
Detecting Laughter and Filler Events 

by Time Series Smoothing

with Genetic Algorithms

Gábor Gosztolya
MTA-SZTE Research Group on Artificial Intelligence

and

University of Szeged,

Szeged, Hungary



Social Signal Detection

• Social Signals
– Laughter and filler events (sounds like ``eh’’, ``er’’, 

``um’’ etc.)

– They regulate the flow of interaction in discussions

– Their detection has became popular recently

• Model training and evaluation
– Models are trained and evaluated on the frame-level

– The standard evaluation metric is Area-Under-Curve 
(AUC) for the output posterior scores

– It is worth using the contextual information (i.e. the 
neighbouring frames) during training and evaluation



Model Training and Evaluation

• Frame-level approach
– 10ms frame shift

– Classifier: GMM, ANN/DNN, Gaussian Processes…

– Use the feature vectors of the neighbouring frames

• Local score aggregation after classifier 
evaluation
– It is worth to adjust the frame-level output scores

based on the local neighbourhood (``smoothing”)

– Gupta et al. (2013): probabilistic time series 
smoothing

– Brückner (2014): smoothing by DNN

– Gosztolya (2015): Simple Exponential Smoothing



Output Score Aggregation

• Classifier output score aggregation
– The optimal way of score aggregation is not clear

– We chose the weighted form of the moving average 
time series filter

– A filter takes the form w-N, …, w-1, w0, w1, …, wN with 
a length of 2N+1

– For the jth frame with the raw likelihood estimate aj

we simply calculate

– We use the simplification that for all j < 1, aj=a1 ; and 
for all j > k (the length of utterance) aj=ak



The SSPNet Vocalization corpus

• Contains English spontaneous conversations 
over telephone
– 2763 30-seconds long clips from 120 speakers

– 2988 laughter and 1158 filler events

• Featured in the Interspeech Computational 
Paralinguistic Challenge (ComParE) in 2013
– Standard train / dev / test division: 1583 / 500 / 680

– 141-sized feature set per frame (MFCC, F0, zero-
crossing rate, HNR, derivatives + mean/std over a 9-
frames long window)

– Metric: AUC, averaged for the two social signals

– Baseline approach: linear SVM (Weka)



Classification Methods

• AdaBoost.MH: 
– An efficient meta-learner algorithm, training weighted 

sum of simple base learners

– We used 8-leaved decision trees as base learners

– Trained on 17 consecutive frame vectors for 100,000 
iterations

• Deep Neural Networks (DNN): 
– ANN with several hidden layers

– We used the rectifier activation function in the hidden 
layers, and the softmax function in the output

– 5 hidden layers, each containing 256 neurons

– Trained on 31 consecutive frame vectors



Genetic Algorithms

• We optimized the w weight vector by GA

• GAs are adaptive methods for optimization tasks
– Their mechanisms and terminology are based on the 

genetic processes of biological organisms

– A population (set) of individuals (numeric vectors)

– Individuals consist of genes (parameters)

– Each individual is assigned a fitness score

– Individuals with higher fitness scores can 
``reproduce’’ by crossover, then mutation can happen

– This is repeated for several generations; the 
individual of the last generation with the highest 
fitness will be the solution of the optimization task



Applying GA

• We optimized the w weight vectors by GA 
– Each filter was 129 frames long (64-64 on both sides)

– Only each 8th weight was stored, the rest was linearly 
interpolated to reduce vector size to 17

– Four filters overall (2 classifiers and 2 social signals)

– We used the development set for optimization

• We used the JGAP package 
– 250-sized populations for 100 generations

– We used averaging crossover

– Mutation (replacing one weight with a random value) 
happened with a probability of 0.001

– Before evaluation, the weight vectors were 
normalized to add up to one (normalization)



Results Without Filters

ML

Method

Filter type Dev. set Test set

Lau. Fil. Avg. Lau. Fil. Avg.

AdaBoost --- 94.0 94.9 94.5 91.9 87.9 89.9

DNN --- 92.9 95.5 94.2 91.3 87.9 89.6

SVM (ComParE 2013 baseline) 86.2 89.0 87.6 82.9 83.6 83.3

• The ``raw’’ output scores outperform those of ComParE

baseline SVM

• AdaBoost performed somewhat better than DNN

– Probably due to instance sampling used during model training, 

which balanced the distribution of the three classes (laughter, 

filler, other)



Results of Filters
ML

Method

Filter type Dev. set Test set

Lau. Fil. Avg. Lau. Fil. Avg.

AdaBoost

--- 94.0 94.9 94.5 91.9 87.9 89.9

Random 97.7 94.2 95.9 94.6 87.5 91.0

Constant 97.8 94.1 95.9 94.7 87.6 91.2

GA 98.0 96.4 97.2 95.0 89.5 92.2

DNN

--- 92.9 95.5 94.2 91.3 87.9 89.6

Random 96.7 94.4 95.5 94.2 86.9 90.5

Constant 96.9 94.3 95.6 94.4 86.9 90.7

GA 96.7 96.5 96.6 94.3 88.8 91.6

• The GA-optimized filters significantly outperform raw 

scores and two basic filters of the same length



Results
ML

Method

Filter type Dev. set Test set

Lau. Fil. Avg. Lau. Fil. Avg.

AdaBoost
--- 94.0 94.9 94.5 91.9 87.9 89.9

GA 98.0 96.4 97.2 95.0 89.5 92.2

DNN
--- 92.9 95.5 94.2 91.3 87.9 89.6

GA 96.7 96.5 96.6 94.3 88.8 91.6

DNN + Prob. TS smoothing 95.1 94.7 94.9 93.3 89.7 91.5

DNN + DNN 98.1 96.5 97.3 94.9 89.9 92.4

• The GA-optimized filters also outperform probabilistic 

time series smoothing (winner of ComParE 2013), 

although slightly lag behind DNN+DNN (which solution, 

by the way, did not work for us)



All Results
ML

Method

Filter type Dev. set Test set

Lau. Fil. Avg. Lau. Fil. Avg.

AdaBoost

--- 94.0 94.9 94.5 91.9 87.9 89.9

Random 97.7 94.2 95.9 94.6 87.5 91.0

Constant 97.8 94.1 95.9 94.7 87.6 91.2

GA 98.0 96.4 97.2 95.0 89.5 92.2

DNN

--- 92.9 95.5 94.2 91.3 87.9 89.6

Random 96.7 94.4 95.5 94.2 86.9 90.5

Constant 96.9 94.3 95.6 94.4 86.9 90.7

GA 96.7 96.5 96.6 94.3 88.8 91.6

DNN + Prob. TS smoothing 95.1 94.7 94.9 93.3 89.7 91.5

DNN + DNN 98.1 96.5 97.3 94.9 89.9 92.4

SVM (ComParE 2013 baseline) 86.2 89.0 87.6 82.9 83.6 83.3



Filters Found for Laughter Events

• Linear interpolation and noise is visible

• Filters found for the two classifiers are very similar

• First/last frames are very important



Filters Found for Filler Events

• The central frames are very important

• Last frame is also important; first one is only averagely



Summary

• Detecting social signals in speech is a task 
gaining importance lately

• After the classification and evaluation steps, it is 
worth adjusting the frame-level output scores

• We applied a weighted average time series 
smoothing filter

• The weights were set by Genetic Algorithm

• We experimented with two social signals and 
two machine learning methods

• The proposed method outperforms the raw 
scores as well as several basic and standard 
filters in terms of AUC


