

Standardisation supporting Automated Driving

Andras Csepinszky

Director of Advanced Automotive Technologies @ NNG

2020-11-17, Budapest

ISO/IEC JTC1 AG6 Autonomous vehicles technology landscape

ISO/IEC JTC1 AG6 Autonomous and Data Rich Vehicles

- Assess the current state of Vehicular Data standardization activities
- Establish relations and coordinate
 Vehicular Data standards
 development and harmonization
- Engage with standards setting organizations that are involved in vehicular data in the area of Autonomous
 Vehicle standardization

AG6 ran a gap analysis on available standards and activities

Copyright 2016 - Vision Systems Intelligence, LLC.

ISO/IEC JTC1 AG6 – gap analysis' key findings

- Fully automated vehicles are already found in limited environments such as rail systems, farming and mining.
- Automated and autonomous vehicles may be connected to other systems or may be self-contained.
- Standardization activities are currently done in silos and are rather road vehicle centric
- Standardisation is needed where data is exhanged between vehicles and infrastructure for interoperability or regulatory related certification reasons.
- Currently, there are around 400 standards on connected road vehicles. An inventory of some of the work can be found at http://htg7.org
- The terminology used to characterise automated and autonomous vehicle has not be fully standardised yet. Eg. the confusion about the definition of 'automated' and 'autonomy'.

Open AutoDrive Forum (OADF)

Cross-domain discussion platform driving standardizations in the area of automated driving

ADASIS

The interface specification for vehicle sensor data. www.sensor-is.org

SENSORIS

OPEN

FORUM

NDS

AUTO DRIVE

SENSORIS

Traveller Information Services Association

The data exchange interface to support Advanced Driver

Advanced Driver
Assistance Systems
(ADAS) applications.
www.adasis.org

Traffic and travel information services and products based on RDS-TMC and TPEGTM.
www.tisa.org

Innovation of Automated Driving for Universal Services

ADASIS

Navigation Data Standard

The worldwide standard for map data in automotive eco-systems. www.nds-association.org

SIP-adus

TISA

Develops ITS as cross-ministerial collaboration, working on AD system implementation in Japan and next-gen urban transport. http://en.sip-adus.go.jp

A map-centric ecosystem supporting AD – the beginning

OPEN AUTO DRIVE FORUM

The map-centric ecosystem in more details

OPEN AUTO DRIVE FORUM

The map-centric ecosystem in more details

Joint (European-international) approach was adopted in the standardisation of Intelligent Transport Systems (ITS) enabled by the Vienna Agreement in order to...

- ...avoid duplication of work
- ...avoid the creation of technology islands (which in fact exist unfortunately)
- ...ensure the access for global stakeholders to regional initiatives
- ...bring in expertise on missing competences
- ...facilitate collaboration and leverage common goals
- ...use internal and external liaisons' outreach is more efficient

Liaison organisations: ETSI TC ITS, ISO TC22 SC31 and ADCG, ISO TC211, ISO TC268, ISO/IEC JTC1 SC42, SAE ORAD, TISA, IETF, RTCM

Liaison organisations are extending even further the above mentioned points.

- example of ITS at CEN & ISO

Infrastructure classification Supporting Automated Driving

The other side

ISAD levels (Carreras et al. 2018)

	ISAD	Name	Infrastructure side	AV side	Digital map with correct road signs	VMS warnings, objuincidents, weather an	Microscopic traffic od situation pp	Guidance: speed, X gap, lane advice
Conventional Infrastructure	Е	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own				
	D	Static digital information / map support	Digital map data (inlouding static road signs) complemented by physical reference points	Traffic lights, short term road works and VMS have to be recognized by AVs on their own				
Digital Infrastructure	С	Dynamic digital information	All static and dynamic information can be provided to the AVs in digital form	AVs perceive infrastructure support data				
	В	Cooperative perception	Infrastructure is capable of percieving microscopic traffic situations	AVs perceive infrastructure support data in real time (C-ITS Day 1)				
	Α	Cooperative driving	Infrastructure is capable of percieving vehicle trajectories and guide single AVs (or AV groups)	AVs are guided by the infrastructure in order to optimize traffic flow (C-ITS Day 2+)				

- Based on the ISAD Level of information and services different on-board vehicle decisions can be supported
- CAVs will have to be able to drive on E-level, but the additional possibilities provided by A-level sections enable a much higher customer satisfaction as well as support road safety and capacity management related goals

How to handle temporary/local missing ODD?

Definition of ODD gaps

Local roadwork zone

Required ISAD functional

The Ecosystem approach

Regulation/Homologation - Perspective

Conclusions

- Connected and Automated Vehicles need joint standardisation efforts
- Interoperability of services is a must in an ubiquitous networking environment
- Standardisation is still fragmented and driven by different interests (Car industry, Infrastructure Operators, Network Operators, Policy-makers)
- Standardisation and harmonization efforts need to be invested on the road infrastructure side to support automated driving (such effort exists in CEN/TC226 Road equipment)
- Cooperative ITS is one of the enabler technology of Automated Driving, but only one of the list
- Map technologies, Sensor Technologies, Artificial Intelligence, Big Data, Internet of Things are on the list of the enablers
- Standardisation is resource and time consuming activity we need technology experts and their delegating organisations
- Standardisation is below the horizon of the Hungarian stakeholders we need to shake the boat!

Thank you!

andras.csepinszky@nng.com