNN W/ had significantly better
performance than the APM-DT W/. There was no significant
difference between the W/ models and the W/O models.

Since the degradation of RMSE in nouns by adding the
Tokyo accent labels were larger than other parts of speech, we
additionally conducted a subjective evaluation experiment, by

Table 5: Subjective evaluation of predicted F0 by crowdsourc-
ing system

model A p-value model B

APM-DT
W/

0.375 vs. 0.625 < 10−5 APM-RNN
W/

APM-DT
W/

0.519 vs. 0.481 0.35 APM-DT
W/O

APM-RNN
W/

0.498 vs. 0.502 0.96 APM-RNN
W/O

Table 6: Subjective evaluation of predicted F0 by Osaka citizens

model A p-value model B

APM-DT
W/

0.334 vs. 0.666 < 10−5 APM-RNN
W/

APM-DT
W/

0.533 vs. 0.467 0.12 APM-DT
W/O

APM-RNN
W/

0.511 vs. 0.489 0.64 APM-RNN
W/O

limiting the test utterances to nouns. The experiment was done
only on our crowdsourcing system, as the results of Osaka cit-
izens and our crowdsourcing system were similar. The results
are shown in Table 7. The APM-RNN W/ was significantly bet-
ter at reproducing the accents of the Osaka dialect nouns than
the APM-RNN W/O. It is estimated that adding accent labels of
the Tokyo dialect was useful in predicting the accents of nouns
of the Osaka dialect.

6.3.3. Predicted F0 curves

The APM-RNN succeeded better in reproducing the accents of
the Osaka dialect than the APM-DT. Here, we look into the
predicted F0 curves of an adjective. Figure 6 shows the pre-
dicted F0 curves for a five-mora adjective “a-ri-ga-ta-i”, whose
accent labels of the Osaka dialect are high/high/high/low/low.
Since the last two moras of the term have low accent, the values
of original F0 of them tend to be smaller than those of former
three moras. The predicted F0 curve of the APM-RNN W/ had
a similar tendency to the original one, which can be perceived
as the same accent high/high/high/low/low. However, The F0
curve of the APM-DT W/ fell around third mora “ga”, which
can be perceived as a wrong accent, high/high/low/low/low.

7. Conclusions
In this paper, we have proposed accent extraction models and
accent prediction models for automatic accent modeling of the
Osaka dialect. The result showed that the proposed accent ex-
traction model succeeded in extracting accent information as
latent variable using VQ-VAE. This model will make it possi-
ble to train an acoustic model that synthesizes natural F0 curve
without annotated accent labels, which is one of the problems
that TTS of Japanese non-Tokyo dialects is suffering from. For
the accent prediction models, the result showed that the APM-
RNN reproduced the accent of the Osaka dialect better than the
APM-DT, and adding the accent labels of the Tokyo dialect is
useful for predicting the accent of nouns of the Osaka dialect.

Combining the proposed accent extraction models and ac-
cent prediction models enables us to synthesize speech of texts
without speech samples. Although the RMSEs of the proposed
prediction models were still larger than that of the model with-
out accent latent variables (NO-ALV), the proposed synthesis
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Table 7: Subjective evaluation of predicted F0 of nouns

model A p-value model B

ALV-DT
W/

0.526 vs. 0.474 0.35 ALV-DT
W/O

ALV-RNN
W/

0.657 vs. 0.343 < 10−2 ALV-RNN
W/O

a (H) ri (H) ga (H) ta (L) i (L)

(a) Original
a (H) ri (H) ga (L) ta (L) i (L)

(b) APM-DT W/
a (H) ri (H) ga (H) ta (L) i (L)

(c) APM-RNN W/

Figure 6: Predicted F0 curve of an adjective, “a-ri-ga-ta-i”.
The horizontal and vertical axes mean Time and F0 respec-
tively, and the dashed lines and the labels above mean the bor-
der of mora, the phoneme of mora and how people can perceive
the accent of the mora.

methods have some advantages such as:

• Interpretability:
Looking into the input accent latent variables enables us
to understand how the accents of speech utterances were
synthesized.

• Controllability:
Changing the input accent latent variables enables us to
easily modify the accent of synthesized speech into more
natural one.

Moreover, the proposed accent extraction models are possibly
useful for an accent analysis of low resourced dialects, since
they can easily visualize the accent information only with texts
and speech utterances, even without professionals of the accent
of the dialect.

Future work includes:

• Apply the proposed models to other dialects of pitch ac-
cent languages including Japanese

• Research model structures of the accent extraction mod-
els for better representation of the accent

• Incorporate modification systems or other input features
into the proposed accent prediction models for better

prediction
• Extend the proposed models to extract other features of

speech signals such as emotion and dialog acts.

8. Acknowledgements
This work was supported by JSPS KAKENHI Grant Number
18K18100, 19K20292.

9. References
[1] M. Pucher, D. Schabus, J. Yamagishi, F. Neubarth, and V. Strom,

“Modeling and interpolation of Austrian German and Viennese di-
alect in HMM-based speech synthesis,” Speech Communication,
vol. 52, no. 2, pp. 164–179, 2010.

[2] Y. Yasuda, X. Wang, S. Takaki, and J. Yamagishi, “Investigation
of enhanced Tacotron text-to-speech synthesis systems with self-
attention for pitch accent language,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2019, pp. 6905–6909.

[3] T. Koriyama and T. Kobayashi, “Semi-supervised Prosody Mod-
eling Using Deep Gaussian Process Latent Variable Model.” in
INTERSPEECH, 2019, pp. 4450–4454.

[4] “openjtalk,” http://open-jtalk.sp.nitech.ac.jp/.
[5] D. P. Kingma and M. Welling, “Auto-Encoding Variational

Bayes,” in International Conference on Learning Representa-
tions, 2014.

[6] T. Kenter, V. Wan, C.-A. Chan, R. Clark, and J. Vit, “CHiVE:
Varying prosody in speech synthesis with a linguistically driven
dynamic hierarchical conditional variational network,” in Inter-
national Conference on Machine Learning, 2019, pp. 3331–3340.

[7] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural Dis-
crete Representation Learning,” in Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems,
2017, p. 6309–6318.

[8] S. Kawahara, “The phonology of Japanese accent,” The handbook
of Japanese phonetics and phonology, pp. 445–492, 2015.

[9] H. Kindaichi, “Akusento no bunpu to hensen,” Iwanami kouza ni-
hongo, vol. 11, pp. 129–180, 1977, in Japanese.

[10] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg, J. Shor,
Y. Xiao, Y. Jia, F. Ren, and R. A. Saurous, “Style tokens: Unsu-
pervised style modeling, control and transfer in end-to-end speech
synthesis,” in International Conference on Machine Learning.
PMLR, 2018, pp. 5180–5189.

[11] Y. Zhao, H. Li, C.-I. Lai, J. Williams, E. Cooper, and J. Yam-
agishi, “Improved prosody from learned f0 codebook representa-
tions for vq-vae speech waveform reconstruction,” arXiv preprint
arXiv:2005.07884, 2020.

[12] Z. Hodari, A. Moinet, S. Karlapati, J. Lorenzo-Trueba, T. Mer-
ritt, A. Joly, A. Abbas, P. Karanasou, and T. Drugman, “Camp: a
two-stage approach to modelling prosody in context,” in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021, pp. 6578–6582.

[13] S. R. Safavian and D. Landgrebe, “A survey of decision tree clas-
sifier methodology,” IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. 21, no. 3, pp. 660–674, 1991.

[14] S. Takamichi, R. Sonobe, K. Mitsui, Y. Saito, T. Koriyama,
N. Tanji, and H. Saruwatari, “JSUT and JVS: Free Japanese voice
corpora for accelerating speech synthesis research,” Acoustical
Science and Technology, vol. 41, no. 5, pp. 761–768, 2020.

[15] “HTS,” http://hts.sp.nitech.ac.jp/.
[16] M. Morise, F. Yokomori, and K. Ozawa, “World: a vocoder-based

high-quality speech synthesis system for real-time applications,”
IEICE Transactions on Information and Systems, vol. 99, no. 7,
pp. 1877–1884, 2016.

[17] S. Takamichi, K. Kobayashi, K. Tanaka, T. Toda, and S. Naka-
mura, “The NAIST text-to-speech system for the Blizzard Chal-
lenge 2015,” in Proc. Blizzard Challenge workshop, 2015.

194



Liaison and Pronunciation Learning in End-to-End Text-to-Speech in French
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Abstract
Sequence-to-sequence (S2S) TTS models like Tacotron
have grapheme-only inputs when trained fully end-to-end.
Grapheme inputs map to phone sounds depending on context,
which traditionally is handled by extensive preprocessing in the
TTS front-end. However, French orthography does not provide
a clear one-to-one mapping between graphemes and sounds,
and in English, which similarly has rather non-phonetic orthog-
raphy, pronunciations are a significant cause of error in S2S-
TTS with grapheme-inputs. In this paper, we test implicit pro-
nunciation knowledge where graphemes do not map directly to
phones. Implicit pronunciation knowledge learnt in S2S-TTS
is similar to a standalone grapheme-to-phoneme (G2P) model,
which makes explicit phone predictions at the sequential level.
We find grapheme-input S2S-TTS makes implicit pronuncia-
tion errors similar to explicit G2P models - notably for foreign
names. In a traditional front-end pipeline, there are also post-
lexical rules which modify G2P output at the sequential level.
In French, post-lexical rules require a deep knowledge of lin-
guistic structure in a process called Liaison. Without explicit
rules, we find S2S-TTS with grapheme-inputs over-inserts Li-
aison sounds, leading to a significant preference for a phone-
based equivalent. By testing with linguistically-motivated stim-
uli, we observe differences that would otherwise go undetected.
Index Terms: Text-to-Speech, Phoneme, Liaison, En-
chaı̂nement

1. Introduction
Neural text encoders enable text-to-speech synthesis from raw
text-audio pairs without extensive text normalisation and/or lin-
guistic preprocessing such as lexicon and G2P model lookups.
Traditionally these initial steps, formulated in the front-end, en-
sured correct pronunciations and provided useful information
for modules further down the text-to-speech pipeline. With the
rise of end-to-end (E2E) TTS with Tacotron [1] and subsequent
text encoders [2, 3], the extent and need for a front-end for TTS
is in question.

In [4], implicit pronunciation knowledge learned in a
grapheme-based Tacotron was framed as a G2P model trained
on the text from training datasets in English such as LJ [5] and
VCTK [6]. Implicit G2P models were poorer than lexicon-
based G2P models, being unable to pronounce place names and
foreign names - especially those with non-phonetic orthography
in English.

French also has non-phonetic orthography. In [7], the use
of graphemes and phones were analysed as input features. The
authors visualised embedded grapheme-input with t-SNE, ob-
serving single graphemes in context can map to multiple phone
sounds. The authors sampled 50 sentences from the SIWI
dataset in a MUSHRA comparing graph and phone input. Lis-
teners were also asked to rate the pronunciation of the samples

on a scale from 1-5 in a MOS-style test. Grapheme and phone-
input performed with no-significant difference in these tests. In
addition, tongue twisters were tested to measure pronunciation
learning abilities, also with no significant difference found. The
authors noted that both grapheme and phone-input based sys-
tems produced errors in the pronunciation of Liaison, but did
not formally test this difficulty.

In this paper, we compare grapheme and phone input for
French E2E-TTS using linguistically motivated stimuli. We
first target stimuli to test the implicit G2P model and disal-
lowed cases of Liaison. Under Liaison, phones may be inserted
between word boundaries (mes amis, mon amour). The post-
lexical rules governing Liaison derive from linguistic informa-
tion such as part-of-speech (POS) tags and semantic roles (sub-
ject, object, etc). We think phonetic control of Liaison is han-
dled more reliably when using phones as a representation.

We proceed to add syllable boundaries to input to test
another supra-segmental process in French known as En-
chaı̂nement. In French, syllables span word-boundaries so that
consonants are not left at the end of syllables (eg, mon cher ami
- mon. che. rami). We test using stimuli containing examples
of Enchaı̂nement.

Overall, we find there are definite differences in pronuncia-
tions between grapheme- and phone-inputs in French, and these
differences are revealed when using linguistically targeted stim-
uli.

2. Previous Work
2.1. Linguistic Features in Tacotron

The TTS front-end consists of a pipeline of processes to nor-
malise input text and generate a linguistic specification for use
by neural encoders, duration/prosody models, and vocoders.
E2E TTS is an approach that aims to simplify the traditional
modular TTS pipeline. The first Tacotron paper demonstrated
high quality E2E-TTS was possible with grapheme-input, al-
though the authors noted pronunciation errors were common
and performance was enhanced with a front-end [1].

Some pronunciation issues derive from text normalisation.
For instance the string ‘3’ may be ordinal or cardinal, or abbre-
viations such as stock-ticker symbols can have ambiguous pro-
nunciations. Traditionally, such errors have been averted using
rule-based verbalisers. While the general performance of RNN-
based verbalisers is accurate, some errors are irrecoverable and
unacceptable for deployed systems [8]. RNN-based errors re-
quire an FST filter, a core problem presented in the Kaggle-
hosted Text Normalisation Challenge [9], where the hosts noted
the high degree of manual rule-writing for the top perform-
ing systems [10]. There is a recent drive to verbalisation that
shares a unified representation across ASR and TTS [11] en-
abling swift rollout of FST filters to low resource languages us-
ing a template-based questionnaire [12].
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Relatedly, pronunciation errors may also derive from a lack
of deeper linguistic knowledge learned implicitly from text-
audio pairs in the dataset. Increasingly, research demonstrates
augmenting E2E-TTS with linguistic features improves qual-
ity in English, such as with phones [13] or with morphemes
[14]. Pronunciation correction is also possible when mixing in-
put representations between graphemes, phones and syllables
[15, 16]. For non-alphabetic languages such as Japanese and
Chinese, phones are preferred to characters to avoid large char-
acter sets. In these languages, the implicit pronunciation model
does not learn pitch or other prosodic information meaningfully.
Contextual linguistic features such as the mora [17] and pitch
accents [18] are helpful, although such contextual features must
be compact to be beneficial [19]. Such features were used in
[20] with simplified alignments.

Recently in English the field has also used linguistic fea-
tures to improve prosody: using syllabic stress [21], semantic
and syntactic features [22, 23] and pre-trained language model
embeddings [24, 25]. Clockwork RNNs were also used to hi-
erarchically encode linguistic features at varying levels in [26],
a hierarchical encoder having previously helped in DNN-based
TTS [27, 28].

2.2. French Pronunciation

Recently, grapheme and phone inputs were tested in a French
Tacotron model [7], with the authors finding no significant dif-
ference between the two inputs in a MUSHRA listening test.
They chose samples from a random test set, however, which can
mask subtle but important differences between systems. It was
proposed in [29] for instance that listening test samples should
instead be chosen containing large differences in acoustic mis-
match. Tongue twisters were also tested in [7], with no sig-
nificant difference found between grapheme and phone inputs.
While the rapid repetition of certain articulations are difficult
for humans to pronounce, we posit the grapheme-to-sound rela-
tions contained in tongue twisters are usually unambiguous and
thus not an appropriate way to test implicit pronunciation learn-
ing. Instead, we target test stimuli to evaluate particular G2P
and post-lexical challenges for E2E-TTS in French: G2P error
words, Liaison and Enchaı̂nement.

With grapheme-input, the text-encoder learns pronuncia-
tions implicitly while learning acoustic features. In TTS, data
driven G2P models are typically trained with more than 100,000
entries from a pronunciation lexicon. While G2P conversion is
regular in French, the training data is restricted in vocabulary
covering fewer words than in a lexicon and G2P relations of
foreign words. Figure 1 shows that the full size of the SIWI and
CSS10 French datasets have limited word coverage. In [4], the
authors demonstrated explicit G2P models trained on words in
TTS training data underperformed G2P models trained on a full
lexicon in English. They also showed G2P error words were
mispronounced by grapheme-input E2E-TTS. Likewise here,
we test the pronunciation of grapheme- and phone-input models
using stimuli containing words with inaccurate G2P conversion.

We also test Liaison which is a process where linking
sounds are inserted between words. Traditionally, it occurs dur-
ing the “post lexical” module of a TTS front-end, after an initial
phone string has been obtained from a lexicon lookup or G2P
model. The plural possessive ‘mes’ before a following conso-
nant has no pronunciation corresponding to the ‘s’ grapheme:
mes chats - [me . Sa]. But before a following vowel, the ‘s’
grapheme corresponds to the pronunciation [z]: mes amis - [me.
za. mi] The rules governing Liaison operate at a deep linguis-
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Figure 1: Total unique words in SIWI and CSS10 French TTS
Datasets. The datasets cover fewer unique words than standard
pronunciation lexica which typcially contain more than 100,000
entries. Unusual G2P relations not covered in the training data
may not be predicted accurately, such as in foreign names.

tic level which are difficult to model. For instance, Liaison is
disallowed after a singular noun. While data modelling of Liai-
son has been tested with decision trees [30] and templates [31],
the process is complicated further because its use is often stylis-
tic and optional [32], consequently hand-written rules are often
used for TTS. [7] notes that grapheme-input Tacotron does in-
sert Liaison sounds but does not learn when to use it appropri-
ately. Their phone-input model also made Liaison errors, but
their front-end used a low-accuracy rule-based G2P system and
did not use post-lexical Liaison rules. We re-evaluate grapheme
and phone-based Liaison using a test set of disallowed Liaisons.

Enchaı̂nement occurs when the final sound of one word
transfers to the first syllable of the next word. For instance,
in mon cher ami the final rhotic of the word ‘cher’ is the on-
set to the syllable of the next word ami - [mõ . SE . Ka . mi]
A multi-task G2P with syllabic boundaries included in output
was shown to improve G2P performance in 14 languages [33],
although French was not included in their reported results. As
noted above, contextual phone information has been helpful in
mora-based languages such as Japanese.

3. Methods

3.1. Tacotron Model

The Tacotron model we use for our experiments here [34], has
a pre-net and CBHG module to encode a series of one-hot input
characters into a single representation. Unlike previous DNN-
based systems, a sequential text encoder and attention mech-
anism align input text to audio directly, enabling grapheme-
based input. We used Location Sensitive Attention (LSA) to re-
duce instability in output speech as recommended in [2]. Each
Tacotron was trained for 350k training steps. We use a Wa-
veRNN vocoder based on [35], trained using Tacotron’s pre-
dicted outputs up to 2000k steps, and synthesised samples in
batch-mode. We used a sampling rate of 16kHz.
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3.2. Data

3.3. Front-End

For our phone-based systems, we used the French front-end
from MaryTTS [36], with its default lexicon and G2P model.
The lexicon is based on the database Lexique [37] and each
word has been phonetized as well as syllabified using LIA
PHON [38] whose Phone-Error-Rate is 1.3%. However, in con-
trast to LIA PHON, MaryTTS doesn’t provide post-lexical rule-
based phonetization such as Liaison. Therefore, we manually
wrote Liaison post-lexical rules based upon the guide available
in [39]. Since POS tagging was a core input attribute we used
the Stanford POS tagger [40] to ensure as high accuracy as pos-
sible.

3.4. Experiments

We ran AB preference tests on 10 sentences held-out from the
CSS10 dataset between: i) graphemes (G) and phones (P) as
input; and ii) phones (P) and phones enriched with syllable
boundaries (S). The general AB tests complement the targeted
AB test results.

To test the implicit knowledge of French pronunciation in
the grapheme-based Tacotron, we applied the method used in
[4] to test implicit pronunciation learning of grapheme-based
Tacotron in English: train a G2P model using the TTS training
data, identify and synthesise G2P error words with the Tacotron
model. We used OpenNMT [41] for G2P modelling. We placed
10 problematic words in carrier sentences and synthesised them
using the G and Liaison P systems.

To test Liaison, we hand-crafted a test set of 10 sentences,
each containing disallowed Liaisons. As noted in [7], dis-
allowed cases of Liaison are problematic for Tacotron - for
example where an s is inserted before an aspirated-h as in
les haricots. We submitted the G and Liaison P systems to a
forced choice test for preference.

To test Enchaı̂nement, we hand-crafted a test set of 10 sen-
tences, each containing cases where the word-final consonant
becomes the onset of the following word-initial syllable. We
did augment the G model here as syllable strings could only
be derived from phone-based systems. We synthesised samples
from the Liaison phone-input model (containing word bound-
aries) and the Enchaı̂nement phone-input systems for an AB
preference test.

We built the AB preference tests in Qualtrics. Due to social
distancing policies, we held our listening test online using the
Prolific platform. We used 30 participants. Participants were
paid £5 per 30 minutes of their time. Participants were native
French speakers and had no known hearing difficulties. We did
not allow participants to take the test on their mobile phones
- forcing them to use a desktop. For the general and targeted
preference tests the accompanying question on each screen was:
Which clip has better pronunciation?/ (Quel clip a la meilleure
prononciation?)1

3.5. Results

3.6. CSS10 Test Stimuli

The results from the general AB listening test are shown in Fig-
ure 2. No significant differences were found between the G and
P systems, nor between the P and S systems.

1We encourage the reader to listen to samples using this link:
http://homepages.inf.ed.ac.uk/s1649890/fren/
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Figure 2: Results from preference tests using CSS10 stimuli. No
significant differences were observed between grapheme-input
(G), phone-input (P) and phones enriched with syllable bound-
aries (S). The significance level at p = 0.05 is shown by the
black dotted line at x=57.

3.7. Targeted stimuli

The results from the targeted AB listening test are shown in
Figure 4.

3.7.1. Words of inaccurate G2P

The phone-input models had accurate phone labels for this
targeted preference test. Listeners significantly preferred the
phone-based model over the grapheme-based model. Some in-
correct pronunciations by system G are shown in Figure 3.

The words contain unusual G2P relations in French missing
from the TTS training data. Representation mixing [16, 15] may
correct pronunciations provided the reader has a large enough
pronunciation lexicon to label a sufficient quantity of training
data.

3.7.2. Liaison stimuli

Listeners significantly preferred the phone-based system. The
French language has a highly active normative body called
the Academy (l’Académie Française) who maintain a strict
standard form of the language prohibiting insertion of Liaison
sounds in certain contexts, such as before the aspirated h in
combinations like les haricots or les hérissons. While speak-
ers do not strictly obey all rules, the prescribed norm of correct
pronunciation remains, and incorrect Liaison insertion was per-
ceived by listeners.

Word G (Incorrect) P (Correct)

Miguel de Cervantès [digɛl də sɛʁvãtz ] [ migɛl də sɛʁvãtɛz ]

Les Coopers [te skopə] [le kypɛ]

Monica Lewinsky [pwanika lewẽsi] [monika lywinski]

Rio de Janeiro [tʁio də ʒanero] [ʁio də ʒanero]

McLaren [klaʁno] [məklaʁɛn]

Figure 3: IPA transcriptions of words of inaccurate G2P in-
cluded in preference test. Mispronunciation of names by the G
model are highlighted in bold.
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Figure 4: Results from targeted preference Test. The first tier
shows G2P results, the second tier shows Liaison. The last 3
tiers show results from the test with Enchaı̂nement stimuli.

3.7.3. Enchaı̂nement stimuli

No significant differences were observed between G and P, but
there was a preference for S over P. With syllable boundaries
replacing word-boundaries, prosodic breaks occurred between
syllables and less so at word boundaries.

4. Discussion
To compare grapheme and phone inputs, consider that phone
inputs result from a pipeline of complex processes in the front-
end. The final quality of phone labels depends on processes
such as the pronunciation lexicon, the G2P model and post-
lexical rules. Error propagation from these processes may con-
tribute to phone-label inaccuracies, as was noted in [7] where
Liaison errors were observed in the phone-based system. How-
ever, phones are preferred where graphemes do not offer the
same level of control. Thus, we highlight the importance of
linguistically motivated stimuli to observe the differences in
pronunciation of G2P error words and Liaison for phones and
graphemes.

5. Conclusion
We investigated pronunciation learning with a Tacotron model’s
text-encoder when using grapheme inputs in French. Grapheme
inputs from raw or minimally normalised text reduce prepro-
cessing required to build TTS voices. However, graphemes

Input Labels

G Les haricots pousseront plus efficacement en plein air.
Il a mis une chemise.

P [ le  aʁiko pusəʁõ plys efikasəmã ã plẽn ɛʁ ]
[il  a mi  yn ʃəmiz ]

Figure 5: Liaison inserts sounds at word boundaries accord-
ing to complex rules, but inadequate insertion such as after
aspirated-h or between a past participle and a determiner was
dispreferred. Inaequate Liaisons are highlighted in bold.

Input Labels

G Le <> ciel <> est <> bleu <> et <> la <> mer <> aussi
Les <> sept <> enfants <> ont <> raconté <> une <> histoire <> amusante

P lə <>  sjɛl <> ɛ <> blø <> e <> la <> mɛʁ <> osi
le <> sɛt <> ãfã <> õ <> ʁakõte <> yn <> istwaʁ <> amyzãt

S lə . sjɛ . lɛ . blø . e . la . mɛ . ʁo . si
le . sɛ . tã . fã . õ . ʁa . kõ . te . y . ni . stwa . ʁa . my . zãt

Figure 6: Input string differences with syllable boundaries.
’<>’ denote word boundaries, ’.’ denote syllable boundaries.
The boundaries in the S system cross the word boundaries
between ’ciel-est’, ’mer-aussi’, ’sept-enfants’ and ’histoire-
amusante’.

are not accurate phonetic labels so the text encoder learns an
implicit, data-driven G2P model. Previous work had found
implicit G2P models to be weaker than explicit data-driven
G2P models trained on pronunciation lexica. The paucity of
Tacotron’s implicit G2P model was observed when synthesis-
ing problematic words identified by dedicated G2P models.

We used AB preference tests to compare listener opinions
on pronunciation. Using sentences from the speaker dataset
we find no significant differences between grapheme or phone-
input. When we use sentences containing G2P “error words”
we find the grapheme-based system makes mispronunciations
and the phone-based model is preferred.

Liaison is a post-lexical insertion of consonant sounds that
obeys complex rules. The rules governing correct Liaison inser-
tion are complex and require deep linguistic labels. Knowledge
about the etymology of a word may also be required in the case
of disallowed Liaisons before the aspirated ’h’. Whilst speakers
do not always obey strict Liaison rules, correct Liaisons from a
phone-based model were preferred to Liaison over-insertion by
the grapheme-based model.

We proceeded to test whether pronunciation of enchaine-
ment was improved by substituting word boundaries for sylla-
ble boundaries. We found that in sentences with word bound-
aries there were pauses at word boundaries where enchainement
should occur. Listeners significantly preferred syllable bound-
aries in these sentences.

Overall, we find linguistically-motivated stimuli reveal dif-
ferences in pronunciation learning between graphemes and
phones which are not revealed when considering averaged
scores from a held-out sample of TTS training data.
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[38] F. Béchet, “Lia phon: un systeme complet de phonétisation de
textes,” Traitement automatique des langues, vol. 42, no. 1, pp.
47–67, 2001.

[39] K. J. M., Guide de prononciation française pour apprenants
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Abstract

Attention based neural TTS is elegant speech synthesis pipeline
and has shown a powerful ability to generate natural speech.
However, it is still not robust enough to meet the stability re-
quirements for industrial products. Besides, it suffers from
slow inference speed owning to the autoregressive generation
process. In this work, we propose FeatherTTS, a robust and
efficient attention-based neural TTS system. Firstly, we pro-
pose a novel Gaussian attention which utilizes interpretability
of Gaussian attention and the strict monotonic property in TTS.
By this method, we replace the commonly used stop token pre-
diction architecture with attentive stop prediction. Secondly,
we apply block sparsity on the autoregressive decoder to speed
up speech synthesis. The experimental results show that our
proposed FeatherTTS not only nearly eliminates the problem
of word skipping, repeating in particularly hard texts and keep
the naturalness of generated speech, but also speeds up acoustic
feature generation by 3.5 times over Tacotron. Overall, the pro-
posed FeatherTTS can be 35x faster than real-time on a single
CPU.
Index Terms: acoustic model, attention, text-to-speech

1. Introduction
In recent years, with the rapid development of deep learning,
neural text-to-speech (TTS) can synthesize speech which is
more natural and expressive than traditional TTS pipeline. Neu-
ral TTS is usually divided into two parts: an acoustic model and
a neural vocoder. First, the input text (phoneme) sequence is
converted into an intermediate acoustic feature sequence(linear
spectrogram or mel-spectrogram) through an acoustic model
such as Tacotron [1], Tacotron2 [2], Transformer TTS [3], Fast-
Speech [4], etc. Then, the Griffin-Lim algorithm [5] or neu-
ral vocoder such as WaveNet [6] and WaveRNN [7] is used
to generate the final waveform according to the acoustic fea-
tures. Sequence-to-sequence models with an attention mecha-
nism are currently the predominant paradigm in neural acoustic
model and have shown a powerful ability to generate expressive
and high-quality speech. Those models learn the alignment be-
tween text sequence and frame-level acoustic features through
the attention mechanism, and then predict spectral features that
contain information such as pronunciation and prosody. The
speech quality synthesized by the neural TTS is limited by the
alignment generated by the attention mechanism. Although
attention-based neural TTS has achieved great success, it is dif-
ficult to deploy in the industry due to its accidental alignment
errors.

*This work was done during internship in Tencent.

Tacotron [1] with content-based attention mechanism does
not take into account the monotonicity and locality of TTS
alignment, an improved hybrid location-sensitive attention
(LSA) mechanism proposed in Tacotron2 [2] combines content-
based and location-based features to achieve the synthesis of
longer utterances. However, such hybrid mechanism also
causes alignment issues occasionally. The LSA mechanism
is borrowed from neural machine translation (NMT) and is
not completely applicable TTS. Because the pronunciation is
monotonous, for TTS, the alignment process is required to
monotonous forward. For machine translation, the alignment
process is not necessarily monotonous, It is possible that the last
word of the target language corresponds to the first word of the
source language. Therefore, many studies have adopted many
techniques in the attention mechanism to ensure monotonicity.
Such as [8] proposed the forward attention, which only consid-
ers the alignment paths that satisfy the monotonic condition at
each decoder time step. And [8] further proposed a transition
agent for monotonous attention, which achieves faster conver-
gence speed and higher stability. [9] proposed a guided atten-
tion loss, which adds the prior knowledge of alignment mono-
tinicity to the training process to help TTS models converge
faster. Even, many researches use hard alignment based on du-
ration expansion instead of attention mechanism, such as Fast-
Speech [4], DurIAN [10]. This type model usually requires an
auxiliary model to help training.

Recently, inspired by the purely location-based GMM at-
tention mechanism [11], an improved location-based GMM at-
tention mechanism called GMMv2b is proposed in Google’s
work [12], which shows that the GMMv2b-based mechanism
is able to generalize to long utterances, and can also improve
speed and consistency of alignment during training. However,
such GMM attention is unnormalized and not strictly mono-
tonic, which leads to unstable performance. In addition, the
commonly used stop token architecture in Tacotron often causes
early stop phenomenon for complex texts and long sentences.

In this paper, we propose a novel attention-based neural
TTS model named FeatherTTS, which can perform stable, fast
and high-quality synthesis. Our major contributions are as fol-
lows: (1) We introduce the Gaussian attention for acoustic mod-
eling, a monotonic, normalized and stable attention mechanism,
which is very interpretable for end to end speech synthesis. (2)
To solve the stop early issue, we remove the widely adopted
stop token architecture in Tacotron2 and propose the attentive
stop loss (ATL), which can determine whether to stop directly
based on alignment and fast convergence for Gaussian atten-
tion. (3) To improve the inference speed and reduce the number
of parameters without sacrificing the speech quality, we propose
to adopt block sparse strategy to prune the weights of decoder .
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2. Related work
2.1. Hybrid attention based Tacotron2

Sequence-to-Sequence models with an attention mechanism are
currently the predominant paradigm in neural TTS. Attention-
based neural TTS such as Tacotron2 [2] generally uses an en-
coder to encode input sequence x1:J into hidden representation
h1:J as

{h1:J} = Encoder({x1:J}), (1)

where J is the length of input phoneme sequence. Then, the
attention RNN generates a state vector si, which is used as the
query vector of the attention mechanism to generate alignment
αi at decode time i. According to the alignment αi, a weighted
average of the encoder output is calculated, which is the context
vector ci.

si = RNNAtt(si−1, ci−1, yi−1) (2)

αi = Attention(si, ...) ci =
∑

i

αi,jhj (3)

Finally, the context vector ci is fed into the decoder, and
the final acoustic feature sequence y1:T is computed through
post-net as

di = RNNDec(di−1, ci, si) yi = fo(di), (4)

where T is the length of output mel-spectrogram sequence.
Recently, many works have proposed various attention

mechanism. Such as Tacotron [1] uses the purely content-
based attention mechanism introduced in [13], Tacotron2 [2]
uses an improved hybrid location-sensitive mechanism intro-
duced in [14], some works [8, 15, 16] explore the use of mono-
tonic attention mechanisms, and some authors [17, 18] use the
location-based GMM attention.

2.2. Location based GMMv2b

Recently, Google’s work [12] proposed a modified location-
based attention mechanism which is called GMMv2b, has
achieved great success. The GMMv2b mechanism is inspired
by the location-based GMM attention mechanism introduced
in [11]. The GMMv2b attention mechanism uses K Gaussian
components to compute the alignment αi as (5), where αi,j is
the weight of j-th element of encoder outputs, K is the number
of Gaussian kernels, ωi,k is the weight of k-th Gaussian com-
ponent and µi,k, σi,k is the mean and standard deviation of k-th
Gaussian component at decoding time i, respectively. The mean
of each Gaussian component is computed following the recur-
rence relation in (6). The monotonicity of GMM attention is
guaranteed by making ∆i non-negative.

αi,j =
K∑

k=1

ωi,k

Zi,k
exp (− (j − µi,k)2

2(σi,k)2
) (5)

µi = µi−1 + ∆i. (6)

GMM attention usually calculates the intermediate vari-
ables (ω̂i, ∆̂i, σ̂i) first, and then uses the exponential function
to obtain the final variables. In order to stabilize GMM atten-
tion, GMMv2b-based attention uses the softmax and the soft-
plus functions to compute the final mixture parameters as





Zi =
√

2πσ2
i ,

ωi = Smax(ω̂i),

∆i = S+(∆̂i),
σi = S+(σ̂i),

(7)

where Smax and S+ are the softmax function and the soft-
plus function respectively. Besides, GMMv2b-based attention
adds initial biases to the the intermediate parameters ∆̂i and
σ̂i, which can encourage the final parameters to take on useful
values at initialization.

As shown in [12], the GMMv2b-based mechanism is able
to generalize to long utterances and maintains good naturalness,
which makes the synthesis of the entire paragraph possible.

3. The proposed method
Although the GMMv2b-based mechanism has good perfor-
mance, it also has many problems. First, this model still use stop
token architecture which can lead to early stop. Second, GMM
attention isn’t completely monotonic because it uses a mixture
of distributions with infinite support. Finally, GMMv2b atten-
tion is unnormalized because the attention weights are sampled
from a continuous probability density function, this can lead
to occasional spikes or dropouts in the alignment. Especially,
there are repetition problems for the synthesis of short sen-
tences, such as monophone and vowel. Therefore, we propose
FeatherTTS, a more robust attention-based acoustic model, as
shown in Fig. 1. Our model is based on the Tacotron2 [2] ar-
chitecture and consists of a CBHG encoder, Gaussian attention
and a block sparse decoder.

CBHG Encoder

Phoneme Tone/Stress

Attentive Stop Loss

Attention
Mechanism

Prenet

Sparse
LSTM

LSTM LSTMLSTM

Sparse
LSTM

Sparse
LSTM

Prenet Prenet

Sequence Length

Mel Spectrogram

Time delayed

Figure 1: The architecture of FeatherTTS

3.1. Gaussian attention

In order to solve the incomplete monotonic and unnormalized
problem in GMM attention, we propose to use Gaussian atten-
tion mechanism to model alignment, as shown in (8). Unlike the
k Gaussian components used in GMM attention, we only use a
single Gaussian function to calculate the alignment αi,j . Since
the Gaussian function is naturally normalized, as long as the
mean value of Gaussian attention at each decoding time step is
monotonously forward, the monotonicity of the alignment can
be guaranteed. We also calculate the intermediate variables (σ̂i,
∆̂i) first, and then get the final parameters(σi, ∆i) through the
softplus function simlir to GMM attention.

αi,j = exp (− (j − µi)
2

2(σi)
2 ) (8)

µi = µi−1 + ∆i (9)
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We use such simple and normalized Gaussian attention
function to calculate the alignment between the input phoneme
sequences and the spectrogram frames. The mean µi and the
variance (σi)

2 of the Gaussian attention mechanism control the
position and width of the attention window, respectively. ∆i

is non-negative, so the mean µi is monotonically increasing,
which guarantees the alignment process of the Gaussian atten-
tion mechanism is completely monotonic.

3.2. Attentive stop loss

The stop token architecture used in Tacotron2 [2] will cause
stop early problems. Compared with the GMM attention of
K Gaussian components, the single Gaussian attention mecha-
nism has a weaker fitting ability and it will difficult to converge.
Therefore, we need to add constraints to ensure that it can be
aligned to the end of the input sequence at the end of decoding.
In order to solve the above problems, we remove the stop token
architecture, and propose the attentive stop loss, which directly
judges the stop based on alignment. It is calculated as

Lstop = |µT − (J + 1)| , (10)

where µT is the mean value of Gaussian attention function at
last step, and J is the length of input phoneme sequence.

During training, the attentive stop loss forces the mean µi

of Gaussian attention to go forward to the end of the phoneme
sequence to ensure accurate alignment. In the inference stage,
FeatherTTS will stop to predict when µi ≥ (J + 1).

3.3. Sparse autoregressive decoder

It has been demonstrated that, with the same computational
complexity, a larger sparse network behaves better than a
smaller dense network [7, 19]. In this work, to reduce the
amount of computation of LSTM layers in decoder without a
significant loss in quality, we reduce the number of non-zero
values in each LSTM kernel weight. Inspired by [20, 21], we
adopt the weight pruning scheme based on the weight magni-
tude.

We start to perform weight pruning after 20K steps and ev-
ery 500 steps, we sort the weights of sparsified LSTM layers
and zero out certain number of weights with the smallest mag-
nitudes until the target sparsity 90% is reached at 200K step.
After block sparsity, the number of main operations in every
sparsified LSTM layer is

C = 4(1 - S)(I ∗H +H2), (11)

where I and H are the dimensions of input and hidden state of
the LSTM cell, respectively, and S is the target sparsity.

In FeatherTTS, we used the time-delayed post-net as in
[22], which is a vanilla LSTM layer with 256 units. Overall,
FeatherTTS is trained to minimize the total loss as

Loss =
1

T

T∑

i=1

∣∣y′i − yi
∣∣+

1

T − d
T−d∑

i=1

∣∣y′′i+d − yi
∣∣+ λLstop,

(12)
where d is the number of frames of time delay and λ is a scaling
factor. On the right hand side of Eq. 12, the first two items of the
loss function are L1 loss between reference mel-spectrogram yi
and the predicted both before and after mel-spectrogram y′i, y

′′
i .

The last item is the attentive stop loss.

Table 1: Mean Opinion Score (MOS) with 95% confidence in-
tervals for different models.

Model MOS on speech quality

Tacotron2(GMMv2b) 4.31 ± 0.03
FeatherTTS w/o Block sparsity 4.32 ± 0.04

FeatherTTS 4.33 ± 0.04

4. Experiments
4.1. Data Set

We used a corpus containing 20 hours of Mandarin recordings
by a professional broadcaster for all experiments. The corpus
was split into a training set of approximately 18 hours and a test
set of 2 hours. All the recordings were down-sampled to 24KHz
sampling rate with 16-bit format. We used 80-band mel-scale
spectrogram as training target, and then the mel-scale spec-
trogram was converted into waveforms by FeatherWave neural
vocoder [23].

4.2. Experimental Setup

For comparison, we implemented two models including
GMMv2b-based Tacotron2 [12] and FeatherTTS. As the base-
line model, the GMMv2b-based model is composed of five mix-
ture components. In order to reduce the model size, training and
inference time, two consecutive frames were predicted at each
decoding time step. For FeatherTTS, we delayed 5 frames and
the rate of attentive stop loss λ was set to 0.001. All models
were trained 300k steps with batch size 32 on a single GPU.
Other experimental setups are the same as AdaDurIAN [22] if
not specified.

4.3. Evaluations

In this section, we evaluated the proposed FeatherTTS and
Tacotron2 (GMMv2b) [12] in term of naturalness and robust-
ness, and compared the synthesis speed of the above two models
with FastSpeech [4].

4.3.1. Mean Opinion Score

We used the Mean Opinion Score (MOS) to measure the nat-
uralness of the synthesized speech1. Through crowdsourcing,
we conducted the MOS evaluation on 20 synthesized audios
which are unseen during training.The results of subjective MOS
evaluation are presented in Table 1. The results show that,
under the same vocoder configuration, both FeatherTTS and
Tacotron2(GMMv2b) have similar MOS values. In addition,
we compared the effect of block sparsity on the sound quality. It
can be seen from the experimental results that FeatherTTS with
block sparsity outperforms FeatherTTS without block sparsity
with a gap of 0.01 in MOS, which is basically in line with our
expectations.

4.3.2. Word Error Rate

FeatherTTS is designed to keep the naturalness as
Tacotron2(GMMv2b) while avoiding the mispronuncia-
tions observed in the Tacotron2(GMMv2b). Wrod error rate
(WER) is a general indicator for evaluating ASR and NMT

1Part of synthesized samples could be found at this URL:
https://wavecoder.github.io/FeatherTTS/
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Table 2: The Word Error Rate (WER) for different models.

Model Word error rate

Tacotron2(GMMv2b) 4.1%
FeatherTTS 0.9%

Table 3: The inference speed of different models.

Model Speed

FastSpeech 13.3x
Tacotron2(GMMv2b) 10.4x

FeatherTTS 35.0x
FeatherTTS BF16 60.0x

systems, and it can be used in TTS to measure the robustness
of TTS synthesized speech. Therefore, we compared the
robustness of two systems in terms of generated speech.
We used manual listening and checking methods to perform
fine-grained error checks on the synthesized speeches, such
as pronunciation errors, word skipping, repeating, etc. The
synthesized sentences are from different fields and are very
hard for TTS, such as website links, alphanumeric combination,
etc. There are a total of 50 test sentences and 10 participants,
and each sentence is checked by at least 5 different participants.
The final experiment results as shown in Table 2. We can see
that Tacotron2(GMMv2b) has an error rate of 4.1%, while
FeatherTTS is more robust, with an error rate of only 0.9%.
This strongly proves the role of Gaussian attention and attentive
stop loss in improving model stability.

4.3.3. Synthesis Speed

In this experiment, we proved the effectiveness of the block
sparse decoder for accelerating training and inference. We com-
pared the real-time rate of FastSpeech, Tacotron2(GMMv2b)
and FeatherTTS to generate mel-spectrograms on a single
core CPU(Intel Xeon Platinum 8255C). The results of syn-
thesis speed are presented in Table 3. Tacotron2(GMMv2b)
can achieve an inference speed of 10.4 times faster than real
time, while FeatherTTS can further be accelerated by 3.5 times
over Tacotron2(GMMv2b). In addition, compared with non-
autoregressive FastSpeech, FeatherTTS is also about 2.6 times
faster . Furthermore, we truncated the parameters and ran them
on the BF16 [24, 25] format to reduce the memory consump-
tion, and finally achieve 60 times faster than real-time on a
single CPU core (Cooper Lake, 3rd Gen Intel Xeon Scalable
processors). The above experiments prove the accelerating per-
formance of the proposed methods for inference, and makes it
possible to deploy TTS on edge devices.

5. Conclusions
In this work, we proposed FeatherTTS, an improved neural
TTS system with Gaussian attention, attentive stop loss and
block sparse decoder. Experiments demonstrate that such at-
tention mechanism is very efficient and would greatly improve
robustness of attention-based neural TTS system. With block
sparse decoder, our proposed FeatherTTS can speed up the
mel-spectrogram generation by 3.5 times faster than Tacotron2
nearly without any performance degradation. The ideas intro-
duced in FeatherTTS pave a new way for both efficient and

robust speech synthesis, and could be also applied to other
sequence-to-sequence task including automatic speech recog-
nition.

For future work, we will continue to investigate the perfor-
mance of FeatherTTS on edge-devices.
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Abstract

Text alone does not contain sufficient information to predict the
spoken form. Using additional information, such as the lin-
guistic context, should improve Text-to-Speech naturalness in
general, and prosody in particular. Most recent research on us-
ing context is limited to using textual features of adjacent utter-
ances, extracted with large pre-trained language models such as
BERT.

In this paper, we compare multiple representations of lin-
guistic context by conditioning a Text-to-Speech model on fea-
tures of the preceding utterance. We experiment with three de-
sign choices: (1) acoustic vs. textual representations; (2) fea-
tures extracted with large pre-trained models vs. features learnt
jointly during training; and (3) representing context at the utter-
ance level vs. word level.

Our results show that appropriate representations of either
text or acoustic context alone yield significantly better natural-
ness than a baseline that does not use context. Combining an
utterance-level acoustic representation with a word-level textual
representation gave the best results overall.
Index Terms: Text-to-Speech, speech synthesis, context,
prosody

1. Introduction and Related Work
Although text alone is not sufficient to predict prosody accu-
rately, Text-to-Speech (TTS) systems are generally trained to
generate spoken utterances given textual input only, and utter-
ances are assumed to be independent from one another. While
this might be true for certain types of text, utterances in mono-
logues, conversation, audio-books or from any other long-form
discourse are not isolated, but influenced by context [1, 2, 3].
Utterances are organized into a discourse structure in which
neighbouring utterances are part of the linguistic context [4].
Context can have a global effect on the average and range of
F0 and speech rate, or a localized one such as the absence or
presence of prominence.

In this paper we study how linguistic context, specifically
the previous utterance, can be exploited to improve TTS. Our
proposed method conditions the generation of an utterance on
the acoustic and/or textual properties of the immediately pre-
ceding one. We experiment with different design choices to an-
swer the general research question: how should linguistic con-
text be represented?

Augmenting TTS model inputs with linguistic context in-
formation has been proposed by several authors, including the
use of position of sentence inside a larger unit such as a para-
graph [1, 5], explicit discourse features such as discourse re-
lations [6] or topic structure [7]. While discourse features can
improve synthetic speech, feature extraction relies on models
that require supervised training on appropriately-labelled data.

Other approaches include directly labelling emphasis [8, 9,
10] or phrase breaks [11, 12]. Direct labelling can be useful for
controllability, but accurately predicting labels only from text is
hard.

In order to avoid the need for labelled data, unsupervised
approaches can be used to learn contextual representations from
acoustic features using encoders, which are later driven by tra-
ditional textual features [13, 14, 15]. However, these models
still generally use within-sentence textual input features, which
are insufficient to accurately predict prosody. [16] takes a differ-
ent approach by using linguistic features and acoustic distance
from the previous utterance to sample from a variational auto-
encoder of prosody, which synthesizes the current sentence.
However, their method is applied at inference time only.

Another approach, closer to what we propose here, uses
textual context to enhance a TTS baseline, conditioning mel
spectrogram prediction directly on a representation of context
[17, 18] in which BERT-derived features represent neighbour-
ing (both preceding and following) sentences. Although neither
method uses explicit prosodic features or learns prosodic repre-
sentations, it was observed that the use of context significantly
improves the prosody of the synthesized speech.

How the different features of context are captured is an im-
portant design choice. While [17] and [18] only capture textual
features, in previous work [19] we saw that acoustic features
can also lead to significant improvement. That approach makes
use of a prosody transfer module, Global Style Tokens [20], to
extract a prosodic representation from the mel spectrogram of
the context. That representation is then used to condition the
model, in a similar fashion to [17] and [18].

Our previous work was limited to represent acoustic fea-
tures of the context at the utterance level using mel spectro-
grams. Here, we substantially expand the scope of our work
to consider additional design choices, and to compare against
methods proposed by others.

Therefore, the current goal is to experiment with three de-
sign choices regarding how to represent context: (1) textual vs.
acoustic features; (2) representations extracted with large pre-
trained models vs. representations learnt jointly with the TTS
training; and (3) context at the utterance-level or at the word-
level.

We will show that: either textual or acoustic representa-
tions of context can significantly improve speech naturalness,
and a combination of both yields the best results; representa-
tions extracted with large pre-trained models outperform rep-
resentations extracted using jointly-trained model components;
and, word-level representations seem to be better matched to
textual features, while an utterance-level representation is bet-
ter for acoustic features.

11th ISCA Speech Synthesis Workshop (SSW 11)
26-28 August 2021, Budapest, Hungary
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Figure 1: System diagram. The baseline architecture is FastPitch [21] which we augment with a Context Method (in red) whose output
is summed to the embeddings at the encoder input. The Context Method is one of the 4 possible models shown in Figures 2 and 3. L is
the length of the current sentence (in phones). F the duration of the output (in frames). U denotes upsampling from phones to frames.

2. Experimental design
2.1. Baseline

Our baseline model is FastPitch [21], which comprises
Transformer-based encoder and decoder, with explicit duration
and F0 predictors. Input symbols (phonemes in the current
work) and their positional encoding are embedded, summed,
and input to the encoder. F0 is embedded and summed to the
encoder output before going into the decoder during training.
The duration of each input symbol determines the upsampling
between encoder output and decoder input. F0 is modelled
per-input symbol, with per-speaker mean/variance normalisa-
tion. During training, ground-truth values of F0 and duration
are used, whilst a predictor is trained for each of them. For
inference, predicted values are used.

FastPitch was selected because it is fast and stable in both
training and inference, and has an open source implementation
from the original author [22]. All models in the current work
were trained from scratch for ∼77k iterations. To vocode the
generated mel spectrograms to waveforms, we used the Wave-
Glow [23] checkpoint included with the FastPitch implementa-
tion, which has been trained on the LJSpeech corpus [24].

To condition FastPitch on previous sentence context, we
add a module that provides a representation that is summed to
the encoder inputs, labelled as Context Method in Figure 1. This
location was selected as the best place to inject context into the
model in prototyping experiments.

2.2. Context features and representations

We compare acoustic vs. textual features, each of which can
be input to either a large pre-trained model, or a model jointly
trained with the TTS model, to create a Context Representation.

Acoustic: we use the same mel spectrograms extracted for
training. As in FastPitch [21], these are 80-band mel spectro-
grams extracted with a window length of 1024 samples 256 hop
size. For the jointly-learnt condition, a Context Representation
is learnt from the mel spectrograms as described in Section 2.3.

For the pre-trained condition, the mel spectrogram is used
to obtain a Context Representation from a large pre-trained
model. We use the Deep Spectrum [25, 26], which was found
in our previous work to be capable of encoding global acous-
tic characteristics [27]. It extracts a fixed-dimension vector by
treating the mel spectrogram as an image and inputting it to a
large-scale image classification model. We use the implementa-
tion from the original authors [28], using layer fc2 of the VGG-
19 model to obtain a 4096-dim vector. One vector can be ob-
tained for the whole utterance, or for each of a sequence of fixed
windows (which, in our experiments, will depend on the word-
level or utterance-level condition, see Section 2.3).

Text: we use two types of features derived from the text:
phonetic transcriptions for the jointly-trained condition and
word tokens for the pre-trained one. To jointly-learn a Context
Representation, we use the phonetic transcription of the previ-
ous sentence. Phonetic transcriptions are obtained as for all the
training data for the models (Section 2.4), and use 47 symbols
including phones and punctuation. Word or syllable boundaries
are not included in the transcription.

To obtain a context representation from a pre-trained
model, we use BERT, and therefore, the context features used as
input correspond to text words (or tokens). BERT embeddings
are extracted using an off-the-shelf model in the transformers
Python library [29]. 768-dim vectors at the utterance-level are
obtained by averaging the activations of second to last hidden
layer, or at the word-level by summing the activations of the
last four layers of the model [30].

We decided to use a phonetic transcription for the jointly-
learnt condition rather than textual words or tokens as it seemed
unlike that the Context Method would be able to learn a re-
lationship over sparse combinations of words for our training
data (which is why large models as BERT are required to en-
code such relationships).

2.3. Context methods

The third design choice we are interested in is whether to rep-
resent context at utterance- or word-level. We anticipate that
the model will learn global prosodic effects from utterance-
level representations, and local effects from word-level rep-
resentations. The utterance-level representations are a fixed-
length vector that is constant for every encoder step. In contrast,
the word-level method outputs a representation that potentially
varies for every encoder step.

Whilst it is desirable to maintain the most similar model
architecture for all combinations of design choices, the differ-
ences in resolution and nature of the representations do entail
some differences, illustrated in Figures 2 and 3. In both figures,
Context Features are always extracted from the previous sen-
tence. The resulting Processed Context Representation is the
one finally added to the encoder inputs in Figure 1, condition-
ing the current sentence.

2.3.1. Using an utterance-level representation

Utterance-level Context Methods make use of Global Style To-
kens [20] which, as we have already shown [19], can be used
to represent context at the utterance-level and have been used
in TTS for diverse tasks [31, 32, 33]. GSTs are a set of ran-
domly initialized tokens (vectors). Multi-head attention is used
to learn the relevance of each token for every training utterance.
Since the tokens are constant, they can be thought of as labels,
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Figure 2: Context Methods for extracting an utterance-level
representation of context. As described in Section 2.2, for the
pre-trained condition, Context Features correspond either to
mel spectrograms (Lc = frames, D = 80) input to a Deep Spec-
trum pre-trained model, or to text word tokens (Lc = word to-
kens, D = embedding dim) input to BERT. Because pre-trained
models output Context Representations with a different dimen-
sion, a linear layer (circle-L) is used to reduce dimensionality.
For the jointly-learnt condition, mel spectrogram (Lc = frames,
D = 80) or phonetic transcription (Lc = phones, D = embed-
ding dim) are the Context Features. While pre-trained models
(PT model) extract a single vector Context Representation al-
ready, for the jointly-learnt condition a single vector Context
Representation is obtained through a Context Encoder. Finally,
for both conditions, a Processed Context Representation is ob-
tained by applying GST.

with attention ‘labelling’ the data in unsupervised fashion.
GST takes as input a fixed-dimension vector. The repre-

sentations obtained from pre-trained models (Deep Spectrum
or BERT) can be obtained at the utterance-level, and therefore
are simply reduced in dimensionality before GST. In contrast,
the representations obtained from jointly-trained models must
be summarised into a single vector. We use a Context Encoder
(lower part of Figure 2) with the same architecture as the ref-
erence encoder in [20]. We train GST with 10 tokens and 8
heads to output a 384-dim vector. We use the implementation
provided by [34].

2.3.2. Using a word-level representation

Figure 3 explains how the word-level Context Methods create
a Context Representation from the previous sentence, for each
word in the Current Sentence, which has the potential to encode
local prosodic phenomena.

Pre-trained models output Context Representations at the
word-level (or pseudo-word-level for Deep Spectrum) already.
For the jointly-learnt condition, the Context Features are first
processed by a block of convolutional layers with the same ar-
chitecture as the transformer (1D conv > Relu > 1D conv >
summed to the residual > layer norm). Then, word-level res-
olution is obtained by averaging frames or phones within word
boundaries.

Once the Context Representation is obtained, attention is
used to gather elements of it and potentially re-order them in
a way that is relevant for the Current Sentence. Finally, the
new Processed Context Representation is simply added to the
encoder inputs without further processing.

Figure 3: Context Methods for extracting a word-level repre-
sentation of context. Context Features correspond to those de-
scribed in Figure 3. Context Representations are now obtained
to match word-like resolution (Wc). For the pre-trained con-
dition, BERT embeddings are obtained for every word token,
while for Deep Spectrum, mel spectrograms are divided into one
second segments (without overlap). As before, these are reduced
in dimensionality by a linear layer (circle-L) to obtain the Con-
text Representation. For the jointly-learnt condition, a block
of convolutions is first applied to learn a Context Representa-
tion, however this module does not affect the resolution of the
features (Lc = frames, for mel spectrograms, Lc = phones, for
phonetic transcription). To obtain a word-level representation
(Wc), we average (circle-A) using word boundaries. In paral-
lel, word-level representations for the Current Sentence phones
are obtained averaging. Next, the attention mechanism calcu-
lates how relevant each word in the Context Representation is
to each word in the Current Sentence. The maximum attention
weight for each word in the Current Sentence is used to identify
the most relevant word in the Context Representation; the Con-
text Representation of that word is gathered into a sequence of
length W. The resulting Processed Context Representation is up-
sampled (circle-U) to match the length required to sum it to the
encoder inputs.

2.4. Data and pre-processing

All models used phonetized inputs obtained while force-
aligning the data with the Montreal Forced Aligner [35] to ex-
tract the ground-truth durations required to train the duration
predictor and upsample phones to frames, and to obtain the
word boundary information needed for word-level representa-
tions. Out-of-vocabulary words were transcribed using G2P
[36] and punctuation was restored. We obtained F0 contours
using Praat for Python [37] as in FastPitch [21].

We trained and tested all models using LJSpeech [24], with
12443 training sentences and 525 test sentences. We follow the
data naming structure to obtain previous-current sentence pairs.
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(a) (b) (c)

Figure 4: Listening test results (a) acoustic context alone; (b) text context alone; (c) best models compared with acoustic+text combi-
nations. Horizontal bars connect pairs of systems that are significantly different.

Model
name

Context
Feature

Context
Representation

Context
Method

DS-utt Acoustic Deep
Spectrum

Utterance

DS-word Acoustic Deep
Spectrum

Word

mel-utt Acoustic Learnt from
mels

Utterance

mel-word Acoustic Learnt from
mels

Word

BERT-utt Text BERT Utterance
BERT-word Text BERT Word
Text-utt Text Learnt from

phones
Utterance

Text-word Text Learnt from
phones

Word

Table 1: Summary of models compared in experiments.

3. Evaluation and Results
Testing all combinations of our three design choices resulted in
the 8 models summarised in Table 1. We predicted that text vs
acoustic features, and utterance-level vs word-level representa-
tion, would be complementary, so we also tested some com-
binations. To make evaluation feasible, the listening test was
conducted in three parts: (1) compare the 4 acoustic feature
systems; (2) compare the 4 text feature systems; (3) compare
the best acoustic system, best text system, and two systems that
combine both.

We did not know whether acoustic or text context would be
most informative. However, we did hypothesise that acoustic
context would be best represented at the utterance level, and
that text context would be best represented at the word level.

Each of the three listening tests used a MUSHRA-like de-
sign1. and compared 4 models, plus the baseline and the hid-
den reference (vocoded natural speech). The same 25 sen-

1Samples:
https://pilarog.github.io/ssw2021/index.html

tences were used for all listening tests. Each MUSHRA screen
presented the reference audio, then the 6 samples to be rated,
without text. Participants were instructed to rate the natural-
ness of the synthetic speech. For the acoustic systems, features
were extracted from a natural rendering of the context utterance:
Section 4 comments on the possible effects of using synthetic
speech instead.

We implemented the test online using Qualtrics and re-
cruited participants who self-identified as native speakers of En-
glish and US citizens, using Prolific Academic. Results from
participants who rated any reference sample lower than 50, or
were too fast to complete the task, were discarded. For each
test, the first 20 participants who passed these checks were used
to calculate the results. Each test used different participants.

Statistical significance was determined using the Wilcoxon
signed-rank test with Bonferroni correction. Figure 4 shows the
results for the three tests.

3.1. First listening test: acoustic context

Results for acoustic context are in Figure 4(a) for the systems
listed in the upper 4 rows of Table 1. Only Deep Spectrum fea-
tures at the utterance level were significantly better than base-
line. Although not significant, all other acoustic contexts re-
sulted in slightly higher scores than baseline, with utterance-
level representation tending to be better than word-based.

3.2. Second listening test: text context

Results for the text context are in Figure 4(b) for the systems
listed in the lower 4 rows of Table 1. All models using text con-
text were significantly more natural than baseline. Although
not significantly different between each other, word-level rep-
resentation tended to lead to slightly higher naturalness than
utterance-level.

3.3. Third listening test: best models and combinations

We compared the most effective way to use acoustic context
(DS-utt), the most effective way to use text context (Text-word,
which had the most significant difference to the baseline), and
two combinations of acoustic and text context.
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We trained the combinations: DS-utt + Text-word and DS-
utt + BERT-word. Deep Spectrum was clearly the most effec-
tive acoustic feature. Since there was no significant difference
between the models using text context, we included both Text-
word and BERT-word. Results are shown in Figure 4(c). The
system using Deep Spectrum features to derive an utterance-
level representation of acoustic context, with BERT features to
derive a word-level representation of text context, was signifi-
cantly better than baseline.

It is not surprising that neither DS-utt or Text-word were
significantly better than baseline here, even though they were
in the preceding listening tests. MUSHRA ratings are relative,
with an element of ranking, so a different set of systems un-
der comparison (especially a change in the least natural system;
there is no anchor in our tests) will lead to a different rating
space.

3.4. Listening test results analysis

Our results illustrate the benefit of using both acoustic and text
features of the context utterance, individually or in combina-
tion. In every listening test, the baseline was outperformed by
at least one model employing context. DS-utt + BERT-word
was the best combined system, which supports our hypothesis
that acoustic features are most useful when represented at the
utterance level, with text features at the word level. Pre-trained
models generally outperformed jointly-trained ones.

Informally, we observed that the use of context affected the
speech in different ways: in prosody, pauses, and pronuncia-
tion, with the most apparent changes being prosodic in nature.
Although we did not ask participants to directly judge prosody,
it seems likely that they are implicitly doing so, given some of
their comments. At the end of each listening test, we included
an optional comment box. Several participants mentioned how
it was “interesting” or “challenging” to distinguish the different
“inflections” in the samples.

3.5. Qualitative analysis

Our results indicate that context is informative. To confirm this
and to further analyse its effect, we examined differences in the
output when synthesizing the same sentence with different con-
texts. This differs from what was evaluated in the listening tests
of the previous section. Here, we confirm that changes in con-
text produce changes in the output.

Although pronunciation can also be affected by the context,
most of the variation we observed was prosodic. Figure 5 pro-
vides some example F0 contours. In (a), using acoustic context
represented at utterance level, the overall F0 pattern tends to
stay the same, and changing context has a global effect, shifting
F0 or affecting speech rate. In contrast, (b) shows that repre-
senting text context at the word level can modify the position
and strength of prominence. Finally, combining acoustic and
text context in (c) illustrates both effects.

4. Conclusion and future work
Our results provide further evidence that additional context can
improve TTS naturalness, and that the way in which context is
represented matters. Even if context is not used explicitly to
improve prosody, this seems to be the aspect that is affected the
most.

We have shown that both acoustic and text context, when
suitably represented, can significantly improve naturalness, and
that the best results are obtained by combining them. In a

(a)

(b)

(c)

Figure 5: Illustration of the effect of context for a single sen-
tence synthesized with (a) DS-utt; (b) BERT-word; (c) a com-
bination of both. In each plot, the three F0 contours are the
result of using three different context utterances (the same three
across all plots).

real use-case (e.g., long-form synthesis), acoustic context would
need to be extracted from the previous synthesized utterance.
Although we did not test this condition here, we provide sam-
ples on the companion web page for DS-utt using features ex-
tract from synthesized speech context: degradation appears to
be minimal. Text features have the notable advantage of being
available for future context, although this was not tried here.

Our results indicate that features extracted using large pre-
trained models are more effective than using jointly-trained
models, especially for acoustic features. It could be that the
acoustic relationships between context and current sentence is
very sparse. In contrast, using text features with a jointly-
trained model was comparable (in the second listening test)
to BERT. Very recent work proposes using BERT on phonetic
transcriptions [38], which would be worth trying.

To obtain the best results from a jointly-trained model for
extracting a Context Representation, it might be necessary to
incorporate an extra loss, as in our preliminary work [19]. We
did not include this condition here as the focus was on how best
to represent context rather than on the model itself.

There is also evidence that acoustic features give best re-
sults when represented at utterance level, and text features when
represented at word level. The qualitative analysis in Section 5
suggests that these are associated with producing global and lo-
cal prosodic effects respectively, without having to model these
in an explicit way or through very specific features.

In future work, choice of data and speaker is important [27].
We aim to use more expressive or spontaneous data to better
evaluate the effect of using context.

The listening test in this paper was restricted to measuring
the naturalness of isolated sentences, which were not presented
in context. This was a deliberate choice, but in-context eval-
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uation will be a fundamental part of future work. Pioneering
work [39] has tested such an evaluation paradigm, but we be-
lieve that it still needs to be further developed before we can
apply it to our systems, and therefore we are also working on
suitable evaluation methods for speech in context [40].
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Abstract
This paper proposes an audiobook speech synthesis
method that considers a wider range of contexts than
a sentence level. The style of the audiobook speech de-
pends not only on the current sentence to be synthesized
but also on its neighboring sentences. Therefore, un-
like conventional text-to-speech synthesis for isolated sen-
tences, it is necessary to consider the context of the neigh-
boring sentences. Our method utilizes cross-sentence
context-aware word embedding, which is obtained by
inputting the neighboring and current sentences into
BERT. The speech synthesis model, Tacotron2, is condi-
tioned by this word embedding in addition to the current
sentence. Experimental results show that taking neigh-
boring sentences into account significantly improves syn-
thetic speech quality.
Index Terms: speech synthesis, cross-sentence context-
aware word embedding, BERT, audiobook

1. Introduction
The quality of synthetic speech is getting closer to that
of natural human speech [1]. This raises the opportu-
nity of applying text-to-speech (TTS) to a wider range
of applications. In this work, we focus on applying TTS
for audiobooks. Audiobook speech synthesis is expected
to reduce time and monetary requirements by replacing
the recordings by professional speakers with automatic
generation, and to broaden the selection of available au-
diobook titles. When applying TTS for audiobooks, we
need to keep in mind a series of sentences, that is to be ut-
tered fluently. Specifically, the prosody of human speech
often varies on the basis of the neighboring sentences.
For example, consider the following passage.

She whispered, “you won’t believe it.”
When humans read this passage aloud, the style of
the second sentence is heavily affected by the first sen-
tence. Considering contexts of neighboring sentences
(hereinafter, “cross-sentence context”) is one of the major
challenges when it comes to achieving human-like speech
in audiobook speech synthesis.

To model the cross-sentence context in speech, we
consider using the techniques of natural language pro-
cessing (NLP). Taking into account the cross-sentence
context in a document is a common practice in NLP
tasks, and deep neural networks have been proposed for

this purpose. In particular, Bidirectional Encoder Rep-
resentations from Transformers (BERT) [2] made break-
throughs in various downstream tasks in NLP, such as
question answering, natural language inference, and doc-
ument classification. A key advantage of BERT is that
the model parameters of pre-trained BERT can be fine-
tuned for a desired task because BERT itself is also
a DNN. Moreover, the word embeddings of BERT are
context-aware that is, the embedding vectors vary de-
pending on the neighboring linguistic units. BERT can
also handle multiple input sentences, which enables us to
utilize cross-sentence context for modeling.

It has recently been reported that BERT is also ef-
fective for speech synthesis [3, 4, 5, 6]. Hayashi et al.
[3] improved the quality of synthetic speech by using
context-aware word embeddings from BERT. Fang et
al. [4] tried to improve the quality of speech on a rela-
tively small corpus and observed faster convergence dur-
ing training. Kenter et al. [5] showed that the fine-tuning
of BERT is pivotal to improve the quality of synthesized
speech. They also demonstrated that a smaller model
size of BERT works better. Recently, Jia et al. proposed
PnG BERT which is an encoder model for speech syn-
thesis models [6]. In PnG BERT, both phonemes and
graphemes are used as the input.

In this study, we propose an audiobook speech syn-
thesis model that reflects the wider context by using the
characteristics of BERT. Our proposed model utilizes
cross-sentence context-aware word embeddings obtained
by inputting multiple sentences to BERT, and Tacotron2
is conditioned by these embeddings. We performed ex-
periments to examine the effectiveness of BERT for au-
diobook speech synthesis and when using the previous
two sentences and current sentence as the BERT input.
Subjective evaluation results showed that utilizing the
cross-sentence context-aware word embeddings improved
the synthetic speech quality. Synthetic speech samples
are available online1.

2. Proposed TTS synthesis model
The proposed model is based on Tacotron2 [1], a widely
studied sequence-to-sequence TTS synthesis model. Our
proposed model extends Tacotron2 by conditioning its
encoder output with cross-sentence context-aware word

1https://wataru-nakata.github.io/posts/2021/05/01/
ssw11

11th ISCA Speech Synthesis Workshop (SSW 11)
26-28 August 2021, Budapest, Hungary
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Figure 1: Model architecture of proposed models. The only difference between SingleSentence and MultiSentences is that
the latter also takes neighboring sentences as BERT input. Note that [CLS] and [SEP] tokens and the context-aware
word embedding encoder are clipped out for simplification.

embeddings. The proposed model only changes the struc-
ture of the encoder and not the decoder. Therefore, the
structure of the decoder is identical in all compared mod-
els. We propose two models, SingleSentence and Multi-
Sentences. SingleSentence only takes current sentence
as input while MultiSentencse takes the current sentence
and neighboring sentences as input.

2.1. SingleSentence

Figure 1a shows the model architecture of SingleSen-
tence. SingleSentence takes the current sentence as in-
put and outputs a melspectrogram. The current sen-
tence is input to both BERT and the Tacotron2 encoder.
The context-aware word embeddings from BERT then
goes through a context-aware word embedding encoder.
The context-aware word embedding encoder consists of
two fully connected layers with ReLU activation. This
is mainly used for dimensional reduction. This archi-
tecture of SingleSentence is similar to the subword-level
model in [3]. However, SingleSentence concatenates the
outputs of the context-aware word embedding encoder
and Tacotron2 encoder, while the subword-level model
has an attention mechanism for the BERT output. The
word embedding is a word-level vector whereas the en-
coder output of Tacotron2 is a character-level one. To
match the length of the vector sequences, we simply du-
plicated each context-aware word embedding output with
their wordpiece character counts in a similar manner to
[5]. With this model, we expect to synthesize speech
while reflecting each word’s meaning by using context-
aware word embedding.

2.2. MultiSentences

Figure 1b shows the model architecture of MultiSen-
tences. This model takes not only a text to be spoken but
also neighboring sentences as input. In this study, we use
the previous two sentences. This makes the model take
the cross-sentence context into account. The Tacotron2
encoder only takes text to be spoken as input, while
BERT takes the current sentence and its neighboring sen-
tences as input. Except for taking multiple sentences as
input, this model is identical to SingleSentence.

3. Experiments
We evaluated three models: Tacotron2, SingleSentence,
and MultiSentences. For SingleSentence and MultiSen-
tences, we evaluated on both before and after the fine-
tuning of BERT.

3.1. Experimental conditions

We used the publicly available JSUT [7] and newly
released J-KAC (see Appendix A for details) corpora
for pretraining and fine-tuning, respectively. These are
single-speaker corpora. The JSUT corpus consists of the
reading-style speech of isolated sentences by a single fe-
male speaker. The J-KAC corpus consists of the very ex-
pressive continuous speech of audiobooks and kamishibai
(picture stories) by a single male speaker. We downsam-
pled the speech signals to 22.5 kHz in advance and seg-
mented it into a sentence level. For pretraining, we split
the JSUT corpus into 7496 and 100 utterances as train-
ing and development sets, respectively. For fine-tuning,
we split the J-KAC corpus into 4117 (6 hours, 26 books),
100, and 97 (1 book) utterances as training, development,
and test sets, respectively. The test set was open to oth-
ers; no overlap existed in sentences and documents. The
generated melspectrogram configurations were 80 dimen-
sions, with the frame length of 1024 samples and frame
shift of 256 samples. For input to the Tacotron2 encoder,
we used katakana (i.e. Japanese pronunciation symbol)
sequence.

Our training procedure involved three steps. First,
we pretrained Tacotron2, SingleSentence, and MultiSen-
tences using JSUT with frozen BERT weights. Second,
we trained all models using J-KAC with frozen BERT
weights. Finally, we performed fine-tuning of BERT us-
ing J-KAC for SingleSentence and MultiSentences. Dur-
ing the fine-tuning, the weights unfrozen except for the
embedding layer, as some wordpieces did not appear in
J-KAC. We conducted evaluations on the following five
models.

• Tacotron2
• SingleSentence (without fine-tuning of BERT)
• MultiSentences (without fine-tuning of BERT)
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• SingleSentence (with fine-tuning of BERT)

• MultiSentences (with fine-tuning of BERT)

For the pretrained BERT model, we used the one
provided by akirakubo2. Specifically, we used the model
trained using AozoraBunko (6 million sentences) and
Japanese Wikipedia (3 million sentences) tokenized by
SudachiPy with SudachiDict_core-20191224 for 2 million
steps.

For optimization, we used an Adam [8] optimizer with
α = 1×10−4, β1 = 0.9, and β2 = 0.99 with the L2 weight
regularization of 1× 10−6. When performing fine-tuning
of BERT, we used the small L2 weight regularization of
1 × 10−9 to avoid catastrophic forgetting. Batch size
was 128 distributed across four NVIDA V100 GPUs ex-
cept when fine-tuning BERT. During the fine-tuning of
BERT, we used the batch size of 64. For the loss func-
tion of Tacotron2, SingleSentence, and MultiSentences,
we used the mean squared error of melspectrograms. We
also implemented the teacher forcing on the decoder to
stabilize the training.

When generating the speech, we applied a tem-
perature softmax function on location-sensitive atten-
tion mechanism between the encoder and decoder of
Tacotron2 with T = 0.5 to stabilize the speech gener-
ation in the same way as [9], which used an expressive
speech dataset. In fact, without using temperature soft-
max, we failed to synthesize speech in most cases. As a
vocoder, we used WaveRNN [10] trained on the JVS [7]
corpus.

The codes of the experiments were based on
NVIDIA’s Tacotron23 implementation.

3.2. Evaluation methods

We evaluated synthesized speech with two objective met-
rics: Mel-Cepstral Distortion (MCD) [11] and Gross
Pitch Error (GPE) [12]. When calculating these met-
rics, the duration of synthetic and original speech sam-
ples were aligned using FastDTW [13].

Average Mel-Cepstral Distortion (MCD)
MCD is calculated as follows.

MCDk =
1

T

T−1∑

t=0

√√√√
K∑

k=1

(ct,k − ĉt,k)2 (1)

where ct,k and ĉt,k denote the k-th mel-cepstral coeffi-
cients of the t-th frames of original and synthetic speech
respectively. We used K = 13 in the same way as [4].

Gross Pitch Error (GPE)
Gross pitch error refers to the proportion of voiced

frames that deviate by more than a given ratio in pitch
signal of the synthesized speech compared to the original
speech. In this work, we counted pitch errors of more
than 20 % as gross pitch error.

2https://github.com/akirakubo/bert-japanese-aozora
3https://github.com/NVIDIA/tacotron2

Table 1: Objective evaluation results.

Model MCD[dB] GPE

Tacotron2 4.228 0.365
SingleSentence 4.161 0.359
SingleSentence (finetuned) 4.229 0.374
MultiSentences 4.250 0.310
MultiSentences (finetuned) 4.205 0.318

3.2.1. Subjective evaluation

We evaluated the five models on three tasks: two Nat-
uralness Mean Opinion Score (MOS) tests and 1 AB
test. The naturalness MOS test included the evaluation
of speech samples of both one-sentence and five-sentence
lengths to examine the naturalness of a series of sen-
tences. On each MOS test, human raters were asked
to rate how natural each speech was on a 5-point scale.
The number of raters was 60 and each rator evaluated 15
samples in total.

On the AB tests, raters were asked to select which of
the five-sentence speech samples was more preferable for
reading of a picture book. The number of raters was 40,
and each rator evaluated 10 pairs.

For five-sentence speech, we generated speech for each
sentence individually and concatenated them with 400 ms
of silence between each sentences.

3.3. Results

Table 1 shows the results for objective evaluation using
GPE and MCD. The difference of MCD was marginal
in all compared models. On the other hand, the GPEs
of MultiSentences and MultiSentences (fine-tuned) were
significantly smaller than the other methods. This result
suggests that the pitch of synthetic speech gets closer
to that of natural human speech by using cross-sentence
context-aware word embeddings.

Table 2 shows the subjective test results for the nat-
uralness MOS test on one-sentence speech. In all cases,
the scores were lower when we incorporated BERT into
Tacotron2. One possible reason for this is that gener-
ated speech got expressive when we incorporated BERT,
which resulted in a lower naturalness MOS score. Table 3
shows the naturalness MOS test results on five-sentence
speech. In contrast to the results for one-sentence
speech, MultiSentences (fine-tuned) outperformed the
other models. This was most likely due to the speaker
consistency. Specifically, Tacotron2 often made mistakes
when selecting an appropriate speech style. When speech
samples were concatenated to make five-sentence speech,
this phenomenon became more apparent because the
style of speech changes drastically among the sentences.
This would result in a lower MOS. In fact, Tacotron2
had a low MOS score for the dialog speech that switches
styles among sentences, but MultiSentences (fine-tuned)
improved it.

Table 4 shows the results for the AB test. We can see
here that MultiSentences was preferable for reading a pic-
ture book both before and after the fine-tuning of BERT.
Moreover, MultiSentences was preferable to Tacotron2
when BERT was fine-tuned. Even though SingleSentence
was able to utilize linguistic information from BERT, we
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Table 2: Naturallness MOS evaluation on one-sentence
speech with 95% confidence intervals.

Model MOS

Tacotron2 3.450 ±0.141
SingleSentence 2.710 ±0.142
SingleSentence (fine-tuned) 2.676 ±0.162
MultiSentences 2.933 ±0.167
MultiSentences (fine-tuned) 2.900 ±0.164

Table 3: Naturalness MOS evaluation on five-sentence
speech with 95% confidence intervals. The model in bold
text shows a significantly better result than Tacotron2.

Model MOS

Tacotron2 2.844 ±0.138
SingleSentence 2.628 ±0.144
SingleSentence (fine-tuned) 2.750 ±0.130
MultiSentences 2.767 ±0.130
MultiSentences (fine-tuned) 3.144 ±0.128

did not observe any improvement in either the natural-
ness MOS or AB test in our settings. These findings are
different from what was reported in [3]. However, note
that we used different model configurations and trained
with a different language from [3].

4. Effect of modifying the previous
sentences

We analyzed how the pitch of synthetic speech from Mul-
tiSentences (fine-tuned) changes by modifying previous
sentences. The original input was as follows:

ありたちが、ゾロゾロゾロゾロえさをさがして
あるいています。いちばんまえのありくんがい
いました。「このあいだは、チョコレートにお
せんべい、アイスクリームもおちてたね。」

which means,
A group of ants were walking around, look-
ing for food. The foremost ant said, “The
other day I found chocolate, rice crackers and
ice cream on the ground.”

After the modifications, the previous sentences changed
as follows:

ありたちが、ゾロゾロゾロゾロえさをさがして
あるいています。いちばんまえのありくんが大
声でいいました。「このあいだは、チョコレート
におせんべい、アイスクリームもおちてたね。」

which means,
A group of ants were walking around, look-
ing for food. The foremost ant said loudly,
“The other day I found chocolate, rice crack-
ers and ice cream on the ground.”

We also prepared the previous sentences with antony-
mous modification:

ありたちが、ゾロゾロゾロゾロえさをさがして
あるいています。いちばんまえのありくんが小

Table 4: Results for AB test. Raters were asked to choose
which speech was preferable for a picture book speech.
Conf. shows 95% confidence intervals. Bold text shows
results with significant difference.

Method A Scores Conf. Method B

Tacotron2 0.533 vs. 0.466 0.048 SingleSentence

Tacotron2 0.423 vs. 0.578 0.049 MultiSentences

SingleSentence 0.400 vs. 0.600 0.048 MultiSentences

Tacotron2 0.512 vs. 0.483 0.049 SingleSentence
(fine-tuned)

Tacotron2 0.307 vs. 0.693 0.045 MultiSentences
(fine-tuned)

SingleSentence
(fine-tuned) 0.302 vs. 0.698 0.045 MultiSentences

(fine-tuned)
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Figure 2: Pitch change by modifying previous sentences.
Note that y axis is shown in log scale. We applied trajec-
tory smoothing [14] to the original F0 for better visual-
ization.

声でいいました。「このあいだは、チョコレート
におせんべい、アイスクリームもおちてたね。」

which means,
A group of ants were walking around, look-
ing for food. The foremost ant said quietly,
“The other day I found chocolate, rice crack-
ers and ice cream on the ground.”

The difference from the original sentence is shown in
bold text, and in English translations, the current sen-
tence is shown in italics. Figure 2 shows the F0 plot
for before and after the modification. From this result,
we can see that the generated speech was influenced by
the previous sentences. We also tried to control the gen-
erated speech’s emotion by modifying the previous sen-
tences, but there was no meaningful change. The modi-
fied speech is available for listening on our speech sample
page1.

5. Conclusion
In this work, we proposed an audiobook speech synthe-
sis model that utilizes both the current sentence and
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the neighboring sentences as input to use cross-sentence
context-aware word embeddings from BERT. Subjective
evaluation results with generated five-sentence speech
samples showed that the quality of speech improved by
using the neighboring sentences. We also found that
fine-tuning BERT further improved the generated speech
quality.

Potential future work includes applying the proposed
model for longer sentences, utilizing non-textual infor-
mation such as paragraph number, and using different
BERT configurations or analysis on how the neighboring
sentences affect the synthetic speech.
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A. Japanese audiobook corpus J-KAC
We developed a very expressive corpus for Japanese au-
diobook speech, named J-KAC (Japanese kamishibai and
audiobook corpus). This corpus includes nine hours (26
audiobooks and 17 kamishibai) of studio-quality 48-kHz
sampled speech uttered by a single male professional
speaker. The audio files are stored for each book, and the
documents are structured in chapter, paragraph, style,
and sentence levels. The “style” level has a binary label
of inner sentences: “narrative style” or “character-acting
style.” The “sentence” level has a temporal alignment
to audio. In addition to audio and documents, the cor-
pus includes illustrations obtained by scanning products,
which was done with permission from the book authors
and publishers. The illustrations have various characters
and background images, etc. The corpus is available for
only research purposes. More information is available on
our project page4.

4https://sites.google.com/site/
shinnosuketakamichi/research-topics/j-kac_corpus
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Abstract
This paper proposes a novel lip-syncing module for the

transcreation of lecture videos from English to Indian lan-
guages. The audio from the lecture is transcribed using auto-
matic speech recognition. The text is translated and manually
curated before and after translation to avoid mistakes. The cu-
rated text is synthesized using the Indian language end-to-end-
based text-to-speech synthesis systems. The synthesized audio
and video are out-of-sync. This paper attempts to automate this
process of producing video lectures lip-synced into Indian lan-
guages using different techniques.

Lip-syncing an educational video with the Indian language
audio is challenging owing to (a) the duration of Indian lan-
guage audio being considerably longer or shorter than that of
the original audio, (b) the extempore speech causes the audio
in the source videos to have long silences. Any modification
to the speed of audio can be unpleasant to listeners. The pro-
posed system non-uniformly re-samples the video to ensure bet-
ter lip-syncing. The novelty of this paper is in the use of HMM-
GMM alignments in tandem with syllable segmentation using
group delay, as visemes are closer to syllables. The proposed
lip-syncing techniques are evaluated using subjective evalua-
tion methods. Results indicate that accurate alignment at the
syllable level is crucial for lip-syncing.
Index Terms: Automatic dubbing, Lip-syncing, Transcreation,
Group delay.

1. Introduction
The medium of instruction for higher education globally is pre-
dominantly English. Educational content that is available on-
line has been growing exponentially in recent times. Language
is the major barrier to use these resources in places like India,
where people use almost 1652 different languages and 22 offi-
cial languages to communicate. Recent advancements in speech
recognition (ASR), machine translation (MT), and speech syn-
thesis (TTS) have enabled us to develop systems that automat-
ically dub educational videos in Indian languages. This pa-
per proposes and analyses various lip-syncing methods that im-
prove the quality of transcreation of lecture videos to Indian
languages.

Automatic dubbing is an extension of speech-to-speech
translation [1]. It involves (i) transcription of speech from the
video, (ii) translation of the transcribed text into the target lan-
guage, (iii) synthesizing target language audio, and (iv) lip-
syncing synthesized audio with the original video. In automatic
dubbing, generally, the machine translation is done carefully,
such that the number of syllables in the source and target audio
is almost matched. For example, dubbing of movies preserves
the duration of the video and forces the audio to align within the
duration of the video. This is attained by manually curating the

∗Equal contribution by both authors.

translated text to match the video duration and lip movements
in such a way that the lip-synced video does not sound unnatu-
ral. The lip-syncing techniques proposed in this paper does not
force the synthesised audio length to match the video length.
Instead, the video is re-sampled to match the audio duration. In
lecture videos, conveying the underlying concepts is prioritized
more than matching the syllable rate, so that the conveyed in-
formation is not lost in the process. Changing the speech rate to
match the duration of the video is also not preferred since our
analysis showed that the lip-synced videos with variable speech
rate are not preferred for by the viewers. Adding to this, unlike
English, Indian languages are word order free, and hence the
length of the translated text is generally longer or shorter than
that of source English text. Due to this, the synthesized audio
is significantly longer or shorter than that of the source audio.
Hence, we prefer transcreation of video to target language over
simple dubbing by preserving the information conveyed in the
source video lectures.

The previous works in lip-syncing focused on different
techniques for aligning source video and target audio or text.
In recent work by [1, 2], TED talks are automatically dubbed
using a prosodic alignment module that aligns the speech seg-
ments from source audio with the machine-translated text. The
attention mechanism is used in [3] to find a plausible phras-
ing for the translated text, which is synthesized and added to
the source video. Other than finding alignments, changing the
speed of synthetic speech to fit into the subtitle duration is at-
tempted in [4, 5]. An end-to-end audio-visual translation system
is trained on thousands of hours of data from all domains in [6],
and adapted to a specific domain and speaker. Many works in
the literature, including [7, 8] suggest that there is a co-relation
between visual speech unit (visemes) and phonetic speech unit
(phonemes). Syllables are combination of phonemes. Using
syllable level boundaries for lip-syncing makes sure that the
visemes are not spliced in the video.

This is the first attempt in the literature to transcreate edu-
cational lectures from English to Indian languages. Lip-syncing
video with the Indian language audio is challenging due to the
longer duration of the translated, and synthesised audio. The
domain of educational videos also make it more challenging,
as the original speaker in the lecture videos have long silences
when the lecturer is dis-fluent. The transcreated video’s nat-
uralness depends not only on exact alignments of synthesized
audio with lip movements but also on the long pauses, head and
hand movements, and expressions of the speaker in the original
video. Hence in our lip-syncing method, these attributes of the
source video are preserved in the final video.

The paper proposes lip-syncing methods using word-level
alignments on the synthesized audio. A group delay (GD) based
syllable segmentation is used to fine-tune the word bound-
aries, which further improves the naturalness by preserving the
viseme units is proposed. The lip-syncing developed in this pa-
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per attempts to attain isochrony [9], where audio is synchro-
nized with the speaker’s lip movements. These systems are
evaluated using subjective evaluation method; mean opinion
score (MOS) to show that word-level alignments are very im-
portant for better lip-syncing output.

The rest of the paper is organized as follows. In Section
2, the video transcreation system is discussed. Different lip-
syncing systems proposed along with preliminary lip-syncing
systems are detailed in Section 3. Section 4 explains the evalua-
tion setup for these systems, followed by results and discussions
in Section 5 and Section 6 concludes the paper.

2. Pipeline of Video Transcreation System

Figure 1: Flowchart of video transcreation system. Lip-syncing
module attempted in this paper is shown in green color.

The flowchart for video transcreation is given in Figure 1.
The input lecture video is split into segments by detecting long
silence regions using speech activity detector of Kaldi toolkit
[10], and these segments are transcribed using the ASR system1

[11] to create the Sub-Rip Text (SRT) file. Technical lectures
contain words that are domain-specific and includes a signif-
icant amount of mathematical equation and notations. These
are preserved, manually verified and corrected before translat-
ing to the target language, as shown in the flowchart (Figure
1). The machine translation to Indian languages is done using
language translation APIs [12, 13]. The translated text after
manual verification is synthesized using the end-to-end (E2E)
[11, 14] based TTS system proposed in [15]. The TTS models
are trained on Indic TTS [16] data-set. The synthesized audio
along with the source video and subtitle file, is given as input to
the lip-syncing system. The lip-syncing system is described in
detail in Section 3.

3. Lip-Syncing System
The lip-syncing techniques discussed in this paper segment the
TTS synthesized audio and aligned them with the source video
by re-sampling the video. In the following sub-sections, we
discuss two simple preliminary systems based on re-sampling,
silence detection, and two proposed systems using ASR align-
ments obtained from TTS synthesized audio and group delay-
based segmented ASR alignments.

3.1. Preliminary Systems

As an initial attempt at lip-syncing, we did a simple re-sampling
of the video segments. The trailing and beginning silences of
the synthesized audio are discarded before re-sampling. The
source video is then re-sampled to match the audio segments’
duration by interpolating the video to match the duration of syn-
thesized audio. The flow chart of this method is highlighted in
red color in Figure 2. This attempt is a basic approach to lip-
syncing without using any silence alignments or word bound-

1https://asr.iitm.ac.in/NPTEL/Transcribe/

aries. This method does not detect long-pause regions in the

Figure 2: Flow chart of preliminary methods attempted.
Pipeline for re-sampling based lip-syncing is shown in red color
and pipeline for silence detection based lip-syncing is shown in
green color.

source video within a SRT segment. Hence, in the transcreated
video, there are sections where the lecturer’s lips are not mov-
ing while synthesized audio is playing. The final video also
has sections where the video speeds up or slows down very ag-
gressively due to the large difference between source audio and
target audio duration. This is mainly due to the duration differ-
ences between sentences in English and Indian languages and
the long pauses in source video within the SRT segment.

Figure 3: Alignment of audio after silence detection. Box with
black border shows long-silence regions in source video. Red
line denotes location of spliting in TTS audio. The alignment
between video and audio is also shown.

To address this issue, transcreated videos need to ensure
that the audio plays only when the lips are moving. The lip
movements of the speaker should synchronize with the regions
of speech in a source audio segment. Therefore in the next at-
tempt, we try to detect the silence regions and keep it as it is and
align the synthesized audio with the regions where the speaker
is speaking as shown in Figure 3. The flowchart of this system
is given in Figure 2, where the green box highlights the flow
of this attempt. We try to detect the long silence regions in the
audio from the source video, and short pauses in the TTS syn-
thesized audio and try to align them using Algorithm 1. The
algorithm tries to map the TTS segments with the segments of
the source audio. This is done by finding the silence regions in
the source audio and splitting the TTS audio in the same ratio
as in the source audio. This process of splitting and aligning the
TTS audio is initially done for the longest silence region in the
source audio, followed by the second-longest silence, and so on
recursively until the TTS audio is completely mapped with the
source audio. Refer Algorithm 1 for more details. The same
algorithm is used in Proposed System 1 and Proposed System 2
for aligning the source video with the TTS audio.

Silence detection works well in finding the silence regions.
However, since the silence detection only look for the silence
regions, the silence detection will often detect short silence re-
gions in the middle of certain words that are often occur to-
gether. This can lead to the system splicing the synthesized
audio in the middle of those words and inserting silences. Even
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Algorithm 1 Mapping of source intra-SRT-segment alignments
to TTS intra-SRT-segment alignments

Input: src segs(1:N):- List of source intra-SRT-segments
of length N obtained after silence detection of a source audio
segment

tts segs(1:M):- List of TTS intra-SRT-segments
of length M after silence detection after TTS audio segment
(Obtained from word boundaries of ASR incase of Proposed
System 1 and Proposed System 2)

Format of src segs(1:N) & tts segs(1:M):-
<start-time> <end-time> <duration> <label>
where (label==0) => silence & (label==1) => speech

Output: map( , ):- List of mappings between src segs
indices & tts segs indices

1: procedure ALIGN SEGMENTS(src segs(1:N),tts segs(1:M))
2: . This function returns alignment of source segements and

target segments

3: variables
4: map(a,b):- represents that index a in src segs is

aligned with index b in tts segs.
5: end variables

6: if length(src segs)==1 OR length(tts segs)==1 then
7: . This is the base condition for recursion
8: return
9: else

10: src split = SOURCE SPLIT INDEX(src segs(1:N))
11: speech ratio =
12: SPEECH RATIO(src segs(1:N),src split)
13: tts split =
14: TTS SPLIT INDEX(tts segs(1:M),speech ratio)
15: return ALIGN SEGMENTS(src segs(1:src split),

tts segs(1:tts split)) + map(src split,tts split)
16: + ALIGN SEGMENTS(src segs(src split:N),tts segs(tts split:M))

though the lip will sync with the video, the synthesized audio
being played will lose its understand-ability considerably in this
case. We address this issue of splicing the audio between words
in Proposed System 1 using word-level alignments.

3.2. Proposed System 1: Word level alignment method

Silence boundaries do not have information of the target text
and hence can have intra-word splits. Word level alignments are
required to avoid splitting between words. Word level bound-
aries are obtained using hidden Markov model - Gaussian mix-
ture model (HMM-GMM) based ASR system [10]. For training
the ASR systems, a common label set (CLS) [17] lexicon repre-
sentation of the transcription is obtained using the unified parser
[18] for Indian languages. The word-level alignments obtained
are used to align the synthesized audio at the word level with the
source video. The word-level alignments using HMM-GMM
ASR are only obtained for the synthesized audio since silence
regions are better-detected using signal processing techniques
using short-term-energy (STE) for source audio. The detection
of silence in the source is very important for better lip-syncing.
The flowchart of Proposed System 1 is highlighted in red in

17: procedure SOURCE SPLIT INDEX(src segs(P:Q))
18: . This function returns a index of largest silence region in

source segments
19:
20: variables
21: sil dur list:- list of duration of silence segments in

src segs.
22: end variables

23: sil dur list = (src segs(P:Q)(label==0).duration)
24: max dur = max(sil dur list)
25: return max dur

26: procedure SPEECH RATIO(src segs(P:Q),src split)
27: . This function returns ratio of speech on both sides of

silence region
28:
29: variables
30: speech dur:- duration of speech before split.
31: full dur:- duration of speech in whole src segs.
32: end variables

33: speech dur =
∑

(src segs(P:src split)(label==1).duration)
34: full dur =

∑
(src segs(P:Q)(label==1).duration)

35: return speech dur/full dur

36: procedure TTS SPLIT INDEX(tts segs(P:Q),speech ratio)
. This function returns index of split in TTS segments,which
is close to speech ratio

37: variables
38: X:- list of indices of tts segs(P:Q) segments.
39: tts ratio(x):- TTS speech ratio at split index x.
40: end variables

41: for x in X do
42: tts ratio(x) =
43:

∑
(tts segs(P:x)(label==1).duration) /

44:
∑

(tts segs(P:Q)(label==0).duration)
45: return Index x for min of (abs(speech ratio −

tts ratio(X)))

Figure 4. An example for ASR alignment obtained is given in
Figure 5.

The system detects the words correctly, but in some cases,
the beginning or ending of the word can be misaligned by few
milliseconds. While this is not an issue in ASR results, the mis-
alignment can be due to the word ending not being an ending
of a syllable. These boundaries may result in clicking noises,
which can sound unnatural. Proposed System 2 tries to correct
these boundaries to obtain better word-level boundaries by us-
ing group delay and energy-based correction.

3.3. Proposed System 2: Word alignments correction using
group delay (GD) & spectral flux (SF)

Minimum phase group delay (GD) of short-term-energy (STE)
and sub-band spectral flux (SBSF) together are used for iden-
tifying syllable boundaries. The algorithm for finding sylla-
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Figure 4: Flowchart of proposed lip-syncing methods. Pipeline
for Proposed System 1 is shown in red color and pipeline for
Proposed System 2 is shown in green color.

ble boundaries using GD and SBSF is explained in [19]. The
word boundaries obtained from the HMM-GMM ASR model is
corrected using the syllable boundaries obtained from GD and
SBSF. After alignment correction, the short-term energy (STE)
is calculated at these boundaries, and high energy boundaries
are excluded from alignments. Similar to Proposed System 1,
the silence detection algorithm is used to find the long silence
regions inside the source audio segments, and corrected word
boundaries of synthesized audio are aligned with source audio
segments using the Algorithm 1.

- Corrected word boundaries

Spectrogram 
of the audio

Alignments from 
Proposed System 1

Alignments from 
Proposed System 2

Time

Fr
eq

ue
nc

y

Figure 5: Word level alignment of Hindi utterance “Yah aaj kii
ruupreekhaa hei” (English: This is today’s outline) obtained
using Proposed System 1 and Proposed System 2.

During the speech, some words are articulated together (Ex.
metro network, deep learning). Splitting the synthesized audio
in between those words can lead to clicking sounds. This is pri-
marily owing to the co-articulation between adjacent syllables
that make up a word(s). In Indian languages, it is very com-
mon to find that the word morpheme at the end of one word is
merged with the succeeding word. Clearly, more than one syl-
lable or syllables across word boundaries is perhaps associated
with a viseme. We attempt to correct this by using word bound-
aries and syllable boundaries, where the short-term energy is
very low, suggesting that the co-articulation is small.

4. Evaluation
In addition to the systems discussed in Section 3, we compare
our systems with an additional system that transcreates video
using Google cloud API2. This system uses ASR, MT, and TTS
modules from Google cloud APIs, to transcreate videos. This
system will be henceforth referred to as Baseline System. Un-
like the systems discussed above, in the baseline system, the
TTS audio is generated based on the duration of the video seg-
ment. By controlling the speaking rate in the TTS module, the
duration of audio is matched with the source video.

Since it was evident that proposed systems are better
than preliminary attempts, we evaluated only Proposed Sys-

2https://github.com/google/making with ml/tree/master/ai dubs

Figure 6: The synthesized waveform of “metro network” and
it’s corresponding syllable boundaries (Metro (“meet”,“ro”),
Network (“neetx”,“wrak”)) along with STE plot. The red line
corresponds to the word boundary where the energy is high and
the green line corresponds to the word boundary, where the en-
ergy is low.

tem 1 and 2 against the Baseline System. These three sys-
tems were evaluated using, mean opinion scores (MOS) test.
The configuration of the test is given in the following sub-
section. Samples of final trans-created videos for all prelim-
inary, proposed, and baseline systems are given in this link:
https://www.iitm.ac.in/donlab/preview/lip sync 21/index.html

4.1. MOS Test

The mean opinion scores (MOS) test is originally designed to
evaluate TTSes. A set of 15 evaluators were asked to evaluate 5
lip-synced videos of approximately one and half minutes to two
and half minutes, in comparison with the corresponding source
video. Two male and two female speaker video segments are
chosen for evaluation from Proposed System 1 and Proposed
System 2, along with a Baseline video segment. The video seg-
ments are chosen at random from the whole lecture. The speak-
ers are not repeated in the 5 randomly chosen video segments
to make sure that the viewer does not get used to the speaker.
The evaluators are asked to rate the naturalness of the video, in-
cluding the lip movement. The videos are played at random to
the evaluators. The evaluators are asked to give a rating from 0
to 100 for each video segment, where 0 being no synchroniza-
tion between the audio and the video, and 100 being perfectly
lip-synced.

5. Results and Discussion
As seen in Table 1, the Proposed System 2 has highest MOS
score of 82.55, whereas Proposed System 1 has a MOS score of
75.64. The lip-synced videos using Proposed System 2 are rated
higher due to the correction of word boundaries using group
delay-based segmentation, along with the splitting of synthe-
sised audio at low energy word boundaries. The importance of
correcting the word boundary using group delay-based segmen-
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Table 1: Mean opinion score (MOS) of Hindi language lip-
syncing for Proposed System 1 and Proposed System 2 along
with Baseline System.

Systems MOS Score
Proposed System 1: Word-level alignment method 75.64
Proposed System 2: Word alignments correction
using group delay (GD) spectral flux (SF) correction 82.55

Baseline System: Google Cloud API based
application: ML-Powered Translation 62.98

tation is shown by an example in Figure 5. The figure shows
spectrogram of Hindi utterance “yah aaj kii ruupreekhaa hei”
(English: “This is today’s outline”) in common label set (CLS)
format defined in [17]. Word boundaries of the word “aaj”
and “ruupreekha” are more accurate in Proposed System 2 af-
ter boundary correction. Silence regions are also recognised
with very high precision after correction, compared to the ASR
boundaries obtained using Proposed System 1 as shown in Fig-
ure 5.

The word boundaries don’t always correspond to the decay
of the speech signal but can also be an onset for the next word.
This can be due to the co-articulation of two words together.
This can be seen in Figure 6, where the words “metro network”
are pronounced together. The STE value at the end of the word
“metro” (refer red line) is higher than that of the STE value at
the end of the word “network” (shown in green). Thus, splitting
in-between “metro network” is avoided. Splitting the signal be-
tween these words will lead to unnatural artifacts like clicking
sounds. Using STE to find these word boundaries has also con-
tributed to the higher performance of Proposed System 2 over
Proposed System 1.

The Baseline system has a lower MOS score of 62.98 com-
pared to Proposed System 1 and 2. The Baseline system in-
creases or decreases the rate of speech based on the length of
the video segment to which it has to be merged and hence has a
varied rate of speech throughout the lip-synced video. This can
also be due to the fact that the sentences in Indian languages are
generally longer in comparison to those in English. The variable
speech rate can be unpleasant to the viewers. In terms of con-
stant speech rate, the Proposed System 1 can be considered as a
baseline, and results show that the Proposed System 2 provides
an improvement.

Signal processing techniques like group delay and STE can
be used in tandem with the machine learning methods (ASR)
to find accurate word-level boundaries. The results show that
the improvement in word-level alignments has significantly im-
proved the quality of the lip-synced video.

6. Conclusions
Professional dubbing is an expensive and labour intensive pro-
cess. This work proposes novel techniques to improve the natu-
ralness of auto-transcreated videos. The discussed results shows
that syllable level segmentation (Proposed System 2) provides
an absolute improvement of 6.9 over simple ASR word level
alignment based technique (Proposed System 1). Using visual
speech units (visemes) along side syllable segmentation may
further improve the observed results for lip-syncing.
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[4] J. Matoušek and J. Vı́t, “Improving automatic dubbing with sub-
title timing optimisation using video cut detection,” in 2012 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2012, pp. 2385–2388.

[5] “How to dub a video with ai youtube,” https://youtu.be/
T2TAAHmNBnE, 02 2021, (undefined 4/5/2021 0:57).

[6] Y. Yang, B. Shillingford, Y. Assael, M. Wang, W. Liu,
Y. Chen, Y. Zhang, E. Sezener, L. C. Cobo, M. Denil et al.,
“Large-scale multilingual audio visual dubbing,” arXiv preprint
arXiv:2011.03530, 2020.

[7] S. Taylor, “Discovering dynamic visemes,” Ph.D. dissertation,
University of East Anglia, 2013.

[8] H. L. Bear and R. Harvey, “Phoneme-to-viseme mappings: the
good, the bad, and the ugly,” Speech Communication, vol. 95, pp.
40–67, 2017.

[9] F. C. Varela, “Synchronization in dubbing,” Topics in audiovisual
translation, vol. 56, p. 35, 2004.

[10] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz,
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Abstract
We describe a heterophone homograph (simply ’homograph’
henceforth) disambiguation system based on per-case classifiers,
trained on a small amount of labelled data. These classifiers
use contextual word embeddings as input features and achieve
state-of-the-art accuracy of 0.991 on the English homographs on
a publicly available dataset, without any additional rule system
being necessary. We show that as little as 100 sentences are
sufficient to train a light-weight dedicated classifier, provided
the dataset is sufficiently balanced, i.e. all versions of the homo-
graph are adequately represented. We further add data in cases
where the original dataset is deeply unbalanced (i.e. one homo-
graph version overwhelmingly represented). This is effectively
a special case of active learning, by which we select additional
cases of the under-represented homograph versions and show
an 11% relative improvement for such cases. We finally pro-
vide a solution to drastically reduce the size of our models, via
sparsification.
Index Terms: homograph disambiguation, TTS, front-end

1. Introduction
A homograph is a ’word that is spelled the same as another [. . . ]
but which differs in sound and meaning, such as tear (to separate
or pull apart) and tear (a secretion from the eye)’ ([1, p. 3]).
The correct classification of homographs is a long-standing issue
affecting the text analysis component of text-to-speech (TTS)
systems. While homographs are present in many of the world’s
languages, this paper focuses on American English only. For
the sake of reproducibility we report the performance of the
proposed approach on the openly available dataset from [2]1. We
additionally use a small internal dataset to augment the main
dataset in cases where one of the two possible pronunciations
of a given homograph is severely under-represented in the main
dataset. We show this brings about a large improvement for these
cases.

All approaches to homograph disambiguation agree that
correctly interpreting the context surrounding the homograph
word is key to their disambiguation. Different types of linguis-
tic information are, however, crucial in different cases. The
lexical semantic context allows the disambiguation of lexical
homographs like bass (fish vs. musical instrument, both nouns),
whereas morphosyntactic constraints regulate the morphosyntac-
tic class, which can generally be disambiguated via POS tags
(e.g. nominal vs. verbal impact).

Rule based and supervised machine learning systems have
historically directly encoded the multiple sources of homography
in the features used for disambiguation. The algorithm described
in [3] heavily depends on collocations and their statistical distri-
bution. For example, the presence of semantically related words
within a certain distance from the homograph word (e.g. does

1https://github.com/google/
WikipediaHomographData

(a) Feature extraction for homograph disambiguation

(b) Homograph disambiguation with simple
classifier

Figure 1: Homograph disambiguation pipeline

the word water occur in the ±20 word window around the target
word bass?) or the co-occurrence of certain word sequences (e.g.
the [of lead in] sequence correlates with the [lEd] pronunciation
of lead, whereas the [the lead in] sequence correlates with the
[lId] pronunciation). Twenty years later, [2] feed a multinomial
log-linear model (one for each homograph) with similar types of
features: word context features (left and right bigrams around
the homograph), POS tag and capitalization (Polish vs. polish).

Transformer-based contextual word embeddings (CWE), i.e.
the BERT family ([4], [5], [6], etc.) appear to be ideally suited
for the purpose of homograph disambiguation. The vectors they
produce are inherently context-sensitive: the vector for bass
will be different depending on the surrounding context and the
information they encode spans across the whole traditonal NLP
pipeline, including the lexical semantics and morphosyntactic
information needed to disambiguate homographs. See ([7] and
[8] for a recent overview). It follows that the adoption of CWEs
allows for a unified system encompassing all homographs, be
their disambiguation based on morphosyntactic or lexical se-
mantic factors. In the remainder of this paper we show that
this approach yields SOTA accuracy; more importantly it does
not require complex, expensive to produce and hard to maintain
rule-based components.

2. Model description
Contextual word embeddings (CWEs) provide numerical repre-
sentation of the word in the given context. They are trained on
large text corpora on the masked language modeling task (i.e.
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prediction of masked words in a sentence). With reproducibil-
ity in mind, in this work we use the BERT pretrained model2

distributed for MXNet ([4]), one of the most widely adopted
models openly available. CWE models are resource hungry,
which makes makes them not always suitable for a production
environment. Thus, we also experimented with the ALBERT
model, a light-weight CWE model ([5]). We use the pretrained
model3 distributed for Pytorch.

We only utilize the relevant embedding for the token of
interest (homograph), under the assumption that sufficient rele-
vant contextual information is expressed in it. This is depicted
on Figure 1. The extracted embedding is then fed to a simple
per-homograph classifier. In our experiments we used a logistic
regression classifier, trained on pairs of contextual embeddings
and correspondent homograph cases. For example, for the ho-
mograph ”read”, the training set contains 52 and 60 sentences
with past and present form of it respectively.

The per-homograph logistic regression model is trained us-
ing the MXNet framework. More complex models, such as
multi-layer perceptron, were explored, but did not prove to be
beneficial. We also prefer to present the simplest approach, as
this makes it easier to reproduce, and it highlights the usefulness
of the underlying CWEs for the homograph disambiguation task.
The model is trained using stochastic gradient descent using
Adam optimizer with a learning rate of 1e− 3. The models were
optimized on all training examples for the given word simultane-
ously. To compensate for the small amount of training data and
excessive representation capabilities of input features, it proved
beneficial to apply l2-regularization with weight 0.01.

Each classifier is a matrix of size (embedding dimension x
homograph cases num), where embedding dimension is either
1024 or 768 depending on the version of the BERT model used,
and homograph cases num is typically 2, corresponding the two
pronunciations of a given homograph. That results in 3kB per
model or 0.5MB for all 162 homographs from the dataset in case
of quantization to float16.

3. Experiments
[2] provide an overview of Google’s homograph disambiguation
system. The baseline model they describe as Google’s produc-
tion model at the time of writing is rule based, while the paper
introduces an ML approach where the features described in sec-
tion 1 (positional features, capitalizaton, POS tag) are fed to a
multinomial log-linear model. Combining rules and ML model
yields an important boost in accuracy (see Table 1). We use the
results in [2] as our baseline, and report results of our model
trained on identical data (Experiment 1) and augmented data
(Experiment 2). We follow [2] in reporting both micro accuracy
(percentage of correctly classified examples) and macro accu-
racy (arithmetic mean of per-homograph accuracies) for all our
models.

3.1. Experiment 1: Data from [2]

One of the stumbling blocks of systems relying on POS tags for
disambiguation concerns the taggers’ accuracy for non-trivial
cases, for example cases where nouns and verbs share the same
orthography (e.g. verbal and nominal impact, TIPA). While the

2https://pypi.org/project/BERT-embedding/
3https://huggingface.co/transformers/model_

doc/alBERT.html

accuracy of SOTA taggers is at almost 98%4 on Penn Treebank
data, [9] show that the accuracy of top parsers ranges between
57% and 74% on their crowdsourced dataset specifically tar-
geting ambiguous nouns and verbs. In that paper, trivial cases
were filtered out from the dataset5: for example, given a N/V
ambiguous word (e.g. impact), both the [Det + Word] and [Aux +
Word] case will provide trivial and exceptionless disambiguation
evidence (N for Det + Word: the impact and verbal for Aux +
Word will impact). [9] use the extra data from their challenge
dataset to retrain the tagger in [11]; they in addition add ELMo
embeddings [10] to their pipeline. The overall absolute improve-
ment over the [11] baseline was 14% (from 75% to 89%); adding
only ELMo yielded an improvement of 7.2%, while only adding
the new training data improved the result by 10%. In the same
paper, the authors measure the improvement achieved by their
tagger on the dataset from the [2] paper. The improvement over
the ML model in [2] was 1.3% when adding ELMo embeedings
to the tagger, 0.3% when adding the challenge dataset as training
data, while the combined effect Elmo+dataset was again an im-
provement of 1.3% (see table 1). This result suggests that CWEs
can successfully be used to improve parsers’ performance, and
thus indirectly improve homograph disambigutation.

Table 1 reports the reults of the baselines described in [2]
as well as the accuracy obtained by [9] on the same dataset. As
mentioned above, the source of improvement introduced in that
paper is twofold: training a POS tagger with additional ’chal-
lenging’ data including Noun/Verb homographs (e.g. impact),
and adding ELMo [10] embeddings to the pipeline. Virtually all
of the reported improvement on the homograph disambiguation
task stemmed from adding ELMo. This result strongly suggests
that the use of CWEs is very beneficial for the disambiguation
of homographs.

For our first experiment we created one model per each
of the 138 homographs listed in [2] and fed the model with
CWEs obtained from BERT and ALBERT pre-trained models
of varying size. Both the training and test data were exactly the
same as those used in [2]: for each homograph there are about
90 sentences in the training data and 10 in the test data. We did
exclude the homograph conglomerate from our analysis, since
there are no cases of verbal conglomerate in the training data,
while there is one instance in the test data6.

The results indicate that all the models we trained outper-
form both the ML model of [2] and the POS-tagger based solu-
tion in [9]; in the case of ALBERT-base embeddings, the result
obtained outperforms both the ML and ML + Rules models re-
ported in [2]. Models with BERT and ALBERT embeddings
perform quite similarly to each other on this task. We leave a
more careful analysis of the differences to future work.

Following a reviewer’s suggestion, we carried out Leave-
One-Out Cross-Validation for our BERT base model, given the
very small size of our dataset. The results are very similar to
those reported for the original split (98.5% accuracy with cross-
validation vs 98.8 accuracy for original split).

For most of the remainder of the paper we will focus on
BERT large, as we are independently carrying out additional

4http://nlpprogress.com/english/
part-of-speech_tagging.html

5urlhttp://goo.gl/language/noun-verb
6This affects our numbers minimally: 10/10 cases in the training

data feature the nominal variant, and so do 9/10 cases in the test set.
We would thus have scored 9/10 on this homograph; however, given
the verbal variant is not represented in the training data, it is simply
impossible to learn anything about it, and we thus feel excluding this
homograph is the correct solution
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Experiment 1
System Micro % Macro %
[2] Rules 89.0 88.6
[2] ML 95.4 95.1
[2] ML + Rules 99.0 99.0
[9] POS + ELMo 96.7 96.7
Ours + BERT base 98.8 98.8
Ours + BERT large 98.7 98.7
Ours + ALBERT base 99.1 99.1
Ours + ALBERT large 98.3 98.3
Ours + ALBERT x-large 97.6 97.6
Ours + ALBERT xx-large 98.6 98.6
Ours + BERT base (leave-one-out) 98.5 98.5
Table 1: Our models’ accuracies vs. baselines for Exp. 1

work on this model and the accuracy difference between this
model and other BERT variants is rather small.

We conclude this section by observing that models appear
to have learned significant cues from the surrounding context,
beyond what provided by the immediately surrounding words.
We for example get the correct result for the two sentences con-
sidered challenging in [2] ((1), (2) in Table 2). The challenge
in sentence (1) is the sequence ’wind up’, which is frequently
associated with a phrasal verb interpretation. In sentence (2) the
sequence ’to present’ frequently appears as an infinitival verb.
For both sentences our models assign almost 100% probability
to the correct tagging. We report the implied probabilities as
softmax(logits) in table 2. As some sentences are genuinely
ambiguous, we checked whether our models assign lower prob-
abilities to such cases. This is indeed the case. Sentence (3)
is ambiguous, as the verb read can be interpreted as present
or past tense depending on the surrounding context. A survey
conducted with 10 English native speakers confirms that the
preferred interpretation of read in (3), when uttered in isolation,
is overwhelmingly with the verb in the past tense: this ultimately
has to do with English quite rigidly mandating the present pro-
gressive form to express continuous/progressive aspect (contrary
to, say, Romance languages where present tense can be used to
express continuous aspect). Our models correctly assign a mild
preference to the VBD interpretation.

Sentence % [Tag] % [Tag]
(1) There may be winds up to 20
miles per hour

> 99.9
[N]

< 0.01
[V]

(2) Smith has played Trophy matches
for the county from 1993 to present

> 99.9
[N]

< 0.01
[V]

(3) I read a book 63.52
[VBD]

36.48
[VB]

Table 2: Challenging sentences and implied probability (data
for model trained on BERT large embeddings)

3.2. Experiment 2: Data augmentation for highly unbal-
anced train sets

The 19 homographs for which we do not obtain 100% accuracy
on the test set (10 sentences) for the BERT large models are
listed in Table 3.

Table 3 shows that 10 out of 19 homographs for which ac-
curacy is less than 10/10 are homographs whose training set is
deeply unbalanced, containing less than 10 cases for one of the

Experiment 2 data
Word Split OrigAcc NewSplit NewAcc
approximate 78/11 9/10
compress 84/4 9/10 109/29 10/10
confines 73/16 9/10
content 1/89 9/10
correlate 7/83 8/10 17/123 10/10
duplicate 67/23 9/10
escort 81/9 9/10 109/31 9/10
graduate 87/3 8/10 127/13 9/10
incline 86/3 9/10 126/13 10/10
increment 78/11 9/10
insert 47/43 9/10
intrigue 86/4 9/10 126/14 10/10

invalid 67/22 9/10
invert 27/62 9/10
laminate 87/3 9/10 126/14 10/10
pasty 63/22 8/9
perfume 88/2 9/10 134/6 10/10
upset 65/24 9/10
transplant 85/5 9/10 126/14 10/10
Total 79/90 87.8% 88/90 97.8%

Table 3: Split, old and new accuracy for homographs with <
100% in Experiment 1

Experiment 2
System Micro % Macro %
Ours + BERT large 99.3 99.2

Table 4: Our model’s overall accuracy for Exp. 2

two versions of the homograph word (column ’Split’ in table 3).
We selected 9 of the 10 cases (indicated by the light shading in
the table) and manually selected additional training sentences
from an internal dataset made up mostly by fiction materials. We
added 50 additional sentences for each of these homographs, en-
suring that we would include at least 10 sentences for the ’weak’,
under-represented version of the homograph.7. It is worth re-
iterating that the annotator selecting the additional sentences
was not aware of the results obtained by our model, and thus
the selection was completely unbiased (i.e. there was no overt
attempt to fix the incorrect cases). The new splits obtained are
included in the NewSplit column of table 3. A reviewer correctly
points out that the numbers in the ’Split’ column in table 1 does
not always add up to 90. This is an issue with the original dataset
described in [2], which we are adopting in this paper. In several
cases, the train data does not contain 90 sentences, but fewer.

3.2.1. Results

We re-trained our classifier fed with BERT large embeddings
with the new added materials described in section 3.2, in the same
way as in Experiment 1. We report the new accuracy obtained
in the NewAcc column in Table 3. For the nine homographs
targeted the accuracy improved from 87.8% to 97.8%. Adding
a small amount of extra labelled data to very unbalanced cases
thus yielded an absolute improvement of 10% and a relative
improvement of 11.38%.

7In cases for which we couldn’t find 10 relevant cases in the first
1000 lines of the relevant corpus, we added however many ’weak’ cases
we found up to that point. We did not consider the homograph content
because all 1000 cases at the top of our corpus featured nominal content
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The overall accuracy of the our system built using BERT
large embeddings improved to 99.3% and 99.2% (for micro and
macro accuracy respectively), as shown in Table 4.

These results confirm that making the training set less un-
balanced improves accuracy significantly. As the number of
sentences added was just ten per target word, a new approach
to fixing bugs related to homographs emerges: while relying on
hand-crafted rules requires careful and skilled labour, attempt-
ing to fix a bug via data augmentation simply requires a native
speaker of the language to select a handful of sentences matching
the desired version of the homograph.

3.3. Experiment 3: Gradual sparsification of affine trans-
form weights

Any online TTS system benefits from low latency. Experiment 3
investigates whether the size of our models can be reduced, thus
improving the overall latency of our system. We aim at reducing
the size of the model by applying gradual sparsification of affine
transform weights during training.

The amount of non-zero weights was decreased throughout
the training to 10% of the original amount, masking weights
with the lowest amplitude every 100 training steps. This yielded
a reduction of the size of the classifier for each homograph to
300 bytes, with minimal effect on the accuracy of the resulting
model. Explicit sparsification required to decrease weight of
l2-regularization to 0.001.

We applied sparsification to two models from Experiment 1:
the models built on BERT base and ALBERT base. The results
are displayed in 5.

Experiment 3
System Micro % Macro %
Ours + BERT base 98.8 98.8
Ours + BERT base (sparse) 98.8 98.8
Ours + ALBERT base 99.1 99.1
Ours + ALBERT base (sparse) 98.8 98.8

Table 5: BERT base and ALBERT base with and without sparsi-
fication

The results of this experiment show that sparsification intro-
duces no accuracy loss in the case of BERT base, and a mild ac-
curacy decrease (from 99.1% to 98.8%) in the case of ALBERT
base. The size of the models obtained by way of sparsification
is about 10 times smaller than the models described above for
Experiment 1 (from 3kb per model to 300 bytes per model).

Model sparsification is thus a viable solution for online TTS
systems where model size and latency are a concern.

4. Conclusions
This paper introduces a fully ML-based homograph disambigua-
tion system based on contextual word embeddings. The proposed
approach achieves SOTA results, without the need of any ad-hoc
rules. This paves the way a fully automated approach to homo-
graph disambiguation for TTS systems: the need for expensive,
language-specific and hard to maintain rule systems becomes
much less central. While this paper has only dealt with English,
the availability of CWEs in many languages suggests that the
simple approach described can be successfully extended cross-
linguistically. We have further shown that balanced train datasets
are crucial, as adding a few examples of the under-represented
variant in unbalanced cases improved our accuracy by over 11%

(relative). The method proposed, although performed manually,
is effectively a special case of active-learning: relevant data is
selected to increase the number of under-represented variants.
Throughout the paper we keep in mind integration of proposed
homograph disambiguation system into production environment:
using light-weight ALBERT features, using pretrained CWE
features that can be reused for other purposes within TTS frame-
work, using sparsified per-homograph models.

225



5. References
[1] J. Hobbs, Homophones and Homographs: An American

Dictionary, 4th ed. McFarland, Incorporated, Publishers,
2006. [Online]. Available: https://books.google.co.uk/books?id=
vCUTBQAAQBAJ

[2] K. Gorman, G. Mazovetskiy, and V. Nikolaev, “Improving
homograph disambiguation with supervised machine learning,” in
Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC-2018). Miyazaki, Japan:
European Languages Resources Association (ELRA), May 2018.
[Online]. Available: https://www.aclweb.org/anthology/L18-1215

[3] D. Yarowsky, “Homograph Disambiguation in Text-to-Speech
Synthesis,” in Progress in Speech Synthesis, J. P. H. van Santen,
J. P. Olive, R. W. Sproat, and J. Hirschberg, Eds. New York,
NY: Springer New York, 1997, pp. 157–172. [Online]. Available:
http://link.springer.com/10.1007/978-1-4612-1894-4 12

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online].
Available: https://www.aclweb.org/anthology/N19-1423

[5] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut, “ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations,” arXiv:1909.11942
[cs], Feb. 2020, arXiv: 1909.11942. [Online]. Available:
http://arxiv.org/abs/1909.11942

[6] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“RoBERTa: A Robustly Optimized BERT Pretraining Approach,”
arXiv:1907.11692 [cs], Jul. 2019, arXiv: 1907.11692. [Online].
Available: http://arxiv.org/abs/1907.11692

[7] I. Tenney, D. Das, and E. Pavlick, “BERT Rediscovers the
Classical NLP Pipeline,” arXiv:1905.05950 [cs], Aug. 2019, arXiv:
1905.05950. [Online]. Available: http://arxiv.org/abs/1905.05950

[8] C. D. Manning, K. Clark, J. Hewitt, U. Khandelwal, and
O. Levy, “Emergent linguistic structure in artificial neural
networks trained by self-supervision,” Proceedings of the
National Academy of Sciences, 2020. [Online]. Available:
https://www.pnas.org/content/early/2020/06/02/1907367117

[9] A. Elkahky, K. Webster, D. Andor, and E. Pitler, “A challenge
set and methods for noun-verb ambiguity,” in Proceedings of the
2018 Conference on Empirical Methods in Natural Language
Processing. Brussels, Belgium: Association for Computational
Linguistics, Oct.-Nov. 2018, pp. 2562–2572. [Online]. Available:
https://www.aclweb.org/anthology/D18-1277

[10] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer, “Deep contextualized word
representations,” CoRR, vol. abs/1802.05365, 2018. [Online].
Available: http://arxiv.org/abs/1802.05365

[11] B. Bohnet, R. T. McDonald, G. Simões, D. Andor, E. Pitler,
and J. Maynez, “Morphosyntactic tagging with a meta-bilstm
model over context sensitive token encodings,” CoRR, vol.
abs/1805.08237, 2018. [Online]. Available: http://arxiv.org/abs/
1805.08237

226



Analysing Temporal Sensitivity of VQ-VAE Sub-Phone Codebooks

Jason Fong, Jennifer Williams, Simon King

Centre for Speech Technology Research, University of Edinburgh, UK
{jason.fong, j.williams, simon.king}@ed.ac.uk

Abstract
In this work we present an analysis of temporal sensitiv-

ity of VQ-VAE sub-phone token sequences. Previous work has
demonstrated that VQ-VAE systems learn a type of sub-phone
representation. However, a detailed examination of the repre-
sentations themselves is currently lacking. We address this gap
by exploring linguistic unit reorganisation. Our experiments
show that sub-phone codebook sequences are temporally cor-
related enough to identify VQ codes that correspond to distinct
linguistic units. We found that it is possible to extract VQ codes
and re-arrange these linguistic units in a meaningful way (i.e.
changing the word-order of a sentence). This work puts us one
step closer to understanding how to modify pronunciations at a
fine granularity, such as below the phone-level unit.
Index Terms: VQ-VAE, speech synthesis, representation learn-
ing

1. Introduction
Speech applications such as automatic speech recognition
(ASR) and text-to-speech synthesis (TTS) have traditionally
employed phones to describe speech. While they were origi-
nally conceived for rapid linguistic field transcription, they are
now used as a representation of pronunciation. Phones omit
much of the nuance that is inherent in human speech produc-
tion. For example, phones do not represent the effects of co-
articulation and are inadequate for capturing other connected
speech effects such as partial vowel reduction or elision. There
are established approaches to work around these limitations, in-
cluding expanding the phone set to include allophones and syl-
labic consonants, or by constructing a set of application-specific
context-dependent categories such as diphones (for TTS), or tri-
phones / quinphones (for ASR). Until recently, these were the
only viable choices for a discrete representation of speech in
speech technology applications.

However, recent advances in neural modelling, notably self-
supervised and semi-supervised techniques, offer an ability to
learn speech representations which – by definition – must cap-
ture nuances of speech: the training objective is to be able to re-
construct speech [1, 2] or make contextual predictions [3, 4, 5].
Now with the aid of such learned, informationally-dense speech
representations, we are in a position to rethink our approach
to representing speech for applications such as TTS. Recent
work has already shown that neural speech models learn semi-
supervised representations that capture high-level linguistic as-
pects of speech from speech waveforms. These representations
can greatly improve ASR with little data [5], and can also be
used to generate speech [6, 7]. But no prior work has sought
to use these representations to create new speech applications
altogether.

In this paper we encode speech into a sequence of tokens
drawn from a finite set of categories using a VQ-VAE model
[2], then reconstruct it from that sequence of tokens. We wish

to evaluate the adequacy of the token sequence as a represen-
tation of speech pronunciation. That evaluation takes form of
concatenating token sequences to construct word sequences not
seen in the training data. That is, we use “concatenative VQ-
VAE synthesis” as a methodology for evaluating whether the
learned inventory of categories would be a useful pronunciation
representation for neural TTS.

The novelty of this work is in the manipulation of learned
VQ token sequences. Our results bring us a step closer to nu-
anced control of speech pronunciation, beyond the capabilities
of phone-based representations. The ability to manipulate and
control speech using VQ tokens would open up a plethora of
possible future applications, including accent modulation, tar-
geted pronunciation feedback, voice actor performance post-
production, and pronunciation control for TTS.

The main contribution of this work is measuring the extent
to which VQ token sequences can be manipulated. It is desir-
able that the tokens correspond to speech in a monotonic and
predictable manner. However, because the tokens are always
learned as a temporal sequence from natural speech, they have
an as-yet-unknown temporal sensitivity: they are not guaran-
teed to have a monotonic relationship to the acoustics, and they
might be context- or even speaker-dependent. We offer what
we believe to be the first demonstration that it is feasible to ma-
nipulate and exchange token sequences. We analyse increas-
ingly challenging tasks, from copy synthesis to the production
of novel speech by concatenating short phrases with matched
vs. mismatched phonetic context and speaker identity

2. Related Work
In the work of [8] they compared how graphemes and phones
affected the learned pronunciations in Tacotron sequence-to-
sequence TTS. They found that the internal representations for
graphemes and phones were consistent, suggesting it is possi-
ble to control pronunciations directly from graphemes. They
also evaluated the representations externally to Tacotron. How-
ever, graphemes are a large unit and the corresponding neural
embeddings may not be able to control nuances of pronunci-
ation. In our work, we are modelling a smaller unit with VQ
tokens which can provide much finer control for pronunciation
over grapheme embeddings.

A growing area of interest involves methods to discover
meaningful acoustic units from speech, often in an unsuper-
vised manner, and then utilise them in downstream tasks. In [9],
they explored Transformer VQ-VAE for zero-shot synthesis:
generating speech without text or phone labels. They showed
that the VQ-VAE architecture is well-suited to discover phone
and sub-phone units and it is entirely self-supervised. High-
quality speech can be synthesised directly from these small
units. While this work is encouraging, they have not manip-
ulated the sub-phone units directly, which is something that we
explore.

Perhaps one of the best examples of how VQ tokens can be
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applied to speech applications comes from the text-to-speech
system called DiscreTalk [6]. In this work, the VQ tokens
were generated with different down-sampling factors, which ef-
fectively controlled the duration of a single VQ token. If the
down-sampling factor is large, then individual tokens in a se-
quence have a longer duration, and vice-versa. They trained a
neural machine translation (NMT) system to predict a sequence
of VQ tokens from text input, which is similar to grapheme-
to-phoneme prediction in conventional TTS systems. The pre-
dicted VQ tokens were then used in TTS. They showed that to-
kens of longer duration facilitated learning TTS, but sometimes
by sacrificing overall speech quality. While this finding is im-
portant, it is not clear how the size of the token affects more nu-
anced elements of speech such as co-articulation, or what other
aspects of pronunciation could be optimized. Furthermore the
VQ tokens predicted from text by their NMT model (and sub-
sequently its resulting pronunciations) are fundamentally both
unpredictable and uncontrollable. In this work we make the cru-
cial first steps towards ascertaining whether VQ tokens specif-
ically and neural speech representations more generally are a
good candidate for controlling synthesised speech.

3. Data and Model

3.1. Data

We use VCTK [10] to both train our VQ-VAE model and gen-
erate samples for our listening test. Although it is a relatively
small dataset (44 hours over 109 speakers), since the record-
ings are of high quality, and our WaveRNN decoder [11] is of
sufficient model capacity, our resulting system is able to accu-
rately generate speech for each of the VCTK speakers. VCTK
contains voices from a variety of different ages and UK accents.

3.2. VQ-VAE Model

To discover discrete units into which speech can be encoded,
then subsequently synthesised, we use a VQ-VAE model based
on [2]. Our model differs from the original by using WaveRNN1

as the vocoder instead of WaveNet [12], for faster training and
inference.

The VQ-VAE encoder uses 10 1D convolutional layers to
encode a sequence of waveform samples x1:T into a sequence
of 128-dim continuous latents z1:U . These latents are then dis-
cretised using a vector quantisation layer to create a sequence
of code-words (i.e., codebook entries) d1:U , which henceforth
we will call tokens. Our codebook contains 512 128-dim en-
tries. We do not examine the effect of varying the codebook
size, leaving it for future work. A WaveRNN decoder produces
waveform samples at 22.05 kHz sample rate, conditioned on the
sequence of tokens and a single speaker one-hot vector that is
broadcast across all timesteps s1:U .

We train our model using all VCTK speakers for 1000
epochs (2.7 million iterations), which takes approximately 1
week on a single NVIDIA 2080Ti GPU. Since the focus of this
study is to explore concatenative synthesis and not to examine
VQ-VAE’s ability to generalise to unseen speakers, we choose
to train the model on all of VCTK. Thus we perform concate-
native VQ-VAE synthesis from parts of training utterances, just
as would be the case in waveform-domain concatenation [13].

Waveform

Stimuli Set

Speaker

VQ Tokens

Alignments

Extracted 
Tokens

Concatenated
Tokens

A

WaveRNN

+

or

E

p246 p246 p256

w1|w2|w3 w4|w5|w6w4|w5|w6

Figure 1: Overview of the concatenative VQ-VAE synthesis
method. The token sequence corresponding to word sequence
w1, w2, w3 is being concatenated with the token sequence cor-
responding to w4, w5, w6, from which a waveform is synthe-
sised using WaveRNN. Pictured is a set E stimuli being gener-
ated for the p246+p256 speaker combination. The particular
sub-sequence of words w4, w5, w6 used depends on the stimuli
set currently being generated, either A, B, C, D, or E.

4. Method
We describe our method for re-arranging the VQ token sub-
sequences that correspond to 3-word chunks. What is most im-
portant is that we find a way to meaningfully manipulate speech
in the VQ token domain. Here, we work at the word-level be-
cause it is a first approximation to being able to manipulate VQ
tokens at a lower level such as below the phone-level. As we
have described, a successful outcome at the word-level signifies
that VQ tokens may be a feasible representation for controlling
pronunciation.

Figure 12 shows an overview of the concatenative VQ-VAE
synthesis pipeline that extracts tokens corresponding to words
in two separate utterances, these tokens are then used to gen-
erate a single listening test stimuli. The extraction process for
one utterance works as follows: we first encode the audio of
one utterance U1 and encode it into a stream of tokens us-
ing the VQ-VAE encoder. We then use the timestamps for a
sub-sequence of words (e.g. w1, w2, w3) to identify and ex-
tract their corresponding subset of VQ-VAE tokens dleft. We
then repeat this process for a second utterance U2 to get another
subset of tokens dright corresponding to w4, w5, w6. We then
concatenate them together to get dleft

⊕
dright, and use them

to condition the WaveRNN to generate speech that resembles
w1, w2, w3

⊕
w4, w5, w6. Note that we use ‘

⊕
’ to signify the

concatenation point between sequences of words or tokens.
Word-level alignments are required to find the correspon-

dence between tokens and words, and are found using the Mon-
treal forced aligner [14]. We do not perform any analysis or
adjustment of alignments here, so they are a potential source of
error.

We also found that the generation of words correspond-
ing to the start of dleft and the end of dright were sometimes
cut-off or not realised. Subsequently we experimented with in-
serting dsil before dleft and after dright, finding that it helps
recover some words. Examples can be found on our sample

1https://github.com/mkotha/WaveRNN
2Credit to Christine Wan for help with this diagram.
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page3. When generating our listening test stimuli we pad by 50
timesteps of dsil on both sides. We also chose to use 6-word
stimuli rather than 4-word ones so that the words adjacent to
those at the concatenation point are not cut off.

5. Experiments
5.1. Word Transcription Task

We used a fill-in-the-blank transcription task. We generated 6-
word stimuli of the form w1, w2, w3

⊕
w4, w5, w6. For each

stimulus, participants were asked to transcribe the word after
the concatenation point (i.e., w4) by being presented with the
transcription minus the word-in-question. For example, for the
sentence ‘red and green

⊕
looking any further’ using dleft

corresponding to ‘red and green’ and dright to ‘looking any
further’, participants were presented with the transcription ‘red
and green <blank> any further’.

5.2. Experimental Conditions

Our listening test contains 5 sets each with 40 stimuli, so that
each participant rates the same 200 stimuli:

• A: Copy-synthesis

• B: Matched context + Matched Speaker

• C: Matched context + Mismatched Speaker

• D: Mismatched context + Matched Speaker

• E: Mismatched context + Mismatched Speaker

These sets are designed to help us answer the following
three questions: Does concatenative synthesis result in less in-
telligible speech than copy-synthesis (Set A vs. Sets B, C, D,
E)? Is intelligibility affected by extracting tokens from audio
spoken by two different speakers (Sets B, D vs. Sets C, E)? Is
intelligibility affected when the two words adjacent to the con-
catenation boundary, w3 and w4, are chosen so that their lin-
guistic contexts, according to their surrounding words in their
original sentences, mismatch (Sets B, C vs. Sets D, E)?

We determine whether linguistic context matches between
two words by comparing their adjacent triphones. For example
if w3 is ‘hello’ (HH EH L OW) and w4 is ‘world’ (W ER L
D), then we compare the rightmost triphone of ‘hello’ to the
leftmost one of ‘world’. Given that the rightmost triphone of
‘hello’ is L OW W, if the leftmost one of ‘world’ is OW W ER
then we consider it a matching linguistic context, and if it were
AH W ER then we consider it mismatching. When choosing a
w4, w5, w6 for a given w1, w2, w3 we make sure not to choose
those which contain a w4 that is either a stopword or a word that
has been generated before for a particular speaker.

5.3. Materials

We used 40 unique sequences w1, w2, w3 each of which could
be followed by one of 5 unique sequences of words w4, w5, w6

(thereby creating 200 unique sentences in total, described in
5.2). Each unique sequence w1, w2, w3 was presented 5 times
during the listening test (once per stimuli set), and each time is
coupled with a unique w4, w5, w6, making a total of 200 sen-
tences, noting that these may not all be grammatically-correct.

3https://jonojace.github.io/
SSW21-concatenative-vqvae

Table 1: Speaking rate information (average number of seconds
per phone).

Duration Type p246 p256 p345 p374

non-sil Phone 0.088 0.085 0.083 0.118
sil Phone 0.114 0.106 0.278 0.278

5.4. Speakers

We took care in choosing the speakers to build our stimuli. We
found in preliminary experiments that conditioning the Wav-
eRNN using tokens extracted from slower-speaking voices re-
sulted in more intelligible speech, when performing either copy-
synthesis or concatenative reconstructions. Subsequently we
chose 4 slow-speaking voice talents for our experiments; p246,
p256, p345, and p374 whose speaking rates are summarised
in Table 1.

We generate 50 stimuli from each of our 4 speakers, made
up of 10 stimuli from each stimuli set. For example, if the main
speaker is p246 and the secondary speaker is p256 (for an-
swering mismatched speakers question) then we will generate
10 stimuli for A B and D using tokens only from p246, and
10 stimuli each for C and E using dleft from p246 and dright

from p256. The 4 main and secondary speaker combinations
that we use are p246+p256, p256+p345, p345+p374, and
p374+p246. To condition the WaveRNN we always use the
main speaker to condition dleft

⊕
dright even if the original

speaker of dright is the secondary speaker, therefore our model
performs voice conversion on the latter halves of the stimuli in
sets C and E.

5.5. Listening Test

We built our listening test on the Qualtrics4 platform 5, and re-
cruited participants using Prolific6. Using the following filters
we recruited 50 participants, each of whom are from the UK,
have no literacy difficulties, and have at least a 90% approval
rating on Prolific. The order of the 200 stimuli are randomised
on a per participant basis.

In order to ensure that our results were accurate we per-
formed a manual check of all participants’ answers to correct
misspellings (e.g. contenders and contendors), typos (e.g. fresh
and frsh), and homophone ambiguity errors (e.g. rode, rowed,
and road).

6. Results
6.1. Stimuli Set Comparisons

We present results from our intelligibility test partitioned across
each stimuli set in Figure 2. We find that the copy-synthesis
stimuli (A) are the most intelligible. This is likely because no
concatenative synthesis is performed, and as such the resulting
token sequences will not suffer from potential alignment errors
and will appear ‘natural’ to the WaveRNN.

The results of B and C show that concatenative VQ-VAE
synthesis can produce intelligible speech reliably, additionally
since they outperform D and E we can conclude that concate-
native synthesis works better when linguistic contexts match.

4https://www.qualtrics.com/uk/
5Test building automated using https://github.com/

CSTR-Edinburgh/qualtreats
6https://www.prolific.co/
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Figure 2: Intelligibility results across the stimuli sets A, B, C,
D, E described in Subsection 5.2. We present the percentage of
stimuli within a set answered correctly by participants.
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Figure 3: Intelligibility results for the 4 speaker combinations
described in Subsection 5.1. For each speaker combination we
present the percentage of stimuli correct when both dleft and
dright are extracted from the main speaker’s speech (left-side
teal coloured bars) and when dleft is extracted from the main
speaker and dright is extracted from the secondary speaker
(right-side orange coloured bars). Note that due to the copy-
synthesis set A, the total number of stimuli when speakers are
matched and when speakers are mismatched differ, being 120
and 80 respectively.

Comparing the results of B vs C and D vs E we find that
synthesising using concatenated token sub-sequences extracted
from different speakers has only a small negative on intelligi-
bility. The closeness of these results combined with our obser-
vations that the speaker identity of samples do not change mid
sentence are testament to the ability of VQ-VAE to learn code-
book embeddings that are disentangled from speaker identity.
Disentanglement is achieved due to the use of speaker inputs
to the decoder and the extreme bottle-necking of the input sig-
nal in both the time and feature dimensions (resulting in a low
bit-rate encoding). These results are promising for future con-
catenative neural synthesis work: it is clearly possible to mix
and match VQ tokens between different speakers. This could
enable new applications such as correcting a system’s pronun-
ciations via cheap-to-obtain speech exemplars rather than more
expensive phonetic transcriptions.

6.2. Speaker Combination Experiments

Figure 3 shows our intelligibility results partitioned across the
4 speakers. We observe three findings: First, that mismatched
speakers across the concatenation boundary results in lower in-
telligibility in general. Second, that mismatched vs matched
speaker intelligibility differs between speaker combinations,
e.g. the difference for p256+p345 is very small (1.9% in-
crease), whereas the difference is larger for p345+p374 (59%
increase). Upon reflection of the speaking rates in Table 1 we do
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Figure 4: Total duration of all silence phones for each speaker.

not find a strong correlation between speaking rate and intelli-
gibility, subsequently differences in intelligibility could be due
to other factors such as per speaker co-articulation habits or ac-
cent differences for example. Third, we find that certain speak-
ers are less intelligible in general, speaker p256 for example.
We further investigated this by visualising the total duration of
silences for each speaker in Figure 4 where we see that speaker
p256 has the smallest amount of total silence, which may make
interword boundaries harder to identify for both the VQ-VAE
encoder and forced aligner. Additionally the speaker’s heavier
more informal accent may also have an effect on intelligibility.

7. Qualitative Analysis
In this section we present our findings regarding the types of
errors that participants made. We are particularly interested in
the cases of incorrect transcription because it helps us better
understand how well we can manipulate VQ tokens at a finer-
granularity. One of our hypotheses was that concatenating dleft

and dright together would mainly cause the sounds adjacent to
the boundary to be affected. Surprisingly however we found
that there are instances where the first phone of w4 was correctly
heard, but the rest of the word was largely intelligible, causing
participants to hallucinate an incorrect answer. Since we did
not discover a cause for this phenomena we include examples
on our samples page and leave further investigation to future
work.

8. Conclusion
In this work we present an analysis of the sensitivity of VQ-
VAE tokens to their surrounding context by using concatena-
tions of tokens extracted from disparate sentences to decode au-
dio. We primarily find that ‘unit selection’ speech generation is
possible in the discrete latent space. Furthermore by extracting
tokens from sentences selected from a variety of specific con-
ditions we discover that VQ-VAE tokens are temporally highly
linguistic context dependent, but not speaker context dependent.
Together these two results are promising for future speech sys-
tems as they suggest that readily available audio exemplars can
be used to alter aspects of speech such as pronunciation with-
out resorting to expensive hand-transcribed labels such as pho-
netic transcriptions. We further observe that within our pipeline
speaking rate and duration of silences can affect downstream
reconstruction intelligibility. In future work we plan to inves-
tigate neural concatenative synthesis cross-lingually, make to-
kens less context dependent without sacrificing reconstruction
quality, and remove the reliance of our system on pretrained
forced aligners and instead use word-level alignments obtained
in an unsupervised fashion.
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