

5G USE CASES

Broadband experience everywhere anytime

Mass market personalized media and gaming

Meters, sensors, "Massive MTC" Remote controlled machines

Smart Transport Infrastructure and vehicles

Human / machines interaction

And much more...

3GPP "FEW" 5G USE CASES (TS 22.891)

Ultra-reliable communications	Multiple RAT connectivity and RAT selection	High Accuracy Enhanced Positioning (ePositioning)
Network Slicing	Higher User Mobility	Broadcasting Support
Lifeline communications / natural disaster	Connectivity Everywhere	Ad-Hoc Broadcasting
Migration of Services from earlier generations	Temporary Service for Other Operators Users in	Green Radio
	Emergency Case	
Mobile broadband for indoor scenario	Improvement of network capabilities for vehicular case	Massive IoT's M2M and device identification
Mobile broadband for hotspots scenario	Connected vehicles	Light weight device communication
On-demand Networking	Mobility on demand	Fronthaul/Backhaul Network Sharing
Flexible application traffic routing	Context Awareness to support network elasticity	Device Theft Preventions / Stolen Device Recovery
Flexibility and scalability	In-network and device caching	Diversified Connectivity
MBB services with seamless wide-area coverage	Routing path optimization when server changes	User Multi-Connectivity across operators
Virtual presence	ICN Based Content Retrieval	Moving ambulance and bio-connectivity
Connectivity for drones	Wireless Briefcase	MBB Direct Air to Ground Communications (DA2GC)
Industrial Control	Devices with variable data	Wearable Device Charging
Tactile Internet	Domestic Home Monitoring	Telemedicine Support
Localized real-time control	Low mobility devices	Network Slicing – Roaming
Coexistence with legacy systems	Materials and inventory management and location tracking	eMBMS using a Dedicated Radio Carrier
Extreme real-time communications and the tactile internet	Cloud Robotics	Wireless Local Loop
Remote Control	Industrial Factory Automation	5G Connectivity Using Satellites
Light weight device configuration	Industrial Process Automation	Delivery Assurance for High Latency Tolerant Services
Wide area sensor monitoring and event driven alarms	SMARTER Service Continuity	Priority, QoS and Policy Control
IoT Device Initialization	Provision of essential services for very low-ARPU areas	Vehicular Internet & Infotainment
Subscription security credentials update	Network capability exposure	Local UAV Collaboration
Access from less trusted networks	Low-delay speech and video coding	Best Connection per Traffic Type
Bio-connectivity	NW enhancements to support scalability and automation	Multi Access network integration
Wearable Device Communication	Wireless Self-Backhauling	

3GPP REQUIREMENTS (38.913)

Performance Measure	Requirement	
Peak data rate	DL: [20 Gbps] UL: [10 Gbps]	
Peak spectral efficiency	DL: [30 bps/Hz] UL: [15 bps/Hz]	
Bandwidth	TBD	
Control plane latency	[10 ms]	
UP latency URLLC, one-way	[0,5 ms]	
UP latency eMBB, one way	[4ms]	
Latency for infrequent small packets	10s/UL at MCL ~164db	
Mobility interruption time (intra-syst.)	[0 ms]	
Mobility	Up to 500 km/h	
Inter-system mobility	TBD	
Reliability	[1-10 ⁻⁵] in [1ms] & TP:[300Mbps]	
Coverage	MCL [164dB] for [160bps]	

Performance Measure	Requirement	
Ue Battery life	>10y 200B/day UL, (15y wished)	
UE energy efficiency	Qualitative	
Cell/Transmission Point/TRP spectral efficiency	TBD	
Area traffic capacity	Report value, no requirement	
TRP spectral efficiency	[3x IMT-A requirement]	
User experienced data rate	5% usr.sp.eff. X BW	
User sp. eff. at 5% percentile	[3x cell edge IMT-A requirement]	
Connection density	[1,000,000 devices/Km2]	
NW energy efficiency	Qualitative & Quantitative KPI	

NR - KEY TECHNOLOGY FEATURES

Flexible and scalable Layer 1 design

- OFDM with flexible numerology Multiplexing of wideband and narrowband devices on the same radio resource
- Filtering and shaping by digital processing Support for various spectrum allocation schemes

Access/backhaul

integration

Ultra-lean design

Minimize network transmissions not directly related to UD delivery

Separate system-access functionality

System control

Integrated D2D connectivity

5G TECHNOLOGIES AND SPECTRUM

LTE AS PART OF 5G OVERALL RADIO SOLUTION

OPERATOR WAYPOINTS ON THE ROAD TO 5G

PERFORMANCE EVOLUTION

Massive MIMO // Cloud RAN // Gigabit speeds

NETWORK DENSIFICATION

Add macro // Add micro // Minimize footprint

SPECTRUM OPTIMIZATION

Analyze // Optimize // Add unlicensed bands

THE RADIO SITE

What makes it 5G ready?

ON THE ROAD TO 5G

MASSIVE MIMO

Single-user MIMO

- > One user per time-frequency resource
- User specific BF provide array gain
- > SINR increases as #antenna ports increases
- › Benefits regardless of load

Multi-user MIMO

- > Multiple users on the same resource
- User specific BF to spatially separate users
- > Requires sufficiently high load to show benefits
- Dynamic switching to SU-MIMO crucial

Massive MIMO highly interesting even without MU-MIMO (Channel knowledge ("CSI") is the key!)

HOW TO DO MASSIVE MIMO CLASSICAL VS. FLEXIBLE ACTIVE ANTENNAS

Classical Antenna

Flexible Active Antenna

1 x TXRU (small PA & RX) / sub-element

- Adaptable & flexible weighting
 - Also vertically
 - Possible inside the antenna as well

Increased opportunities to adapt the weights!

3GPP 3D-CHANNEL MODELING

PERFORMANCE

Propagation paths from BS

Above rooftop

UE (behind building) Around buildings

"Around building" single diffraction "Around building" Direct path (2D) + double diffraction Specular reflection roof-edge diffraction Roof-edge diffracted specular reflection Roof-edge diffracted KED; inside roof because of To (behind building) "sidestep" method specular reflection

Proper channel modeling is crucial when evaluating Massive MIMO like concepts

RAN VIRTUALIZATION

STOCKHOLM TRIALS

- > Indoor testing in Ericsson Studio
 - Same setup as MWC16
- Outdoor testing with multiple base stations
- > 15 GHz carrier frequency
- > 800 MHz BW

ERICSSON 5G RADIO TESTBED

3

Overview

2014/2015

- World wide trials with selected 5G components
- World's first 5+ Gbps
- LTE-NR interworking

"Biggest"
Contribution to
5G evelopment"

2017+

- > Integration with Cloud RAN and Core Network
- Collaborations with UE partners
- Updated 28 GHz radio with phased array antenna module
- > Ready for larger trials

2015/2016

- Full NR concept with advanced beamforming capabilities
- Advanced beamforming radio with 128 antenna elements, 800 MHz IBW
- > Up to 15 Gbps per UE
- MU-MIMO with up to 30 Gbps
- > Radios at 4, 15 & 28 GHz

ricsson Hungary 2016 | 2016-10-13 | Page 15

module. AAA battery for size reference.

5G INDUSTRY HORIZON

DEPLOYING 5G

ERICSSON