Detecting Laughter and Filler Events by Time Series Smoothing with Genetic Algorithms

Gábor Gosztolya MTA-SZTE Research Group on Artificial Intelligence and University of Szeged, Szeged, Hungary

Social Signal Detection

Social Signals

CIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁNYEGYETEM

'ERSITAS

- Laughter and filler events (sounds like ``eh", ``er",
 ``um" etc.)
- They regulate the flow of interaction in discussions
- Their detection has became popular recently
- Model training and evaluation
 - Models are trained and evaluated on the frame-level
 - The standard evaluation metric is Area-Under-Curve (AUC) for the output posterior scores

 It is worth using the contextual information (i.e. the neighbouring frames) during training and evaluation

Model Training and Evaluation

Frame-level approach

- 10ms frame shift
- Classifier: GMM, ANN/DNN, Gaussian Processes...
- Use the feature vectors of the neighbouring frames
- Local score aggregation after classifier evaluation
 - It is worth to adjust the frame-level output scores based on the local neighbourhood (``smoothing")
 - Gupta et al. (2013): probabilistic time series smoothing
 - Brückner (2014): smoothing by DNN
 - Gosztolya (2015): Simple Exponential Smoothing

Output Score Aggregation

Classifier output score aggregation

- The optimal way of score aggregation is not clear
- We chose the weighted form of the moving average time series filter
- A filter takes the form w_{-N} , ..., w_{-1} , w_0 , w_1 , ..., w_N with a length of 2*N*+1
- For the *j*th frame with the raw likelihood estimate a_j we simply calculate

$$a'_j = \sum_{i=-N}^N w_i a_{j+i}.$$

- We use the simplification that for all j < 1, $a_j = a_1$; and for all j > k (the length of utterance) $a_j = a_k$

The SSPNet Vocalization corpus

- Contains English spontaneous conversations over telephone
 - 2763 30-seconds long clips from 120 speakers
 - 2988 laughter and 1158 filler events
- Featured in the Interspeech Computational Paralinguistic Challenge (ComParE) in 2013
 - Standard train / dev / test division: 1583 / 500 / 680
 - 141-sized feature set per frame (MFCC, F0, zero-
- crossing rate, HNR, derivatives + mean/std over a 9frames long window)

Metric: AUC, averaged for the two social signals
 Baseline approach: linear SVM (Weka)

Classification Methods

AdaBoost.MH:

- An efficient meta-learner algorithm, training weighted sum of simple base learners
- We used 8-leaved decision trees as base learners
- Trained on 17 consecutive frame vectors for 100,000 iterations
- Deep Neural Networks (DNN):
 - ANN with several hidden layers
 - We used the rectifier activation function in the hidden layers, and the softmax function in the output
 5 hidden layers, each containing 256 neurons
 Trained on 31 consecutive frame vectors

Genetic Algorithms

We optimized the **w** weight vector by GA

YEGYETEM

CIENTIARUM SZEGEDI TUDOM

ERSITAS

- GAs are adaptive methods for optimization tasks
 - Their mechanisms and terminology are based on the genetic processes of biological organisms
 - A population (set) of individuals (numeric vectors)
 - Individuals consist of genes (parameters)
 - Each individual is assigned a fitness score
 - Individuals with higher fitness scores can
 - reproduce" by *crossover*, then *mutation* can happen

 This is repeated for several generations; the individual of the last generation with the highest fitness will be the solution of the optimization task

Applying GA

- We optimized the w weight vectors by GA
 - Each filter was 129 frames long (64-64 on both sides)
 - Only each 8th weight was stored, the rest was linearly interpolated to reduce vector size to 17
 - Four filters overall (2 classifiers and 2 social signals)
 - We used the development set for optimization
- We used the JGAP package

CIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁNYEGYETEM

'ERSITAS

- 250-sized populations for 100 generations
- We used averaging crossover
- Mutation (replacing one weight with a random value) happened with a probability of 0.001
 - Before evaluation, the weight vectors were normalized to add up to one (normalization)

Results Without Filters

ML	Filter type		Dev. se	t	Test set		
Method		Lau.	Fil.	Avg.	Lau.	Fil.	Avg.
AdaBoost		94.0	94.9	94.5	91.9	87.9	89.9
DNN		92.9	95.5	94.2	91.3	87.9	89.6
SVM (ComParE 2013 baseline)		86.2	89.0	87.6	82.9	83.6	83.3

- The ``raw'' output scores outperform those of ComParE baseline SVM
- AdaBoost performed somewhat better than DNN
 Probably due to instance sampling used during model training, which balanced the distribution of the three classes (laughter, filler, other)

Results of Filters

	ML	. Filter type Dev. set			t	Test set			
	Method		Lau.	Fil.	Avg.	Lau.	Fil.	Avg.	
			94.0	94.9	94.5	91.9	87.9	89.9	
	AdoPoost	Random	97.7	94.2	95.9	94.6	87.5	91.0	
	AUADUUSI	Constant	97.8	94.1	95.9	94.7	87.6	91.2	
		GA	98.0	96.4	97.2	95.0	89.5	92.2	
DN			92.9	95.5	94.2	91.3	87.9	89.6	
		Random	96.7	94.4	95.5	94.2	86.9	90.5	
	DININ	Constant	96.9	94.3	95.6	94.4	86.9	90.7	
12	a de de la companya de la	GA	96.7	96.5	96.6	94.3	88.8	91.6	

The GA-optimized filters significantly outperform raw scores and two basic filters of the same length

Results

ML	Filter type		Dev. set	t	Test set		
Method		Lau.	Fil.	Avg.	Lau.	Fil.	Avg.
AdaBoost		94.0	94.9	94.5	91.9	87.9	89.9
	GA	98.0	96.4	97.2	95.0	89.5	92.2
		92.9	95.5	94.2	91.3	87.9	89.6
DININ	GA	96.7	96.5	96.6	94.3	88.8	91.6
DNN + Prob. TS smoothing		95.1	94.7	94.9	93.3	89.7	91.5
DNN + DNN		98.1	96.5	97.3	94.9	89.9	92.4

The GA-optimized filters also outperform probabilistic time series smoothing (winner of ComParE 2013), although slightly lag behind DNN+DNN (which solution, by the way, did not work for us)

All Results

GVETEM	All Results									
NYE	ML	Filter type	I	Dev. set	t	Test set				
ERSITAS SCIENTIARUM SZEGEDIENSIS	Method		Lau.	Fil.	Avg.	Lau.	Fil.	Avg.		
	AdaBoost		94.0	94.9	94.5	91.9	87.9	89.9		
		Random	97.7	94.2	95.9	94.6	87.5	91.0		
		Constant	97.8	94.1	95.9	94.7	87.6	91.2		
		GA	98.0	96.4	97.2	95.0	89.5	92.2		
	DNN		92.9	95.5	94.2	91.3	87.9	89.6		
		Random	96.7	94.4	95.5	94.2	86.9	90.5		
		Constant	96.9	94.3	95.6	94.4	86.9	90.7		
		GA	96.7	96.5	96.6	94.3	88.8	91.6		
	DNN + Prob. TS smoothing		95.1	94.7	94.9	93.3	89.7	91.5		
NIN	DNN + DNN		98.1	96.5	97.3	94.9	89.9	92.4		
コオ	SVM (ComParE 2013 baseline)		86.2	89.0	87.6	82.9	83.6	83.3		

Filters Found for Laughter Events

Linear interpolation and noise is visible

- Filters found for the two classifiers are very similar
- First/last frames are very important

CIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁNYEGYETEM

VERSITAS

Filters Found for Filler Events

The central frames are very important

Last frame is also important; first one is only averagely

Summary

Detecting social signals in speech is a task gaining importance lately

YEGYETEM

VERSITAS

- After the classification and evaluation steps, it is worth adjusting the frame-level output scores
- We applied a weighted average time series smoothing filter
- CIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁN The weights were set by Genetic Algorithm
 - We experimented with two social signals and two machine learning methods
 - The proposed method outperforms the raw scores as well as several basic and standard filters in terms of AUC