

YuMi come and play with me! A Collaborative Robot for piecing together a Tangram Puzzle

ROBOTICS – Institute for Robotics and Mechatronics

- R&D partner with know-how in the scientific & engineering foundations of robotics and mechatronics
- R&D at the interface between university-level basic research, applied research and advanced robotic system's integration
- R&D and consultancy for robot- and functional safety
- Robot system's safety certification
- Research Focuses:
 - Robot Mechanisms and Mechatronic Systems
 - Robot Systems
 - Cognitive Robotics
 - Robot Safety

Project Motivation

Current Standard Industrial Robotics:

 Robots perform clearly specified, pre-defined, repetitive motions in constrained environment

No or very limited abilities to perceive the environment and adapt

to it

- Operated behind safety fences
- High investment costs

Collaborative Robotics:

Financial benefits only for large batch sizes

http://www.theoldrobots.org/images3/manufacturing7.JPG

 Combine strengths of robots (endurance, precision, etc.) and humans (perceptual and cognitive apilities, etc.)

Why collaborative?

"The action of working with someone to produce or create something"

- 4 type of collaborative features
 - Safety-rated monitored stop
 - Hand-guiding
 - Speed and separation monitoring
 - Power and force limiting

Challenges

- Machine perception
- Sensitive redundant kinematic manipulation
- Dynamic adaptive task planning
- Human robot interaction and information excange
- Human state evaluation
- Safety standards

"CollRob" - Collaborative Robotics

Levels of H-R Interaction

Category	Α	В	С	D	Е	F
Umbrella Term	encapsulation	H-R co- existence	static H-R collaboration	dynamic H-R collaboration	static / dynamic R-R collaboration	static / dynamic H-R-R collaboration
Interaction- Level	interaction-free operation	safety stop	static collaboration	dynamic collaboration	static / dynamic collaboration	static/dynamic collaboration
Actors	robot	human+ robot	human+ robot	human+ robot	2 robots	2 robots + human
Temporal Dependence	independent	interrupt	sequential	simultaneous	sequential/ simultaneous	sequential/ Simultaneous
Spatial Dependence	separated	separated	shared	shared	shared	Shared
Human- Robot Contact	none	rudimentary	pronounced	comprehensive	n.a.	pronounced / comprehensive

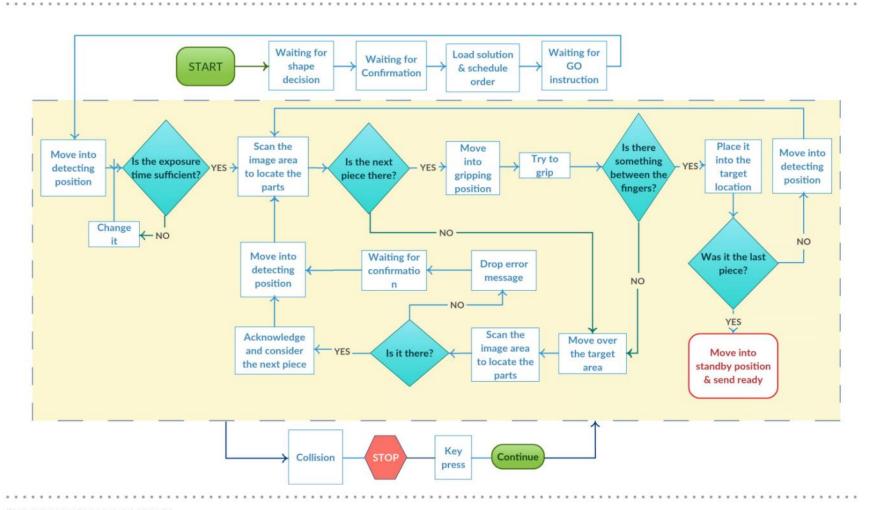
One set of use cases had to be defined -> Solving a Tangram puzzle

.....

ABB IRB14000 or YuMi Main features

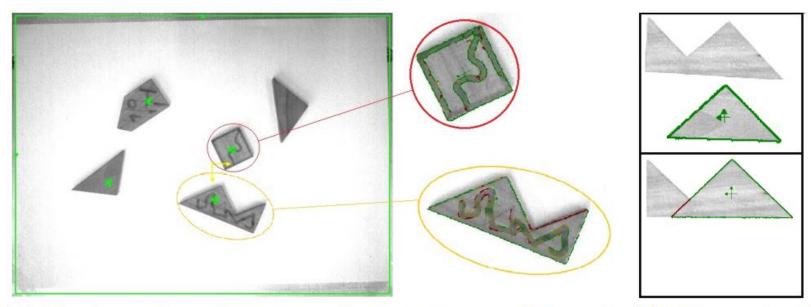
7

- Inherently safe
 - Eliminated pinch points
 - Speed limited motors
 - Lightweight and padded 7 DoF dual arms
 - Effective payload with the standard gripper around 250 gram
 - Reconfigurable gripper modules (servo, vision, compressed air)



8

<u>Video</u>


Technical Details

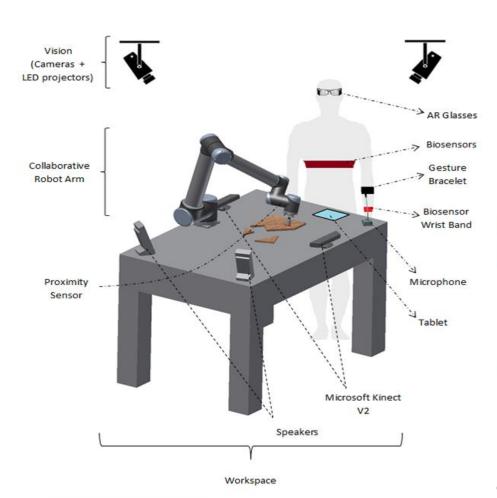
Drawbacks

- Too short, only 5 pieces
- Hardware restrictions (vision)
- Human wasn't so precise
- They accidentally moved away pieces, resulted (robot) finger braking
- Player must know the behavior of the program

Vision

(a) The located puzzle pieces with the pattern and their ob- (b) Mismatch of ject frames

the pieces


Conclusions, Extensions

- Features in future (speech recognition, advance learning, etc.)
- In industry small part assembly, pick and place operation
- Rehabilitation purposes
- Entertainment
- (Human factor study: part of a program was used for this purpose)

Human factor study

13

JOANNEUM RESEARCH ROBOTICS – Institute for Robotics & Mechatronics

JOANNEUM RESEARCH Forschungsgesellschaft mbH

ROBOTICS – Institute for Robotics & Mechatronics

Lakeside B08a, EG 9020 Klagenfurt an Wörthersee Austria

Tel.: +43 316 876-2000

Fax.: +43 316 876-2010

robotics@joanneum.at www.joanneum.at/robotics

Results

Method	Time	
One hand – 5 vision jobs	78 s	
Two hand – 5 vision jobs	64 s	
One hand – 1 vision job	59 s	
Two hand – 1 vision job	42 s	