
INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 1

Analysing Efficiency of New Load Distribution
Algorithm with Horizontal Scaling

Loránd Nagy, Attila Hilt, László Jánosi, and Gábor Járó

Abstract—As the distributed software and microservice ar-
chitecture is spreading, the importance of load distribution is
increasing. There are multiple indicators to measure the quality
of the distribution, in the past the main interest was load
balancing, i.e. evenly disrtibuting the load among available units.
In this paper another aspect is investigated, how well can the total
load be distributed among the least number of units, keeping
the others in a gracefully shut down state. For this purpose an
unevenly distributing algorithm is presented and compared to the
model of traditional load distribution. The algorithm is designed
to support horizontal scaling of processing units via attempting
to operate most of the active units at a design load level, allowing
only one at the time to take less traffic. This paper focuses on the
specific case of load distribution inside telecommunication core
networks.

Index Terms—Load distribution, load balancing, distributed
system, scaling, graceful shutdown, Round-Robin, horizontal
scaling, simulation, telecommunication.

I. INTRODUCTION

IN traditional telecommunication networks, the design ca-
pacity is permanently available regardless of the actual

traffic. This means that the network element (NE) constantly
requires all the assigned hardware (HW) which consumes
energy. Furthermore, in most cases these – either physical or
virtualized – components can not be reassigned for tasks other
than their designated ones. In telecommunication network
elements, Round-Robin algorithm can be used to model some
of the load distribution processes, especially that it is – and
its modified versions are as well – a rather popular choice for
load distribution and load balancing. However, such methods
are facing serious challenges in solutions that are moving
towards greater flexibility, i.e. scalability of the system. The
main issue of these methods is that the distribution of the
load is attempted by distributing the requests. As the actual
load (used capacity) of a functional unit (FU) is generated by
the handled requests this could be a viable solution, but the
indeterministic nature of requests (e.g. varying call lengths)
may weaken the correlation between them. Therefore the load
distributing algorithms, focusing more on distributing requests,
are trying to act as load balancers and are rather inflexible. As
an example, the Round-Robin algorithm assumes that every
FU has the same capacity and performance in the system and it
is not capable of decreasing the target performance of selected

Loránd Nagy (e-mail: lorand.1.nagy@nokia.com), Attila Hilt (e-mail: at-
tila.hilt@nokia.com), László Jánosi (e-mail: laszlo.janosi@nokia.com), and
Gábor Járó (e-mail: gabor.jaro@nokia.com) are with Nokia Networks, H-1092
Budapest, Köztelek u. 6. Hungary.

Manuscript received September 12, 2016.
Paper accepted October 2, 2016.

units. These are the reasons why we have to find a solution
that addresses these problems and is able to support the later-
described horizontal scaling.

However, it is important to notice that Round-Robin,
Weighted Fair Queueing and their variants have been used
(for load balancing) for a long time. Naturally many results
have already been achieved in dynamical load balancing [1],
[2]. Furthermore, e.g. Session Initiation Protocol (SIP) based
services are also very well-investigated [3]. Therefore in gen-
eral it can be stated that scalability of distributed systems and
load distribution that supports it are interests of the research
almost as far as the first appearrance of Cloud.

Development in ’Telco’ network solutions enables almost
all core network elements e.g. TAS, MSS, and MME (see
Fig. 1.) to run in the Cloud [4]. In virtualized environment,
scalability of Virtual Network Functions (VNFs) becomes a
very important requirement. There are two basic methods
for scaling; horizontal and vertical. The first method adapts
the number of functional units to the total load amount
in a distributed system, while the latter allocates resources
dynamically to a unit – or to a number of units. Throughout
this paper the horizontal scaling is used. Practically it allows to
add or remove resources (henceforth functional units) anytime
to or from the system with minimal effect on the operation.
To ensure the quality of handling requests, removal of a
functional unit shall be graceful in the sense that it cannot
cause performance degradation and ongoing processes must
not be interrupted.

For better efficiency, an algorithm is needed which uses only
certain (higher order) functional units continuously. The main
idea of the new algorithm is that it starts loading additional
(lower order) FUs if the load of the higher order units reaches
a pre-defined level (upper threshold). The lower order FUs
shall receive only a smaller portion of the load to ensure
that the higher order units are loaded approximately to their
design load level. Another goal of this logic is to decrease the
amount of requests handled by lower order units to decrease
the expected time to reach gracefully shut down (GRSD)
state after deactivation (from receiving requests) as a result of
decreasing load. Thereby, in Cloud-based environment, traffic
could be concentrated on a few functional units and further
FUs are loaded only if it is necessary.

Our goal is to provide a method which loads the available
functional units within a single network element (either TAS
or MSS) according to the aforementioned logic. This way,
the operation of the network element can be more energy-
and cost-efficient since unused FUs could be shut down
automatically depending on the actual traffic.

mailto:lorand.1.nagy@nokia.com
mailto:attila.hilt@nokia.com
mailto:attila.hilt@nokia.com
mailto:laszlo.janosi@nokia.com
mailto:gabor.jaro@nokia.com


INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 2

It is ought to be highlighted that the algorithm described in
this paper is applicable in any distributed telecommunication
system, hence it is independent from any protocol (i.e. SIP,
Megaco, SS7). Moreover, the unknown length of the running
processes, which makes the seamless removal of functional
units harder, is not a problem for this algorithm. Typically,
the length of calls has an unknown probability distribution,
hence reaching the gracefully shut down state can be delayed
indefinitely. However in call handling it is crucial that even
very long calls must not be terminated by removal of that FU
which controls them.1

Henceforth, in Section II. we describe the problem in detail
and show some related examples from real mobile networks.
In Section III. we interprete our solution in both theoretical
and practical point of view. In Section IV. we compare Round-
Robin and the new algorithm and in Section V. we summarize
the results so far.

II. PROBLEMS AND REAL-LIFE EXAMPLES

Before we describe the problem in details, we take a closer
look at the core network, which is in the scope of our
investigation and introduce how it can be moved onto the
Cloud.

A. The Core Network

The Core Network (Figure 1) consists of four main domains:
1) Packet Core;
2) Services Domain which includes e.g. MSS (Mobile

Switching Center Server), TAS (Telecommunication Ap-
plication Server) and the IMS (IP Multimedia Subsys-
tem);

3) Registers (HLR or HSS) that are common for the Packet
Core and the Services Domain;

4) OSS (Operations Support System) which manages all of
the network elements, including the radio network (2G,
3G, 4G/LTE) as well.

The same resources (CPU, memory, storage, IP interfaces and
networking) must be provided for (core) network elements in
order to be able to operate in Cloud based environment (just
as in traditional, e.g. ATCA based HW environment) [5].

On Cloud, storage capacity is provided through SAN (Stor-
age Area Network) and network connections are provided
by SDN (Software-Defined Networking). As it can be seen
in Fig. 2, telecommunication applications (which are SW
applications) are located on the top of a cloud infrastructure.
Similarly, OSS and CAM (Cloud Application Management,
which controls the horizontal scalability of certain network
elements) can run on Cloud.

Based on ETSI NFV architecture [5], MSS and TAS are
virtualized network functions (VNFs) [6], [7]. The function
of MSS and TAS in mobile and IMS network is defined in
detail by the following 3GPP technical standars: TS 23.002
[8], TS23.218 [9] and TS 23.228 [10].

1In real networks there are limitations for the maximal call duration
(typically 60 or 120 minutes), but that is enforced independently of the
management of functional units.

B. Load from a real network

We collected data from several mobile network operators2.
First of all, it can be observed that the load of the functional
units fluctuates – following a recognizable pattern – signif-
icantly on both daily and weekly basis. It can be seen in
Fig. 3. how rapidly the load changes between night hours
and (daytime) busy hours. It is also clearly shown in the
same figure that – compared to weekdays – weekend traffic
is reduced (red circle). Moreover, sudden big load can occur
anytime, even during busy hours (green circle).

Of course, traffic also fluctuates at the level of the entire
network (Fig. 4.), which foresees the possibility of switching
functional units off. For example – if we take a closer look
at daytime and nighttime traffic in the network – fluctuations
can be measured up to 60%. This means less functional units
would be needed in nighttime compared to the busy hours.
Currently, all the resources are reserved continuously, while
for example charging data processing is done mostly at night,
which requires additional resources.

These analyses show that the utilization of the resources
does not often reach even the 35% level, which is far from
the recommended 60 to 70% level. Therefore, one of the goals
is more efficient resource utilization because it leads to an
optimized resource management and helps to decrease the
energy consumption of the system.

C. Problems with Round-Robin

As it was mentioned earlier, Round-Robin (scheduling) is
used widely for call-handling (or call distribution) in telecom-
munication networks. Consider the following simple example
to this algorithm. If the functional units are represented by urns
and balls represent the calls, the algorithm works as follows:
we throw the balls one-by-one into the urns consequently in
arrival time and if we run out of empty urns, then we start
over from the first urn. This process is rather simple and easy
to implement, however not appropriate for several reasons.
First of all, it cannot be used for priority-based or biased load
balancing. It can be seen in Fig. 5. that the average load of the
functional units are not really balanced. This can be explained
with the fact mentioned in the introduction: Round-Robin
does not take into account the actual load of the (internal)
functional units and assumes that every FU has the same
capacity and performance in the system. The second problem
is its deterministic behaivour. It is shown in Fig. 6. that the
(control plane) CPU usage of a single call is not constant:
there are setup and end phases. Based on the elapsed time
between the two phases – i.e. the length of the call: T , where
the distribution of T is unknown – we can talk about short and
long calls. Since we do not know the real distribution of the
call lengths, we cannot predict the end of a call. This causes
the problem that there are FUs with higher load levels as a
result of handling many short calls, while the others are less
loaded, since they get more long calls.

Assume we have twenty urns and blue balls represent the
long calls. Moreover assume as well, that every twentieth call

2We do not name specific operators for confidentiality reasons, so from
now on, we indicate every operator as unknown.



INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 3

Fig. 1. Topology of the core network

Fig. 2. Network elements of the core network in Cloud based environment
[7]

is a long call. In this scenario the twentieth urn receives all
the blue balls (i.e. long calls).

Considering these observations, the analyses and the prop-
erties of Round-Robin, this kind of call-handling is simple, but
far from being optimal. This is the motivation for the search
of a better load distribution algorithm. The problem requires
a more sophisticated algorithm that is designed to address the
particular concerns raised against Round-Robin.

III. NEW ALGORITHM FOR BIASED LOAD BALANCING
WITH GRACEFUL SHUTDOWN

In our solution, one of the most important targets is to
use only a number of functional units from the available

Fig. 3. Average load of FUs of a network element
one week measurement, and one hour resolution

ones, proportionally to the actual load. Practically we do not
endeavour to use all of the functional units at the same time
nor to load them evenly. Another concept is to add or remove
FUs to or from the system based on the current amount and
the trend of the traffic. As a consequence of this concept, the
load distribution among units will not be uniform, this is the
reason for which – instead of load balancing – the terms load
distribution or biased load balancing are used.



INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 4

Fig. 4. Average- [red] and peak-load [green] of a single FU, compared to the
total number of voice calls [purple] and short messages (SMS) [blue], three
days measurement

Fig. 5. The effect of calls [blue columns] and messages [yellow columns] to
the load of FUs

A. Advantages of Load Distributors

Application of load distributors (LDs) is inevitable in most
distributed systems. With their help, incoming requests can be
routed to the internal functional units of the network element.
Furthermore, the inner architecture, complexity and operation
of the system can be hidden by load distributors, i.e. the
outside world can communicate with the inner functional units
only through these load distributors.

Load distributors can be as simple as a proxy, although in
many cases there are more functional requirements. A common
example is when the load distributors shall act so that the
load distribution among the inner functional units is uniform.
In such cases a distributor is called Load Balancer (LB). In
telecommunication network elements even the load balancing
can be a distributed task, i.e. the external communication
towards the inner functional units is routed through several
LDs (Fig. 7).

B. Priority-based Horizontal Scaling Algorithm

From now on, we always assume that the system contains
at least one LB, moreover later, in the simulations, standalone
load distributor (LD-BA) is used. In real network elements –
due to redundancy and resiliency reasons – there are minimum
2 LBs. The number of load balancers in fact depends on the

Fig. 6. CPU and memory usage of a call

internal network planning of the NE (in IP based systems) and
the required protocols as well.3

To resolve the detailed problems our proposed solution
is a load distribution algorithm called Horizontal Scaling
Algorithm (HSA). HSA is based on the concepts described in
the patent [14] submitted by Nokia. This algorithm is designed
to be implemented in LBs. The key concepts of HSA are as
follows:

Fig. 7. Planned network element configuration, where FUs are in sets

a) First of all, we organize FUs into groups or sets (Si, i =
1, . . . , n). Such groups can contain any number of FUs (at
least one, at most as much as totally available). On one
hand, we can minimize the chance – by using groups –
that a newly activated FU is overloaded immediately after
being switched on. On the other hand, we can manage
more CPU resource at once. Also this is a model for
a scaling solution used in real networks. This kind of
configuration can be seen in Fig. 7.

b) Secondly, we fix an upper load threshold (e.g. 65%) for
the average target load of the groups (also referred to
as sets). The aim of this is that we route requests to the

3Different protocols usually require separate load distributor units, e.g. SIP
and Diameter.



INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 5

active groups as long as the average load of them reaches
the given upper threshold. If the target load is exceeded,
a new group is placed into operation (Fig. 8.). Hereby we
force the system to activate a new set if and only if it is
needed based on the load caused by the current traffic.
Similarly, we fix a lower threshold (e.g. 10%) for the
average load of the FUs within each group. This is used
when the average load of the group, that was activated as
last, is under the threshold we can deactivate that group.

c) In addition, each group gets a preference number for
which the following are true:
• each FU has the same preference number within its

group,
• if a FU is switched off (or in idle mode), its preference

number is zero,
• if the load of a group reaches the upper threshold, its

preference number is maximum (M),
• if a new group is loaded, its preference number is

dynamically changed between 0 and M (depending on
traffic).

We use these to make resource handling and load distri-
bution between groups adaptive in case of traffic changes.

d) Finally, we randomize the call distribution. The process
can be seen in Fig. 9. The timeline shows the incoming
calls. The arrival of calls can be modeled with a Poisson
process [11] (although some results yield that in fact this
is not the most accurate model [12]). Such subdivision
of an interval [0, Imax] can be seen in the lower part of
Fig. 9. in which each subinterval belongs to a different
FU. The colour of the FUs indicates the group that they
belong to. The lengths of the subintervals are determined
in real time by the following formula:

LFUk
= PFUk

× FFUk
,

where LFUk
is the length of subinterval that belongs to the

FU with index k, PFUk
is the preference number and FFUk

is the free capacity of the of FUk. The bigger the pref-
erence number of a FU is, the longer the corresponding
subinterval is. This is only altered by including the free
capacity of the FU in the formula. The reason for that is
to decrease the chance of assigining load to FUs that are
able to handle less requests among units with the same
priority number. The call distribution is random, because
every call gets a random number from [0, Imax]. The call
is sent to that FU, which belongs to the subinterval that
contains the generated random number. If we recall the
urn model and the problems that appeared during the
Round-Robin it seems to be a logical choice to randomize
call distribution.

C. HSA in practice

As this research was motivated by telecommunication busi-
ness needs, the first approach on HSA was to present a
proof-of-concept simulation. Therefore we created a computer
program to simulate calls and units to process them. For
the computer simulation we created a simple c++ console

Fig. 8. Bucket chain model

Fig. 9. Illustration of the randomization concept for call distribution

application. The program used a simple representation of every
element as a custom class:
call: an integer for ID, and double precision floating point

numbers (doubles) for start time, end time, and call length
(in seconds)

functional unit: an integer for ID and a vector of calls, with
methods to measure load (the program setup defined the
maximal number of half-calls4 for a unit to represent load
as percentage) at given time and accept calls (or reject in
case of overload)

group of FUs: boolean flags to indicate status of activation,
graceful shutdown, an array of FU types and an integer
storing the last used FU index (for Round-Robin simu-
lation) with additional doubles to store relevant history
data (past load, time of activation), methods to process
arriving calls for both Round-Robin and HSA, to measure
load and free capacity

With these elements the simulation program used a file input to
simulate call data, then used that data to simulate the response
of the system, first using the Round-Robin algorithm then the
HSA. The Round-Robin was started with all groups activated,
however the HSA just used one group at the start. Both
methods stopped at every second to evaluate status. While the
Round-Robin algorithm just removed unused data and wrote
active call number and average load for FUs in each group,
the HSA evaluated the actual status and intervened if it was

4Half-call: In network elements, the signalling tasks related to a call are
done separately for the originating and terminating sides – i.e. the caller and
called parties – hence the signalling indicated here is related only to a half
call.



INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 6

required. The logic of the decision is described in [14]. The
reason for simulating calls instead of using measurement data
is:

• key use-cases in proving the usability of the method can
be created more easily,

• exact measurements containing call start and call end
times with precision to the second are not available and
even if such data existed, the simulation would need
to change the specifications of the simulated processing
units to create all needed scenarios.

However a goal is to create simulations with real life measure-
ment data to compare the simulated results to the measured
values. To do this we needed to create a model for calls that
can be defined through total call numbers during predefined
time periods.

It is a commonly accepted model for independently arriving
requests (like customers arriving into a shop, or calls started
through a network etc.) to use Poisson distribution for the
number of total requests [11]. The Poisson distribution has a
great advantage, namely that we know exactly the distribution
of the time between two events (arrivals or call starts) which is
the exponential distribution. Therefore if we have the number
of calls arriving in a period we can create a model that provides
us with a total call number for that period as a random variable
that follows Poisson distribution and its expected value is the
given number of calls. More generally we can say that the total
number of calls follows an inhomogeneous Poisson process
and we are using a rate function that is piecewise constant.
If we accept the Poisson process we only need to create a
function in the simulation that gives us random numbers with
exponential distribution with the given parameter. Generating
genuine random numbers is a popular topic among program-
mers and mathematicians as well. There are many algorithms
to create numbers that follow certain distributions, but in fact
most methods can not generate real randomness, that is usually
achieved by seeding the random number generating algorithms
with some random measurement data (with known distribution
of course). The random numbers our simulation used were
generated with functions provided by the <random> extension
library of c++. These functions also needed some seeding
which was provided as the sum of three numbers. The first was
obtained from the system clock, as it is a common practice for
such purpose. The second was the value of the time variable
of the simulation. Finally, a number was generated by another
built-in random number generator that did not require seeding.
This allowed us to create pseudo-random numbers with the
needed distributions, since the the chance of repeated seed
values was neglectable.

Pseudo-randomness means in our case that the probability
density functions (PDF) of the generated numbers do not
match exactly the PDFs of the desired distributions. For
example the uniform random number is not uniform, functions
like the one the simulation uses has a small skewness, meaning
that it favors one side of the interval. This could indeed
cause a problem, but the effect of it can be dramatically
reduced by using a small interval, where the skewness is
virtually undetectable. For other distributions we can generate

lots of numbers and then examine the difference between
theoretical and empirical moments. In our simulations all
generated distributions had error for the first two moments
under 0.05%.

Our modeling of calls now has a method to create call starts
at a defined rate (or following a rate function). To complete
it we also need a model to terminate these calls. The first
idea was to use exponential distribution as it was already
implemented. In fact, for the first simulations we used this
method. The reason why we accepted a less accurate model,
is that our simulation focuses on the load created by the call
setups, termination has much smaller effect and we did not
consider ongoing calls as relevant load inducing parts (Fig. 6.).

However, the exponential distribution generates short calls
with high probability. Our goal was to use a model where
even long calls can occur, in order to see if deactivated sets
can reach the graceful shutdown state. Hence we used a
simple model, where call length was defined as a log-normally
distributed random variable. We chose this specific model
although there is no intuitive explanation for the results in [12].
During the simulations, we used log-normal distribution with
expected value: 90 (sec) and standard deviation: 50 (sec). With
these decisions for modeling we could start the implementation
of the simulation. This paper in fact describes the second phase
of the simulation where phase one was the first implementation
of the logic and concentrated all efforts on creating a code that
can show the behaviour of the logic in basic use-cases. For this
first simulation we used the exponential call length model and
data tailored for specific situations and all parameters were
set to fulfill the needs of the scenario. The first simulations
provided results proving that further investigation is needed.
Even though the first results proved that the proposed new
algorithm is viable, it did not provide any comparison between
the old and the proposed new logic. Therefore the main goal
was to create a better model that can simulate calls and provide
this data set for the call distribution algorithm which should
be able to run both based on the Round-Robin method and
the HSA. This settles the basic requirements for the program,
these three features were needed.

IV. COMPARISON OF ROUND-ROBIN AND THE NEW HSA
ALGORITHMS

During the comparison we used data based on measure-
ments from real operators. Initial testing ran with arbitrary
data that we created. The real results came from two methods,
where the first was to take data that represents some sort of
periodicity and investigate the load results of that with 15
minutes sampling for the rate of the Poisson process. The
second approach was to get data from operator measurements
and create a new set of data with a better – one minute –
resolution.

We used a standard spline5 interpolation for the original
points and evaluated the function at each minute. This method
results in data that holds call numbers measured on greater
time intervals than its time resolution. To get data consistent

5Approximation for the joining curve with qubic polynomials on each
interval with continuous first and second derivatives between intervals.



INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 7

with the original, the result has to be divided by the ratio of
the lengths of the original and the finer intervals.

In the following sections three scenarios will be presented
for both LD algorithms. In the first two there were five sets,
each containing six functional units, in the last scenario only
three sets were used but still with six functional units in each.
The main difference between these sonfigurations was that in
the latter the functional unit capacity was increased and the
traffic for a whole day was simulated.

A. Results for Round Robin based decision

In the first scenario the simulation used data where the
incoming traffic was generated by an inhomogeneous Poisson
process, where the rate function was constant over 900 seconds
long periods. The results are shown in Fig. 10. The purpose
of this setting was to present the behaviour of the algorithms
when the load is changing significantly. It can be observed,
that the load generated by the calls was equally distributed
among groups of FUs (sets). This result shows how this
concept is working if there is just one loop of Round-Robin.
In real realizations there are concurring loops, causing the load
differences on the presented measurements. It is important to
note that the average load of the groups indicates that there is
constantly significant free capacity for each group.

Fig. 10. Simulation result of Round-Robin (basic use-cases)

The second scenario used a more continuous rate function.
The aim of this scenario was to present how the load is dis-
tributed among FU groups. These results confirm the original
assessment of the problem, that the groups of functional units
are basically loaded equally. Also, as it can be seen in Fig. 11.
the efficiency of this setup is not ideal.

Fig. 11. Simulation result of Round-Robin (simple traffic profile)

B. Results for HSA

In this case, we are able to see that the algorithm works as
planned (see Fig. 12.). In every situation, there are three states
a set can assume:

(i) inactive,
(ii) activated and working with load under the design level,

(iii) activated and working on the design level.
The second – less desired – state is always unique in the sense
that at any time only one group of FUs can assume that state,
the others are either inactive or working at the design limit.

Fig. 12. Simulation result of HSA (basic use-cases)

This provides us with sets operating mostly around the
design limit which was set to be 60%6. There are some
characteristic changes in load, which should be investigated.
This first result presents the quick responses the system gives
since the data resolution was low thus the changes were
sudden.

The first case we should take a closer look at is when
the load of groups passes the upper threshold. Take the first
occurrence for example when the load suddenly grows high,
pushing the first group of FUs over the threshold which
triggers the activation of a second set. After this we can see
that the load of both sets fluctuates with a higher amplitude.
Knowing the algorithm this is caused by the fact that the load
of the lower set was around the lower threshold which makes
the pair of sets to trade a part of their priority numbers back
and forth. In fact this is not a problem though, since the load
of the first set is in close range to the design level and no
increase in load goes beyond 70%.

Fig. 13. Simulation result of HSA (simple traffic profile)

In the next interval the load decreases causing the second
set to operate under the lower threshold but it remains active
and it even decreases the load fluctuations. This is again a
consequence of the circumstances, basically the same happens
as before with the difference that now the second set gets
changed into inactive and back to active repeatedly.

The other interesting case is when the load is growing or
decreasing very suddenly (Fig. 12.). In the first case multiple
sets are activated but the sudden increase creates a rapid
overload in some of those. But the activation of sets and

6This is not a setting though it can be achieved by setting the upper
threshold to 65%.



INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 8

increasing the preference number solves the problem. This
problem did not appear with the Round-Robin algorithm. The
second case where the load drops suddenly the logic turns all
but one to inactive without any problem.

In the case of smaller load, only fewer sets are activated
(Fig. 13.) which provides a better utilization of resources:

Set 1 (blue line) is loaded until it reaches the upper threshold;
Set 2 (red line) is activated only after Set 1 passes the threshold.

C. Differences between the results

As a last scenario, a simulation for an entire day was
created. For this simulation the capacity of the FUs was

0

20

40

60

80

100

0 10800 21600 32400 43200 54000 64800 75600 86400
0

5000

10000

15000

20000

25000

30000

35000

L
oa

d
[%

]

C
al

l
nu

m
be

r
[1

]

Time [s]

Upper design threshold
Lower design threshold

Load of set 1
Load of set 2
Load of set 3

Total call number

Fig. 14. Simulation result of Round-Robin (one day traffic)

increased and the number of sets was decreased to only three.
Another change was, that the lower threshold was decreased
to 10%. The total number of calls during the one day period

0

20

40

60

80

100

0 10800 21600 32400 43200 54000 64800 75600 86400
0

5000

10000

15000

20000

25000

30000

35000

L
oa

d
[%

]

C
al

l
nu

m
be

r
[1

]

Time [s]

Upper design threshold
Lower design threshold

Load of set 1
Load of set 2
Load of set 3

Total call number

Fig. 15. Simulation result of HSA (one day traffic)

was almost 19 million, and the traffic had cc. 1.5 million
BHCA (Busy Hour Call Attempts). The rate function was
generated with the spline method from a measurement on a
real network element. Also the rate function was rescaled so
that the generated load corresponds to the design load of the
configuration.

The results with the Round-Robin algorithm are presented
in Fig. 14. The result is similar to the previous cases, i.e.

0

20

40

60

80

100

32564 33479 34394 35309
0

5000

10000

15000

20000

25000

30000

35000

L
oa

d
[%

]

C
al

l
nu

m
be

r
[1

]

Time [s]

Upper design threshold
Lower design threshold

Load of set 1
Load of set 2
Load of set 3

Total call number

Fig. 16. Section of the 10th hour of Fig. 15

0

1

2

3

0 10800 21600 32400 43200 54000 64800 75600 86400

N
um

be
r

of
no

n-
G

R
SD

se
ts

[1
]

Time [s]

Fig. 17. Number of non-GRSD sets through HSA simulation

the load is distributed evenly among the sets. The results
from the HSA simulation can be seen in Fig. 15. Again, the
result shows that only the set activated most lately can remain
permanently under the design load level (which is less than
the upper threshold).

An interesting result is that there is an oscillation in the
load of sets in Fig. 15. which can be seen better in a section,
presented in Fig. 16. As it can be seen the period of these
oscillations coincide with the five minutes – i.e. the length
of the warming period, while a newly activated set can not
be deactivated. The root cause of this phenomenon is that
the thresholds and all decisions in the algorithm are strictly
enforced. There is no tolerance for passing a threshold, if such
event occurs the corresponding intervention is executed. The
solution for this problem could be the introduction of soft-
and strict thresholds.

Another interesting result is the number of sets that shall
be in a powered on state. These are the sets which are not
in gracefully shut down (GRSD) state. The number of such
sets during the daily simulation is presented in Fig. 17. This
result shows that even with the excessive oscillation, the sets
are not entering and exiting GRSD state back and forth. In
[15] possible decrease of energy consumption – by using
HSA instead of Round-Robin – was approximated for different



INFOKOM CONFERENCE, TAPOLCA, HUNGARY, 12-14. OCTOBER 2016. 9

scenarios. It is also visible that – by assuming that energy
consumption is related to the set status – the efficiency of the
HSA is better compared to Round-Robin, where the number
of non GRSD sets is always maximal.

The results presented above show that the new algorithm
has a real potential for allowing certain groups of FUs to
gracefully shut down. If not needed, they will not even be
started. The sets which are activated and later deactivated
will not automatically reach the graceful state since they can
contain ongoing calls and those can not be terminated. In the
simulations calls of extreme length did not occur therefore in
most cases inactive sets reached the graceful state.

V. CONCLUSION

In this paper a short description of load distribution mech-
anisms in telecommunication network elements was given.
The model of the currently used load distribution and load
balancing methods was introduced, with emphasis on their
weak points. As a proposed solution a new load distribution al-
gorithm was introduced, which supports the horizontal scaling
in the distributed system. The algorithm – Horizontal Scaling
Algorithm (HSA) – was described in detail and a simulation
was proposed.

The presented results of the simulations confirmed the
expectations towards the HSA, as it distributed the load among
the units more efficiently. Also some issues were identified,
which need further investigation. However the overall con-
clusion is that the new algorithm offers a better distribution
method in Cloud based environment compared to the solutions
like Round-Robin.

A. Development history

The basic idea of Biased Load Balancing was presented
at HTE Infokom 2014 (Kecskemét, Hungary, http://www.
hte.hu/web/infokom2014) [13]. A patent was also filed by
Nokia in November 2014 [14]. The first proof-of-concept
simulation was done in June 2015. The results of the sim-
ulations performed in 2015. were presented at a workshop
[15] in December 2015. Since then the algorithm was tested in
multiple scenarios and the comparison simulation was created.

B. Improvement ideas for the logic

There are a few points where the HSA could be improved.
The first one is changing active statuses and preference
numbers back and forth for a longer time period. This is a
performance issue for the possible application since no action
needed is more efficient than any kind of action being exe-
cuted. We believe that improvements are possible by changing
the thresholds and the associated logic. The effect of this issue
however is lower than the importance of the next ones.

The second issue is that extremely long calls could prevent
groups reaching the GRSD state. The ability to transfer on-
going calls between FUs could improve efficiency by helping
more units to reach the graceful state.

The third point is the overload caused by sudden load
growth. The idea for this one is rather straightforward, there

should be an additional branch in the algorithm. This should
decide if the current rate of load growth is bigger than the
maximal tolerable increase. Such data can be determined from
the load history (stored for a defined window of time) and
performance measurement results. If this would be evaluated
as true, a set should be activated even if the current load would
not require it.

ACKNOWLEDGEMENTS

The authors would like to thank István Bakos, who provided
useful comments and some materials for this paper. The
authors would also like to express their gratitude to Gyula
Bódog† for his support in the patent which gave the foundation
of this paper.

REFERENCES

[1] Sagar Dhakal, Majeed M. Hayat, Jorge E. Pezoa, Cundong Yang, David
A. Bader: ”Dynamic Load Balancing in Distributed Systems in the
Presence of Delays: A Regeneration-Theory Approach”, IEEE TRANS-
ACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO.
4, Apr. 2007.

[2] Parveen Jain, Daya Gupta: ”An Algorithm for Dynamic Load Balancing
in Distributed Systems with Multiple Supporting Nodes by Exploiting the
Interrupt Service”, International Journal of Recent Trends in Engineering,
Vol 1, No. 1, May 2009.

[3] Nico Janssens, Xueli An, Koen Daenen, Claudio Forlivesi: ”Dynamic
Scaling of Call-Stateful SIP Services in the Cloud”, Lecture Notes in
Computer Science Volume 7289, pp 175-189, 2012.

[4] Gergely Csatári, Tı́mea László: ”NSN Mobile Core Network Elements
in Cloud, A proof of concept demo”, Proc. Of IEEE International
Conference on Communications, Budapest, Hungary, 9-13 Jun. 2013.

[5] ETSI GS NFV 002, Network Functions Virtualisation (NFV), Architec-
tural Framework, V1.1.1, Oct. 2013. http://www.etsi.org/deliver/etsi gs/
NFV/001 099/002/01.01.01 60/gs NFV002v010101p.pdf

[6] Nokia Networks: ”Open Telecom Application Server Cloud 15.8, Operat-
ing Documentation, version 2”, Open Telecom Application Server Product
Description, DN09161694, Issue 4-0-0, c© Nokia 2016.

[7] Nokia Networks: ”VoLTE and VoWiFi System Documentation, 16.5,
Version 1”, Telco Cloud VNF Operations and Maintenance on VMware,
System Description, DN09157808, Issue 6-0, c© Nokia 2016.

[8] 3GPP, TS 23.002, 3rd Generation Partnership Project, Technical Specifi-
cation Group Services and System Aspects, Network architecture, Release
12, V12.5.0, Jun. 2014.

[9] 3GPP, TS 23.218, 3rd Generation Partnership Project, Technical Specifi-
cation Group Core Network and Terminals, IP Multimedia (IM) session
handling, IM call model, Stage 2, Release 12, V12.3.0, Sept. 2013.

[10] 3GPP, TS 23.228, 3rd Generation Partnership Project, Technical Speci-
fication Group Services and System Aspects, IP Multimedia Subsystem
(IMS), Stage 2, Release 12, V12.5.0, Jun. 2014.

[11] Athanasios Papoulis, S. Unnikrishna Pillai: ”Probability, Random Vari-
ables and Stochastic Processes”, 4th edition, McGraw Hill, 2002.

[12] Pedro O.S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio
A.F. Loureiro: ”Surprising Patterns for the Call Duration Distribution of
Mobile Phone Users”, Machine Learning and Knowledge Discovery in
Databases, Lecture Notes in Computer Science Volume 6323, pp 354-369,
2010.

[13] István Bakos, Gyula Bódog, Attila Hilt, László Jánosi, Gábor Járó:
”Resource and call management optimization of TAS/MSS in Cloud
environment (in Hungarian), Infokom’2014 Conference, Hungary, Oct.
2014

[14] István Bakos, Gyula Bódog, Attila Hilt, László Jánosi, Gábor Járó:
”Optimized resource management in core network element on Cloud
based environment”, Patent PCT/EP2014/075539, Nov. 2014

[15] Loránd Nagy, Attila Hilt, Lászlo Jánosi, Gábor Járó, and István Bakos:
”Simulation of Load Distribution in Telco-Cloud Using Horizontal Scal-
ing Algorithm”, Presentation AUF Doctoral Seminar, BUTE (Budapest
University of Technology and Economics) Budapest, Hungary, Dec. 2015.

http://www.hte.hu/web/infokom2014
http://www.hte.hu/web/infokom2014
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf

	Introduction
	Problems and Real-life Examples
	The Core Network
	Load from a real network
	Problems with Round-Robin

	New algorithm for Biased Load Balancing with Graceful Shutdown
	Advantages of Load Distributors
	Priority-based Horizontal Scaling Algorithm
	HSA in practice

	Comparison of Round-Robin and the new HSA algorithms
	Results for Round Robin based decision
	Results for HSA
	Differences between the results

	Conclusion
	Development history
	Improvement ideas for the logic

	References

