Standardisation supporting Automated Driving

Andras Csepinszky

Director of Advanced Automotive Technologies @ NNG

2020-11-17, Budapest
ISO/IEC JTC1 AG6
Autonomous vehicles technology landscape

ISO/IEC JTC1 AG6 Autonomous and Data Rich Vehicles
- Assess the current state of Vehicular Data standardization activities
- Establish relations and coordinate Vehicular Data standards development and harmonization
- Engage with standards setting organizations that are involved in vehicular data in the area of Autonomous Vehicle standardization

AG6 ran a gap analysis on available standards and activities
ISO/IEC JTC1 AG6 – gap analysis’ key findings

- **Fully automated vehicles** are already found in limited environments such as rail systems, farming and mining.

- Automated and autonomous vehicles may be connected to other systems or may be self-contained.

- **Standardization** activities are currently done in silos and are rather road vehicle centric.

- Standardisation is needed where data is exchanged between vehicles and infrastructure for interoperability or regulatory related certification reasons.

- Currently, there are around **400 standards on connected road vehicles**. An inventory of some of the work can be found at http://htg7.org

- The terminology used to characterise automated and autonomous vehicle has not be fully standardised yet. Eg. the confusion about the definition of ‘automated’ and ‘autonomy’.
Open AutoDrive Forum (OADF)

Cross-domain discussion platform driving standardizations in the area of automated driving

ADASIS
The data exchange interface to support Advanced Driver Assistance Systems (ADAS) applications.
www.adasis.org

SIP-adus
Develops ITS as cross-ministerial collaboration, working on AD system implementation in Japan and next-gen urban transport.
http://en.sip-adus.go.jp

SENSORIS
The interface specification for vehicle sensor data.
www.sensor-is.org

TISA
Traffic and travel information services and products based on RDS-TMC and TPEG™.
www.tisa.org

NDS
The worldwide standard for map data in automotive eco-systems.
www.nds-association.org

OpenAuto Drive Forum
Cross-domain discussion platform driving standardizations in the area of automated driving.
A map-centric ecosystem supporting AD – the beginning

Source: OADF @ Copenhagen, ITS World Congress
The map-centric ecosystem in more details

Map Infrastructure

Simulation
Proprietary functions

Vehicle
Proprietary services / ADAS/AD functions

Infrastructure
TMC / PSAP / EFC / Grid
Proprietary Services

Proprietary Services
The map-centric ecosystem in more details

Map Infrastructure

Proprietary Services

Simulation

ASAM
OpenDRIVE/OpenCRG/OpenSc

Vehicle

Proprietary services/ADAS/AD functions

Infrastructure

TMC / PSAP / EFC / Grid

Proprietary Services
The map-centric ecosystem in more details
Standardisation environment

Joint (European-international) approach was adopted in the standardisation of Intelligent Transport Systems (ITS) enabled by the Vienna Agreement in order to…

- …avoid duplication of work
- …avoid the creation of technology islands (which in fact exist unfortunately)
- …ensure the access for global stakeholders to regional initiatives
- …bring in expertise on missing competences
- …facilitate collaboration and leverage common goals
- …use internal and external liaisons’ outreach is more efficient

Liaison organisations: ETSI TC ITS, ISO TC22 SC31 and ADCG, ISO TC211, ISO TC268, ISO/IEC JTC1 SC42, SAE ORAD, TISA, IETF, RTCM

Liaison organisations are extending even further the above mentioned points.
Infrastructure classification Supporting Automated Driving

The other side
ISAD levels (Carreras et al. 2018)

<table>
<thead>
<tr>
<th>ISAD</th>
<th>Name</th>
<th>Infrastructure side</th>
<th>AV side</th>
<th>Digital information provided to AVs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital map with road signs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMS warnings, incidents, weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Microscopic traffic situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guidance speed, gap, lane changes</td>
</tr>
</tbody>
</table>

- Conventional Infrastructure
 - **E**: Conventional infrastructure / no AV support
 - Infrastructure side: Road geometry and road signs have to be recognized by AVs on their own
 - AV side: None
 - **D**: Static digital information / map support
 - Infrastructure side: Digital map data (including static road signs) complemented by physical reference points
 - AV side: Traffic lights, short term road works and VMS have to be recognized by AVs on their own
 - **C**: Dynamic digital information
 - Infrastructure side: All static and dynamic information can be provided to the AVs in digital form
 - AV side: AVs perceive infrastructure support data
 - **B**: Cooperative perception
 - Infrastructure side: Infrastructure is capable of perceiving microscopic traffic situations
 - AV side: AVs perceive infrastructure support data in real time (C-ITS Day 1)
 - **A**: Cooperative driving
 - Infrastructure side: Infrastructure is capable of perceiving vehicle trajectories and guide single AVs (or AV groups)
 - AV side: AVs are guided by the infrastructure in order to optimize traffic flow (C-ITS Day 2+)

- Based on the ISAD Level of information and services different on-board vehicle decisions can be supported
- CAVs will have to be able to drive on E-level, but the additional possibilities provided by A-level sections enable a much higher customer satisfaction as well as support road safety and capacity management related goals

Source: Jacqueline Erhart (ASFINAG) – CCAM Single Platform
How to handle temporary/local missing ODD?

Definition of ODD gaps

Local roadwork zone

Temporary adverse weather conditions

Required ISAD functional

Source: Jacqueline Erhart (ASFINAG) – CCAM Single Platform
The Ecosystem approach

Automated Driving Functionality - Perspective

Infrastructure/Road Operator - Perspective

Regulation/Homologation - Perspective

Source: Jacqueline Erhart (ASFINAG) – CCAM Single Platform
Conclusions

- Connected and Automated Vehicles need joint standardisation efforts
- Interoperability of services is a must in an ubiquitous networking environment
- Standardisation is still fragmented and driven by different interests (Car industry, Infrastructure Operators, Network Operators, Policy-makers)
- Standardisation and harmonization efforts need to be invested on the road infrastructure side to support automated driving (such effort exists in CEN/TC226 Road equipment)
- Cooperative ITS is one of the enabler technology of Automated Driving, but only one of the list
- Map technologies, Sensor Technologies, Artificial Intelligence, Big Data, Internet of Things are on the list of the enablers
- Standardisation is resource and time consuming activity – we need technology experts and their delegating organisations
- Standardisation is below the horizon of the Hungarian stakeholders – we need to shake the boat!
Thank you!

andras.csepinszky@nng.com