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Abstract— Our goal is to show that the describing function 

concept is useful for oscillator design. Describing functions have 

been extended for the case of two-ports. Some properties of two-

port describing functions have been presented. Two-port 

admittance describing functions of a simplified transistor model 

have been determined. As an application, a Colpitts oscillator has 

been designed for the MHz range. There is a good coincidence 

between circuit analysis and measurements, and these results 

deviate from describing function method. This indicates a 

modelling problem that will be solved in our next publication. 

 

Index Terms— Oscillator, nonlinearity, describing function 

concept, comparison, AWR, measurement 

 

I. INTRODUCTION: TWO-PORT DESCRIBING FUNCTIONS, 

PROPERTIES 

escribing function concept dates back as long as to 1968 

when the famous monograph by Gelb and van der Velde 

appeared [1]. A describing function is an approximate 

characterization of a nonlinear operator when sinusoidal answer 

for sinusoidal excitation as a function of signal intensity is 

considered. The cited reference generalizes the concept for 

multiple inputs. In our early work, so called two-port 

admittance and scattering describing functions have been 

introduced [2]. Input and output currents are described as 

functions of the magnitude of input and output voltages and the 

phase between them. Another generalization is the describing 

function matrix, that is, generalization of the describing 

function concept for multiple harmonics [3]. When both 

multiple ports and multiple harmonics are considered, the 

characterization is called as X-parameters [4] assuming that the 

nonlinearity is concentrated on the first port only. 

 In this paper, application of the two-port describing functions 

for the case of oscillator design has been studied. Two-port 

admittance describing functions for a simplified transistor 

model have been derived in Section II. Then these results have  

 

been used in the design of a low frequency Colpitts oscillator in 

Section III.  

 

 
G. Mészáros is with the Budapest University of Technology and Economics, 

Department of Broadband Infocommunications and Electromagnetic Theory, 
H1111 Budapest, Egry József utca 18., Hungary   

(e-mail:Meszaros@bme.hvt.hu). 

J. Ladvánszky is with the Ericsson Telecom Hungary Ltd., H1117 Budapest, 
Irinyi J. u. 4-20, Hungary (e-mail: Janos.Ladvanszky@Ericsson.com). 

Now we define two-port describing functions and summarize 

their properties. 

A nonlinear time-invariant, dynamic two-port [5] can be 

characterized approximately by sinusoidal input two-port 

describing functions in terms of the admissible signal pairs ξi, 

ηi (i=1, 2) for the ith port. Admissible signal pairs [5] can be 

voltage and current, incident and reflected wave parameters, or 

any linear combinations of the voltage and current time 

functions. Later on, we use admittance describing functions 

where admissible signal pair is current and voltage. In our paper 

[2], we show a microwave measurement example where 

admissible signal pairs are reflected and incident wave 

parameters. 

We assume that time dependence of the admissible signal 

pairs is sinusoidal. This is a consequence of some tuned circuits 

included in the embedding circuit around the two-port. From 

this point, we denote by ξ and η, the complex effective values 

of the port quantities. 

Then two-port describing functions are defined as follows: 

 

𝜉1 = 𝐷𝐹1(|𝜂1|, |𝜂2|, 𝜑)𝜂1      (1) 

 

𝜉2 = 𝐷𝐹2(|𝜂1|, |𝜂2|, 𝜑)𝜂1      (2) 

 

Note that two-port describing functions can be defined in many 

different ways. This definition expresses the fact that the effect 

of our two-port to the environment is a reflection (DF1) and a 

transmission (DF2). 

 In the Eqs. (1), (2), φ is the phase difference between η2 and 

η1. 

 As shown in Eqs. (1) and (2), we consider „input” and 

„transfer” as nonlinear functions of |𝜂1|, |𝜂2|, 𝜑. 
 Next we consider the relation between describing functions 

and circuit parameters if the two-port is linear. 

 A linear two-port can be characterized as follows: 

 

𝜉1 = 𝐶𝑃11𝜂1 + 𝐶𝑃12𝜂2       (3) 

𝜉2 = 𝐶𝑃21𝜂1 + 𝐶𝑃22𝜂2       (4) 

 

where 𝐶𝑃𝑖𝑗  is the circuit parameter with excitation and answer 

at port j and I, respectively. 
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 The comparison between Eqs. (1,2) and (3,4) yields 

 

𝐷𝐹1 = 𝐶𝑃11 + 𝐶𝑃12𝜂2/𝜂1      (5) 

 

𝐷𝐹2 = 𝐶𝑃21 + 𝐶𝑃22𝜂2/𝜂1      (6) 

 

 Eq. (5) says that if the frequency is fixed, 𝐷𝐹1 is a circle with 

centre and radius 𝐶𝑃11 and 𝐶𝑃12, respectively, if the amplitudes 

of 𝜂2 and 𝜂1 are identical and the phase between them is varied. 

Situation is very similar for 𝐷𝐹2. 
 Reciprocity implies 𝐶𝑃12 = 𝐶𝑃21 so in case of the two 

circles, the centre of 𝐷𝐹2 is related to the radius of 𝐷𝐹1. 

 Symmetry implies reciprocity plus 𝐶𝑃11 = 𝐶𝑃22 so the centre 

of 𝐷𝐹1 is related to the radius of 𝐷𝐹2. 

 Losslessness is described differently for different choice of 

admissible signal pairs, so losslessness is seen differently in 

terms of different describing functions. 

 In the following, we use admittance describing functions for 

low frequency design, and scattering describing functions for 

microwave design. For admittance describing functions, the 

admissible signal pair is current, voltage and for scattering 

describing functions, reflected and incident wave variables. 

In today’s design, mostly nonlinear two-ports (transistors) 

are used as an active element. Therefore, we define a possible 

generalization of the describing function concept for the case of 

low frequency two-ports [2]: 

 

𝐼1 = 𝑌𝐼(|𝑉1|, |𝑉2|, 𝜑𝑉)𝑉1      (7) 

 

𝐼2 = 𝑌𝑇(|𝑉1|, |𝑉2|, 𝜑𝑉)𝑉1      (8) 

 

where I1, V1, I2 and V2 are the complex amplitudes of the first 

harmonic currents and voltages at the first and second ports 

with the reference directions given in Fig. 1, 𝜑𝑉 is the phase 

between the two voltage excitations. The indices I and T stand 

for input and transfer, respectively. 

 
Figure 1. Reference directions 

 

That means the nonlinear active two-port is characterized by 

two describing functions, one for the input and the other for the 

transfer from the first port to the second. As one phase can be 

arbitrarily chosen, a possibility is to choose V1 as real and then 

𝜑𝑉 is the phase of the complex voltage amplitude at the second 

port. 

 

With these preliminary information, we determine the two-port 

describing functions of a nonlinear transistor model in Section 

III, and in Section IV we use them in the design of an oscillator. 

 

Advantage of the describing function approach is that we can 

approximate well the nonlinear behavior even if it is strong. We 

expect that using this approach will result in better coincidence 

between our measured and analyzed parameters than before. 

 

We use the following index conventions: 

- Lowercase letter, uppercase index: General time 

function 

- Uppercase letter, uppercase index: DC component 

- Lowercase letter, lowercase index: Alternating 

component 

- Uppercase letter, lowercase index: Complex effective 

value of the first harmonic 

 

 Next we derive the relations between admittance and 

scattering describing functions. Let us start with the definitions. 

 

𝑎 =
𝑣+𝑍0𝑖

2√𝑍0
          (9) 

 

𝑏 =
𝑣−𝑍0𝑖

2√𝑍0
         (10) 

 

𝑣 = √𝑍0(a+b)       (11) 

 

𝑖 =
𝑎−𝑏

√𝑍0
         (12) 

 

Substitution of Eqs. (11,12) into (7,8) and rearranging, results 

in the transformation from admittance to scattering description. 

 

𝑆𝑅 =
1− 𝑌𝐼𝑍0

1+𝑌𝐼𝑍0
          (13) 

 

𝑆𝑇 =
1− 𝑌𝑇𝑍0

1+𝑌𝑇𝑍0
          (14) 

 

And the inverse transformation is: 

 

𝑌𝐼𝑍0 = 
1−𝑆𝑅

1+𝑆𝑅
          (15) 

 

𝑌𝑇𝑍0 = 
1−𝑆𝑇

1+𝑆𝑇
          (16) 

 

Next we derive transformation between 𝑄𝑉 and 𝑄𝑊: 
 

𝑄𝑉 =
𝑉2

𝑉1
           (17) 

 

𝑄𝑊 =
𝐴2

𝐴1
  [2]        (18) 

 

Substituting Eq. (11) into (17): 

 



  

𝑄𝑉 =
𝐴2+𝐵2

𝐴1+𝐵1
=

𝐴2
𝐴1

+
𝐵2
𝐴1

1+
𝐵1
𝐴1

=
𝑄𝑤+𝑆𝑇

1+𝑆𝑅
       (19) 

  

II. TWO-PORT ADMITTANCE DESCRIBING FUNCTIONS OF A 

SIMPLIFIED TRANSISTOR MODEL 

As the forthcoming calculation may be lengthy for a real 

transistor model, we have to propose the simplest possible 

model. First we intend to try a low frequency realization of the 

oscillator thus transistor parasitic elements are neglected all. 

Further simplification is possible if we use such circuit element 

values in our design that suppress effectively the influence of a 

real transistor input. 

 

In the planned Colpitts oscillator, the transistor operates with 

grounded collector, thus the input and output are the basis and 

the emitter as shown in the following Figure. 

 

 
Figure 2. Transistor model (AC) 

 

We assume a diode and a nonlinear voltage controlled current 

source with the following characteristic: 

 

 
Figure 3. Nonlinear transconductance 
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It is easy to show that a circuit consisting 2 two-ports in parallel 

has the following two-port admittance describing functions: 

 

),,(),,(),,( 21  ebIebIebI VVYVVYVVY    

 (27) 

 

),,(),,(),,( 21  ebTebTebT VVYVVYVVY    

 (28) 

 

Let the first two-port comprise the diodes only and the second 

comprise the nonlinear controlled source. Circuit equations of 

the first 2-port are 

 

1 1= / * ( / )b E be TBEI I B I V nV      (29) 

 

1 1= - / * ( / )e E be TBEI I B I V nV      (30) 

 

where I1 is the modified Bessel function of the first order, IE and 

B are the DC emitter current and the DC current gain, 

respectively. Therefore the describing functions of the first two-

port are: 

 

b

b
I

V

I
Y 1

1          (31) 

 

b

e

T
V

I
Y 1

1          (32) 

 

Now we calculate the describing functions of the second two-

port. It is obvious that YI2=0. Base-emitter voltage is 

 

)cos( 0tVv beBE        (33) 

 

where the amplitude is chosen as real. We have to calculate the 

amplitude of the first harmonic current at the second port. As 

the nonlinearity is resistive, the output current is in phase with 

the input voltage. For cosine excitation, there will be only 

cosine component of the first harmonic. There are three cases: 

 

a. Tbe VV   then 

02 eI      (34) 

 

b. SbeT VVV   then 
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c. beS VV   then 
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






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V

V
a cos2      (38) 

 







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
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T

V

V
a cos3      (39) 

 

Now we evaluate the b. and c. cases. 

b.  
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Now substitution of (31,32) and (42,46) into (27,28) results in 

the two-port admittance describing functions of the transistor 

model: 

 

1 1( , , ) = ( , , ) = ( / )E
I b e I b e be TBE

b

I
Y V V Y V V I V nV

BV
 

  (47) 

 

 

 
Figure 4. Emitter current amplitude as a function of the base voltage 

amplitude. Negative current is a consequence of the reference 

directions 
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where we choose Vbe as real. We show part of the emitter 

current amplitude coming from the nonlinear transconductance 

in the next Figure, with parameters IS=9.2mA, VT=0.57V and 

VS=0.99V. 

 

Plot in Fig. 4 has been generated by the following Matlab 

program (transfer_descr_fn1.m): 
 

IS=9.2e-3; 

VT=.570; 

VS=.990; 

Vmin=0; 

Vmax=5; 

N=1000; 

Vstep=(Vmax-Vmin)/N; 

Ie(1:N)=0; 

Vbe(1:N)=Vmin+(1:N).*Vstep; 

 

for i=(1:N) 

    if Vbe(i)<VT 

        Ie(i)=0; 

    end 

    if VT<=Vbe(i) & Vbe(i)<VS 

        Ie(i)=-1/2/pi*IS/(VS-

VT)*((Vbe(i)*acos(VT/Vbe(i))-VT*sqrt(1-

(VT/Vbe(i))^2))); 

    end 

    if VS<=Vbe(i) 

        Ie(i)=-1/2/pi*(IS/(VS-

VT)*(Vbe(i)*(acos(VT/Vbe(i))-

acos(VS/Vbe(i)))-VT*sqrt(1-

(VT/Vbe(i))^2)-(VS-2*VT)*sqrt(1-

(VS/Vbe(i))^2))+2*IS*sqrt(1-

(VS/Vbe(i))^2)); 

    end 

end 

plot(Vbe,Ie); 

title('Part of emitter current 

amplitude'); 

xlabel('Vbe in Volts'); 

ylabel('Ie in Amps'); 

grid on; 

III. DESIGN OF A LOW FREQUENCY COLPITTS OSCILLATOR 

USING TWO-PORT DESCRIBING FUNCTIONS 

We solve the design task by creating a small Matlab program 

that simulates the oscillator in frequency domain using the 

describing functions formulated above. 

 

Circuit diagram of a Colpitts oscillator is shown in the next 

Figure. 



  

 
Figure 5. Circuit diagram of a Colpitts oscillator. DC bias elements 

are not shown 

 

The Matlab file is the following (osc_sim4.m): 
IS=9.2e-3; % [A] 
VT=0.570; % [V] 
VS=0.990; % [V] 

 
C1=180e-12;  % [F] 
C2=440e-12; % [F] 

% L2=100e-6; 

R2=470; 
C0=47e-12; % [F] 
L0=22e-6; % [H] 
om0=1/sqrt(L0*1/(1/C0+1/C1+1/C2)); 
R0=13.721; % [Ohm] 

 

nVTBE=0.02847; 

ISBE=4.735e-13; 

nVTBC=0.03399; 

ISBC=1.67e-11; 

IE=0.0053; 

B=260; 

VP=3;     %VP=20.5-2200*IE; 

VB=nVTBE*log(IE/B/ISBE+1); 

 
N=100; 
Vb(1:N+1)=0; 
Ve(1:N+1)=0; 
Vbe(1:N+1)=0; 
Ib(1:N)=0; 
Ie(1:N)=0; 

Y(1:2,1:2)=0; 

Z(1:2,1:2)=0; 

 
Y(1,1)=1/(1j*om0*L0+R0+1/(1j*om0*C0))+1j*

om0*C1; 
Y(2,1)=-1j*om0*C1; 
Y(1,2)=Y(2,1); 
Y(2,2)=1j*om0*C2+1/R2+1j*om0*C1; 

 
Z=inv(Y); 

 
Vb(1)=0.3; 
Ve(1)=0.1; 

 
for i=(1:N) 
Vbe(i)=abs(Vb(i)-Ve(i)); 
    if Vbe(i)<VT 

        Ie(i)=0; 
    end 
    if VT<=Vbe(i) && Vbe(i)<VS 
        Ie(i)=-1/2/pi*IS/(VS-

VT)*((Vbe(i)*acos(VT/Vbe(i))-VT*sqrt(1-

(VT/Vbe(i))^2))); 
    end 
    if VS<=Vbe(i) 
        Ie(i)=-1/2/pi*(IS/(VS-

VT)*(Vbe(i)*(acos(VT/Vbe(i))-

acos(VS/Vbe(i)))-VT*sqrt(1-

(VT/Vbe(i))^2)-(VS-2*VT)*sqrt(1-

(VS/Vbe(i))^2))+2*IS*sqrt(1-

(VS/Vbe(i))^2)); 
    end 

 
    Ib(i)=IE/B*besseli(1,(Vb(i)-

Ve(i))/nVTBE); 

    Ie(i)=Ie(i)-IE/B*besseli(1,(Vb(i)-

Ve(i))/nVTBE); 

 
Ib(i)=-Ib(i); 
Ie(i)=-Ie(i); 

 
    Vb(i+1)=Z(1,1)*Ib(i)+Z(1,2)*Ie(i); 
    Ve(i+1)=Z(2,1)*Ib(i)+Z(2,2)*Ie(i); 

     
end; 

 
plot((0:N),abs(Vb),'r.',(0:N),abs(Ve),'b+

','LineWidth',1); 
title('Oscillator voltage amplitudes'); 
ylabel('Vb(red), Ve(blue) in Volts'); 
xlabel('Iteration steps'); 
grid on; 

 

The only problem is that it is very difficult to find proper initial 

values. Therefore we decided to implement the piecewise linear 

controlled source in AWR. Circuit details and results are shown 

in the next Figures. 

 
Figure 6. Circuit realization of the piecewise linear voltage 

controlled current source with characteristics shown in Fig. 3. 

Breakpoints are realized by diodes with high saturation current and 



  

very low ideality factor. C2 prevents DC voltage at the output (first 

harmonic describing function), L1 leads DC current to the ground. 

 
Figure 7. The oscillator circuit in AWR 

 
Figure 8. Oscillator voltages for the describing function method. 

Red: Vb, blue: Ve 

 
Figure 9. The output spectrum 

 

 

Now we analyze the circuit in AWR. The circuit diagram is: 

 
Figure 10. Circuit diagram 

 

Figure 11. Transistor model 

 

Figure 12. Oscillator voltages. Red: Vb, blue: Ve 



  

 

Figure 13. Spectrum of the output voltage. Please compare this 

Figure to Fig. 8 

 

Table I. Comparison of data 

 Describing 

function 

AWR Measurement 

Vb (Vpp) 0.896 

(Fig. 8) 

0.401 

(Fig. 12) 

0.3594 

(Fig. 15) 

Ve(Vpp) 0.500 

(Fig. 8) 

0.175 

(Fig. 12) 

0.175 

(Fig. 16) 

 

 
Figure 14. Photo of the oscillator realization 

 
Figure 15. Photo of the base voltage measurement 

 
Figure 16. Photo of the emitter voltage measurement 

IV. CONCLUSION 

In this paper we studied oscillator design based on describing 

functions. A question may be why this procedure is better than 

a fully computerized one where oscillator parameters 

(frequency, power) are manually adjusted. In our opinion, the 

only right answer is that the method presented here gives a deep 

insight into circuit operation. 

 First we introduced two-port describing functions and their 

properties. Then the transformation between them has been 

derived. We used admittance describing functions for low 

frequency design. 

There is a good coincidence between circuit analysis and 

measurements, and these results deviate from describing 

function method, see please Table I. This indicates a modelling 

problem that will be solved in our next publication. 

Our plan is a series comprising three papers, this is the first 

one with introduction to the problem. In the second one we 

solve the accuracy problem. In the third one we present a 

microwave realization. 
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