Adaptation of DNN Acoustic Models using KL-divergence Regularization and Multi-Task Training

László Tóth, Gábor Gosztolya

Research Group on Artificial Intelligence Hungarian Academy of Sciences and the University of Szeged Szeged, Hungary

Deep Neural Nets in Speech Recognition

- Hidden Markov Modeling has been the dominant speech recognition technology for about 30 years
- But DNN-based models now clearly outperform standard HMMs
 - Turning HMM/GMMs into HMM/DNNs is quite straightforward
 - The GMMs (estimating p(X|s)) are replaced by a DNN (estimating P(s|X))
 - DNN-based posteriors → Bayes' rule → scaled likelihoods
 - This is called the "hybrid" HMM/DNN modelling method
- However, a lot of HMM/GMM refinements cannot be trivially transferred to HMM/DNNs
 - E.g.: context-dependent modeling or speaker adaptation

Context-dependent phone models

- Instead of modeling phones independently of their context (,,a"), we create models for each possible context (,,b-a+b", ,,b-a+c",...)
 - Standard for HMM/GMMs, and now for HMM/DNNs as well
 - (we use the same old, Gaussian-based technology for HMM/DNNs...)
- There are a lot of CD models \rightarrow few training examples per model
 - Solution: state tying shared models for similar phones
 - Hierarchical state tying: the number of parameters can be tuned between the two extreme points (fully CI or fully CD models)
 - We adjust the number of states to the amount of training data
 - 3 hours of data \rightarrow 1000 states
 - 300 hours of data \rightarrow 5000-10000 states

Speaker adaptation

- Goal: to adapt the model to the voice of the actual speaker
 - Supervised: we know (have transcript) for what the speaker said
 - Unsupervised: the transcript is only estimated (by the recognizer)
- HMM/GMM: well established, GMM-specific methods
- HMM/DNN: active research topic, no widely accepted solution
 - Common: all methods train the net further on the adaptation data
- Goal: to use as small adaptation data as possible
- Problem: the adaptation data set is orders of magnitudes smaller than the train set
 - Danger of overfitting the adaptation set!

Adaptation with CD models

- CD models: number of states is adjusted to the train set size
 - Overfitting is almost sure
 - A lot of states will have zero examples in the adaptation set
- Some possible solutions
 - Restrict the number of parameters to be trained (e.g. one layer)
 - Allow only linear transformations (by adding a linear layer)
 - Estimate targets for the classes not seen in the adaptation set
 - Extend the target function with a regularization term
 - Yu et al.: penalizes when the output of the adapted model strays too far from the output of the unadapted model
 - Here we propose to use multi-task training

Multi-task training

- The network has to learn more tasks in parallel
 - Dedicated output layers for each task
 - The hidden layers are shared, so they have to learn all tasks
 - (We allowed 1-1 task-specific hidden layers, with a slight improvement)
 - During training, each batch of data is randomly assigned to one of the paths
 - Multi-task training is known to improve the generalization of the network
 - First use in ASR: Microsoft, 2013

Multi-task training of CD models

- Task 1: CD states, Task 2: phones
 - We have both type of training labels for each training vector
 - During training, the error of both the CD and the CI targets gets minimized
 - CI targets have a regularization effect
 - During recognition we use only the CD output
 - During adaptation we train only the CI output
 - alleviates the problem of missing labels

Results with multi-task training (no adaptation yet!)

• Data set: 28 hours of Hungarian broadcast news, 1233 states

Training	FER %		WER %	
method	Train set	Dev. set	Dev. set	Test set
Conventional	25.9%	31.4%	17.7%	17.0%
Multi-task	23.5%	30.4%	17.4%	16.5%

- During training: slower convergence but slightly better results
- Final WER: about 3% relative WER reduction

Adaptation experiments

- Our broadcast news corpus is not optimal for adaptation tests
 - The files are not annotated by speaker
 - However, there is no speaker change within a file
 - The duration of files ranges from 3 to 100 seconds
- We experimented only with unsupervised adaptation
 - First, the ASR recognizes the given file using the unadapted DNN
 - Then we perform adaptation training on the given file using the estimated transcript obtained in the previous step
 - Finally, we recognize the file again using the adapted DNN

Refinements to adaptation

- We found that multi-task training with CI units is not enough (the results had a huge scatter, suggesting overfitting)
 - We restricted adaptation to the uppermost shared hidden layer
 - We used the regularization method of Yu et al. (2013)
- KL-divergence based regularization
 - Penalizes when the output of the adapted model strays too far from the output of the unadapted model
 - Formalized using the KL-divergence of the two outputs

KL-divergence based regularization

• After some derivation, KL-divergence regularization boils down to smoothing the hard training labels estimated by the recognizer with the output of the unadapted network

$$(1 - \alpha)p(y|x) + \alpha p_{un}(y|x)$$

- $p_{un}(y|x)$: output of the unadapted network (0.2 0.2 0.1 **0.1** 0.2 0.2)
- p(y|x): estimated "hard" training targets (0.0 0.0 0.0 1.0 0.0 0.0)
- α : linear interpolation weight (e.g. 0.5)
- (0.1 0.1 0.05 **0.55** 0.1 0.1)
- Larger α means we do trust less in the estimated (hard) targets and more in the unadapted (probabilistic) outputs

The effect of KL-regularization

• Demonstrated for 40-100 seconds of adaptation data, dev set

- Stable behavior requires strong regularization (α close to 1)
- Note: $\alpha=1$ makes no sense, as the error becomes zero...

Efficiency of adaptation as a function of adaptation data length

- 10-40 sec of adaptation data seems to be insufficient
- After 40-100 of adaptation, the WER reduction is 5-6% relative

Summary

- Multi-task training of CD and CI units improves the results of recognition (with CD units)
- It yields a trivial way for adaptation using only the CI targets
- Combination with KL-divergence based regularization improves the adaptation results further
- With adaptation data of only 40-100 sec, we could achieve WER reduction of 5-6% relative
- We plan to evaluate the method with longer adaptation times and also with supervised adaptation

Thank you for your attention!

tothl@inf.u-szeged.hu