Artificial Intelligence use cases in 5G Networks

Presenter: Bendek Kovács, PhD Senior Specialist, Network Service Performance, Head of Technology and Innovation ETH R&D, Ericsson

AI, IoT and Digitalization Today

Gartner Hype Cycle for Emerging Technologies, 2017

GOOGLE, FACEBOOK, AND MICROSOFT ARE REMAKING THEMSELVES AROUND AI

At Sundar Pichai's Google, Al Is Everything— And Everywhere

Fastcompany.com

GAFA: AI Is the Future

Guardian.com

2017 Is The Year Of Artificial Intelligence

McKinsey&Company

"We estimate a potential economic impact of as much as \$11.1 trillion per year in 2025 for IoT applications."

"AI could contribute up to \$15.7 trillion1 to the global economy in 2030, more than the current output of China and India combined."

Science

Neural Networks has been researched for a long time => Requires compute and data

AI and Machine Learning

Artificial Intelligence

Machine Learning

Deep Learning

The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data. A subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning Any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning (including deep learning)

Source: www.geospatialworl d.net/blogs/differenc e-betweenai%EF%BB%BFmachine-learningand-deep-learning/

Narrow AI, artificial general intelligence (AGI), and superintelligent AI.

1

Machine learning

- Machine Learning
 - Field of study that gives computers the ability to learn without being explicitly programmed
- Neural networks
 - Nonlinear function approximator
- Computationally intensive, lots of linear algebra
 - Multiplying matrices and vectors

Science: Deep Learning

Object Detection of the ImageNet Large Scale Visual Recognition challenge. Red line is human performance on the same benchmark (Andrej Karpathy).

Computer Vision

Acoustic model	Recog	RT03S	Hub5
	WER	FSH	SWB
Traditional features	1-pass –adapt	27.4	23.6
Deep Learning	1-pass	18.5	16.1
	–adapt	(-33%)	(-32%)

Language Processing

- Significant developments in the recent years
 - Large set of data
 - HW (GPU-s)
 - Algorithms including
 - Learning refinements
 - CNNs
 - Word vector representations
- Resulting
 - Larger models
 - Trained faster
 - On more data
- Feature learning
 - E2E Deep Learning

Science

Neural Networks has been researched for a long time => **Requires compute and data**

Use case: Network Signaling Analytics

Signaling Analytics: big data

- Call setup: 400 signaling
 3 million subscribers 1call/hour
 1.2 milliárd üzenet (1Gbyte/s)
- ~10 3GPP protocols
- Real-time analytics

Representation Learning: Clustering

Science

Data

Neural Networks has been researched for a long time => Requires compute and data

Big data systems producing data for analytics

Neural Networks has been researched for a long time => Requires compute and data

Data

Science

Big data systems producing data for analytics => Requires global storage places, use cases

Internet of Eyes

Low latency & high reliability applications: Using deep learning at the network edge

You Only Look Once (YOLO)

- Whole image goes through the network once (no sliding window, no region proposals)
- Image divided into grids -> network predicts category for each grid
- Predictions informed by global context
- More than 1000x faster than R-CNN and 100x faster than Faster R-CNN

Neural Networks has been researched for a long time => Requires compute and data

Data

Science

HW

Big data systems producing data for analytics => Requires global storage places, use cases

GPU enables fast computation for Neural Networks

Breakthrough: GPU to make it faster

- Training a Deep Neural Network requires lots of parallel computations
- Nvidia provides a framework that makes it possible to use GPUs for Deep Learning
- Only for Nvidia GPUs
- Can make computation many times, sometimes even orders of magnitude faster (with expensive GPUs)
- Provides support for any machine learning task

	Speed of training,	
Device	examples/sec	
2 x AMD Opteron 6168	440	
i7-7500U	415	
GeForce 940MX	1190	
GeForce 1070	6500	

Internet of Eyes use case

Outline of the process

Getting and labeling data

Training the network (in the central cloud)

Training the network (in the central cloud) Transfer learning

- Normally we randomly initialize a neural network's weights (free parameters), then iteratively change them during training
- In transfer learning, we use the weights of a network that was already trained on some dataset

- This reduces the training time, because only few layers of the network are tuned
- The network we used was trained on the COCO dataset

 Training of a network requires extensive computational capacity therefore it is assumed to be performed in cloud datacenters

Science

Data

HW

Neural Networks has been researched for a long time => Requires compute and data

Big data systems producing data for analytics => Requires global storage places, use cases

GPU enables fast computation for Neural Networks => Requires cloud compute

Creating the model to be used for object detection

Object detection (on the Edge Cloud)

PoC conclusions

- —Image recognition on trained network:
 - -Still require heavy computations
 - -Should be available close to the user
 - —To be performed on the network edge

GPU enables fast computation for Neural Networks => Requires cloud compute and everywhere availability

Reference Edge Use Case

PoC conclusions

- —Image recognition on trained network:
 - -Still require heavy computations
 - -Should be available close to the user
 - —To be performed on the network edge

How such use case is implemented in the 5G network?

Any guess on what is this?

Network topology

Central Cloud Topology Model

Geographical distribution

5G Core architecture Overview Distributed User Plane Function

Demanding applications require edge computing Mapping application components between Device, edge and central Cloud

AR/VR application with object recognition

Neural Networks has been researched for a long time => Requires compute and data

Big data systems producing data for analytics => Requires global storage places, use cases

HW

Science

Data

GPU enables fast computation for Neural Networks => Requires cloud compute and ubiquitous availability

Network

Provides low latency communication, connectivity => Enabling edge computing as a Distributed Cloud

