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Preamble

« joint work with members of HLT & PR lab (Informatik 6):

— acoustic modeling: Zoltan Tiske, Pavel Golik, Albert Zeyer, Patrick Doetsch, ...
— language modeling: Martin Sundermeyer, Kazuki Irie, ...
— cf. hltpr.rwth-aachen.de/web/Publications

« toolkits used for results presented here are available on our web site:
— RASR: RWTH Automatic Speech Recognition toolkit (also handwriting)
— RWTHLM: RWTH neural network based Language Modeling toolkit (esp. LSTM)
— RETURNN: RWTH Extensible Training for Universal Recurrent Neural Networs (new!)

— cf. hltpr.rwth-aachen.de/web/Software
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Introduction

Outline

Introduction
Sequence Classification
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Introduction

Sequence Classification

Tasks for machine learning:
- automatic speech recognition
- text image recognition

« machine translation

Most general case:
e Input sequence:
X (= X1..Xp...XT
- output sequence (of unknown length N):
W = wq..w,...wy
« true distribution pr(W|X)
(can be extremely complex!)
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Introduction

Sequence Decision Rule

« performance measure or loss function L[W, W] (e.g. edit distance)
between true output sequence W and hypothesized output sequence W.

- Bayes decision rule minimizes expected loss:

X — W(X) :=arg mmi/n { Z pr(W]X) : L[W, W]}

« Standard decision rule uses sequence-level loss:
X = W(X) = arg max {pr(W]X)}

Since [Bahl & Jelinek™ 1983], this simpified Bayes decision rule is widely used
for speech recognition, handwriting recognition, machine translation, ...

« Works well, as often both decision rules coincide.
This can be proven under certain conditions [Schliiter & Nussbaum™ 2012], e.g.:

—

L[W, W] is a metric, and max pr(W|X) > 05 = W(X)=W(X)

6 of 125 Automatic Speech Recognition based on Neural Networks
Schliiter et al. — Human Language Technology and Pattern Recognition Rm
RWTH Aachen University — Aug. 24, 2016



Introduction

Outline

Introduction

Statistical Approach Revisited
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Introduction

Statistical Approach Reuvisited

Ingredients:
- performance measure (often edit distance):
to judge the quality of the system output
- probabilistic models (with a suitable structure):
to capture the dependencies within and between X and W
— elementary observations: Gaussian mixtures, log-linear models, SVMs, NNs, ...
— strings: n-gram Markov chains, HMMs, CRFs, RNNs, ...
- training criterion:
to learn the free parameters of the models
— ideally should be linked to performance criterion
— might result in complex mathematical optimization (efficient algorithms!)
- Bayes decision rule:
to generate the output word sequence
— combinatorial problem (efficient algorithms)
— should exploit structure of models

Examples: dynamic programming and beam search, A* and heuristic search, ...
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Introduction

Bayes Architecture for Speech Recognition (and other NLP tasks)

Performance Measure Probabilistic
(Loss Function) Models
Training Optimization _
Criterion (Efficient Algorithm) Trglr;mg
ata

Parameter
Estimates

Bayes Decision Rule
(Efficient Algorithm)

Evaluation

Speech Recognition = Modeling + Statistics + Efficient Algorithms
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Introduction

Outline

Introduction

Sequence Classification
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Introduction

Sequence Classification

« Problem in Bayes decision rule:

— true posterior distribution: unknown
— to replace it, assume suitable model distributions with free parameters:

W) pXW)
P = S bWy p(XTW)

— generative model: language model p(W) and acoustic model p(X|W)

« Acoustic model p(X|W) provides link between sentence hypothesis W and observation sequence
X = xlT = X{...Xp... XT"

— acoustic probability p(x,"| W) using hidden state sequences s/ :

pOd W) =D p0x s/ IW) =D ] [lp(silsc1, W) - p(xilse, W)]

— two types of distributions:
* transition probability p(s|s’, W): not important
* emission probability p(x;|s, W): key quantity
realized by GMM: Gaussian mixtures models (trained by EM algorithm)
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Introduction

Hidden Markov Models (HMM)

« fundamental problem in ASR:
non-linear time alignment

e Hidden Markov Model:

— linear chain of statess =1,..., S
— transitions: forward, loop and skip

o trellis:

— unfold HMM over time t =1,.... T

— path: state sequence s/ = s;...s;...s7

— observations: x| = xi...x;...xT

CACRCECACACROAS,

STATE INDEX

TIME INDEX
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Introduction

Speech Input

ASR Architecture

Acoustic Statistical Approach to Automatic
Analysis Speech Recognition (ASR)
[Bahl & Jelinek™ 1983]
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Acoustic Modeling

Outline

Acoustic Modeling
HMM using Artificial Neural Network Output: Hybrid Approach
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Acoustic Modeling

HMM using Artificial Neural Network Output: Hybrid Approach

consider modeling the acoustic vector x; in an HMM:
« phonetic labels (allophones, sub-phones): (s, W) — a = asw
(typical approach: decision trees, e.g. CART):
p(xls, W) = plxelosw)
« re-write the emission probability for label o and acoustic vector x;:
p(xt) - p(a|x)
p(a)

— prior probability p(a): estimated as relative frequencies (alternatively averaged NN posteriors)

— for recognition purposes: term p(x;) can be dropped
e result: rather than the state emission distribution p(x;|«),
model the label posterior probability by an NN:
x¢ — p(a|x)

p(xila) =

« justification:
— easier learning problem: labels o =1, ..., 5000
— well-known result in pattern recognition (but ignored in ASR!)

D=40
vs. vectors x; € IR

Automatic Speech Recognition based on Neural Networks | Rm
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Acoustic Modeling

Outline

Acoustic Modeling

History: Artificial Neural Networks in Acoustic Modeling
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Acoustic Modeling

History: Artificial Neural Networks in Acoustic Modeling

approaches in ASR:

« [Waibel & Hanazawa™ 1988]: phoneme recognition using time-delay neural networks

- [Bridle 1989]: softmax operation for probability normalization in output layer
- [Bourlard & Wellekens 1990]:
— for squared error criterion, NN outputs can be interpreted as

class posterior probabilities (rediscovered: Patterson & Womack 1966)
— they advocated the use of MLP outputs

to replace the emission probabilities in HMMs
« [Robinson 1994]: recurrent neural network

— competitive results on WSJ task
— his work remained a singularity in ASR

experimental situation:
until 2011, NNs were never really competitive with(out) Gaussian Mixture Models
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Acoustic Modeling

History: Artificial Neural Networks in Acoustic Modeling

related approaches:
« [LeCun & Bengio™ 1994]: convolutional neural networks
« A. Waibel's team [Fritsch & Finke™ 1997]: hierarchical mixtures of experts

« [Hochreiter & Schmidhuber 1997]: long short-term memory neural computation (LSTM RNN)
with extensions [Gers & Schraudolph™ 2002]

(second) renaissance of NN: concepts of deep learning and related ideas:
- [Hermansky & Ellis™ 2000]: tandem approach - multiple layers of processing
by combining Gaussian model and NN for ASR
o [Utgoff & Stracuzzi 2002]: many-layered learning for symbolic processing
« [Hinton & Osindero™ 2006]: introduced what they called deep learning (belief nets)

- [Graves & Bunke™ 2008]: good results for LSTM RNN on handwriting task
« Microsoft Research [Seide & Li* 2011, Dahl & Yu™ 2012]:

— combined Hinton's deep learning with hybrid approach

— significant improvement by deep MLP on a large-scale task

« since 2012: other teams confirmed reductions of WER by 20% to 30%
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Acoustic Modeling

Outline

Acoustic Modeling

Empirical Overview of Current Methods
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Acoustic Modeling

Empirical Overview of Current Methods

Experimental conditions:

« QUAERO task: English broadcast news and conversations
(evaluation campaign 2011)

- training data: two conditions: 50 and 250 hours

o test data: dev and eval sets, each 3 hours

« language model: vocabulary size of 150k (OOV: 0.4%) and perplexity of 130
Baseline Gaussian mixture HMM based acoustic model:
- feature vector: 16 MFCC (mel frequency cepstral coefficients)
« augmented feature vector: 9 - 16 = 144
* high-performance baseline system:
Gaussian mixtures with pooled diagonal covariance matrix:

— reduction by LDA to 45-dimensional vector

— 4501 CART labels

— 680k densities

— total number of free parameters: 680k - (45 + 1) = 31.3M
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Acoustic Modeling

Gaussian Mixture Models (GMM): Influence of Training Criteria

Training Criterion WER [%]
50h 250h

dev | eval | dev | eval

Maximum likelihood | 24.4|31.6|22.1|28.6
MMI at frame level 23.9130.9/22.128.6
MMI at sentence level | 24.131.221.7|28.1
Minimum phone error | 23.630.220.4 |26.2

remarks:
* best improvement over maximum likelihood:

5-10% relative by MPE (Minimum Phone Error)
- comparative evaluations in QUAERO:
competitive results with LIMSI Paris and KIT Karlsruhe
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Acoustic Modeling

Deep MLP: Number of Hidden Layers

[o oo ooo o oo oo 0

« WER vs. number of hidden layers

O O 0O O O O O O I 0
for 50-h training corpus hidden WER [A’]
566660065 « Structure of MLP: layers dev | eval
— input dimension: 1 245 /31.3
S 493 (window + derivatives) 2 22.0128.3
— - 200? nod_is per hid%en layer 3 2051267
— nonlinearity: sigmoi
SRENENCNCECNCS — number of parameters for 6-layer MLP: Z5L ;8? 32(1)
O 000O0O0O0oO0 4932000 6 196 254
+5-2000° 7 10.7/255
=2 +2000 - 4501 3 19.6 25'7
= 30M ' '
O O 0O O O O O O 9 19-3 25.3
S * improvement over best GMM: best GMM [23.630.2

O O O O O

20% relative
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Acoustic Modeling

Practicalities of NN Training: Implementation and Software

typical procedure:
- input data: (sentence-wise) mean and variance normalization
- random initialization of weights: [-0.1,...,+0.1]
- training criterion: (frame-wise) cross-entropy
- stopping: cross-validation on 10% of training data
« sigmoid function
* no regularization, no momentum term, no drop-out (so far!)
« learning rate: reduced over time by a factor of 20-50

« use of minibatches: 512 frames
e pretraining:
— supervised pretraining: layer by layer
— in general: not crucial
« use of GPUs: speed-up by a factor of 10 over multithreaded CPUs
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Acoustic Modeling

Discriminative Sequence Training: MPE vs. CE

Comparison of two training criteria (MLP with 6 hidden layers, 2000 nodes each):

* baseline: cross-entropy = frame MMI
« MPE: minimum phone error (context of pron. lexicon and language model)

L WER [%]
Model Criterion £0h 550h

dev | eval | dev | eval

MLP frame MMI |19.6 1 25.415.2|20.4
MPE 17.5123.3/14.1/19.2

best GMM 23.630.2,20.4|26.4

experimental result: improvement of 5-10% by MPE over frame MMI

Schliiter et al. — Human Language Technology and Pattern Recognition
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Acoustic Modeling

Activation Function: Sigmoid vs. RLU

« activation functions:
— sigmoid function: v — f(u) =1/(1+ ™)

— RLU=rectified linear unit: v — f(u) = max{0, u}
e structure of MLP:

— 6 hidden layers, each with 2000 nodes
— training condition:
* (frame-wise) cross-entropy

* L2 regularization (weight decay): important
* momentum term

- word error rates for activations functions: sigmoid vs. RLU:
WER [%]

activation 50h 250h
function | dev | eval | dev | eval
sigmoid |19.6|25.4/15.2|20.4
RLU 17.7123.5|14.7|19.6
best GMM | 23.6 | 30.2 | 20.4 | 26.4
- experimental result: improvement of 5-10% by RLU over sigmoid
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Acoustic Modeling

Recurrent Neural Network (RNN): Principle

principle:
- introduce a memory (or context) component to keep track of history

« result: there are two types of input: memory h;_1 and observation x;

Output 000000000
Hidden 0000
Context Input 0000000
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Acoustic Modeling

Unfolding RNN over Time

yt Y% y2 yt—l yt
A
e hy > h1 hy > byl bt [
‘:__> h T €T T I L
t-1 t 1 2 t-1 ¢

The architecture of RNN can be unfolded over time:
« We get a feedforward network with a special deep architecture.

« The application of the backpropagation algorithm to this
unfolded network is called backpropagation through time.
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Acoustic Modeling

LSTM RNN

extension of (simple) RNN by
LSTM: long short-term memory

« problems of simple RNN:
— vanishing/exploding gradients
— no protection of memory h;
« remedy by LSTM architecture:
control the access to its internal memory
by introducing gates/switches
- refinements:

— bidirectional structure
— several hidden layers

[Hochreiter & Schmidhuber 1997, Gers & Schraudolph™ 2002]

Net Output

Output Gate

Cell State
Forget Gate

Input Gate

Net Input
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Acoustic Modeling

LSTM RNN [Hochreiter & Schmidhuber 1997, Gers & Schraudolph™ 2002]

LSTM approach:

« split RNN hidden vector h; into
(memory) cell state ¢; and net output s;

« overall LSTM operations involve three
'input’ vectors at time t: s;_1, Gt_1, X;

- update operations at time t:

cell state: ¢; = c¢(st-1, ¢t—1, X¢) Forget Gate

net output: s; = s¢(s¢—1, Cr—1, Xt)
output layer: y; = y;(s;) with softmax

- introduce three gates (input, output, forget)
to control the information flow

Net Output

Output Gate

Cell State

Input Gate

Net Input
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Acoustic Modeling

LSTM Architecture

- three vectors (over time t): ¢, st, X;
- gates (or switches): use sigmoid function o (-)
o full matrices (Ay, R; A;, R;, Ar, Re, Ao, R,) and diagonal matrices (W;, Wr, W,)
« usual matrix and vector operations and element-wise multiplication ®
« Net Input (like update formula of simple RNN): Net Output
z; = tanh(Axx; + Rs;_1)
« Should this Net Input z; access the Cell State ¢;? R
Input Gate: iy = 0(Aixt + Ris—1 + Wice 1) | /;Utpm Gate
« Should the Cell State ¢;_; be forgotten?
Forget Gate: f; = 0(Arx; + Rese—1 + Wrer 1) > Coll State
- Based on i; and f;, update the Cell State ¢;:
G =LOc1+i:Oz
« Should this update ¢; be output?
Output Gate: o; = d(Aoxt + Rost—1 + Woet)
» Based on o;, compute the Net Output:
St =0t O Ct

Forget Gate .'

Input Gate

Net Input
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Acoustic Modeling

Deep LSTM-RNN

50h QUAERO training corpus:

e baseline: best MLP:

— input: 50 Gammatone features
— 9 hidden layers

- RLU
— training criterion: cross-entropy

o LSTM-RNN structure:

— input: 50 Gammatone features

— training criterion: cross-entropy

— bidirectional with several hidden layers
— 500 nodes per hidden layer

— training on a single GPU

- eval improvements:

— 14% relative over MLP
— 42% relative over GMM

LSTM time / | WER [%)]

layers +params epoch | dev | eval

1 6.7M | 0:28h | 17.6|22.7

2 12.7M | 1:00h | 14.6|18.8

3 18.7M | 1:11h |14.0|18.4

4 24 7M | 1:33h | 13.5 17.7

5 30.7M | 1:48h | 13.6 17.7

6 36.7M | 2:10h |13.5]/17.5

7 42.7TM | 2:36h | 13.8|18.0

8 48.7TM | 3:14h | 14.2]18.4
best MLP

(9x2000) 42.7M | 0:35h | 15.3/20.3

best GMM | 31.3M - 1123.6 30.2
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Acoustic Modeling

CTC: Connectionist Temporal Classification

[Graves & Fernandez™ 2006, Graves & Bunke® 2008]

A

Sl 000 ssisn
x(]c; O O O
CL )| o0 o o/ OADATATATAS /O
E * oo,o,o,o,o,o
O O/ O0A0A0A0A0A0,/0 O
L%I;l oo’o’o’o’o’o
CO)| o/gAdAdATATAd/0 o o
AC:f oo’o’o’o’o’o
CD—-DKDKDZ-DZ-DZ-D/DDDD
1 1 1 1 1 1T 1T 1T T1°
time

Schliiter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — Aug. 24, 2016

%



Acoustic Modeling

Related Research Directions

« CTC: What is different from an HMM? What is important?

— topology: several vs. single state per symbol
— training criterion: sum vs. maximum

— no transition probabilities
— NN structure: RNN-LSTM

- recent neural network approaches (replacing the HMM alignment?):

— end-to-end approaches
— mechanism of attention
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Language Modeling

Outline

Language Modeling
Review & History
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Language Modeling

Review: Language Modeling

« distinguish:

— sub-symbolic processing: speech /audio, text images, image/video (computer vision)
— symbolic processing: language modeling (and machine translation)

- word sequence WlN = Wi...W,... Wy

- language model: conditional probability p(w,|wg ') (with artificial start symbol wy):

p(wi") = | [ p(walwg ™)

- approaches to modeling p(w,|w{ ')
— count models (Markov chain):

* limit history w{ ' to k predecessor words

* smooth relative frequencies (e.g. SRI toolkit)
— MLP models:

* limit history, too

* use predecessor words as input to MLP
— RNN models: unlimited history!

000000000

0000

000|000

|O®@0000000 0O0000@000|
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Language Modeling

History of Neural Networks in Language Modeling
« [Nakamura & Shikano 1989]:

English word category prediction based on neural networks.
- [Castano & Vidal™ 1993]:

Inference of stochastic regular languages through simple recurrent networks
- [Bengio & Ducharme™ 2000]:

A neural probabilistic language model

« [Schwenk 2007]:
Continuous space language models

« [Mikolov & Karafiat™ 2010]:

Recurrent neural network based language model

« RWTH Aachen [Sundermeyer & Schliiter™ 2012]:

LSTM recurrent neural networks for language modeling

« RWTH Aachen [Sundermeyer & Tiiske™ 2014]:
long range LM rescoring beyond N-best lists

Today: neural network based language models show competitive results.
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Language Modeling

Outline

Language Modeling

Neural Network Structures
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Language Modeling

Structure of Neural Network for Language Modeling

- input layer: k predecessor words with 1-of-V coding (V = vocabulary size)
- first layer: projection layer
— idea: dimension reduction (e.g. from 150k to 600!)

— a linear operation (matrix multiplication) without sigmoid activation
— shared accross all predecessor words of the history h

- output layer:

— conditional probability of language model p(w|h)
— softmax operation for normalization

e training criterion:

— perplexity: equivalent to cross-entropy

— early stopping using cross-validation on dev corpus
- properties of softmax operation:

— computationally expensive (sum over full vocabulary)
— remedy: word classes (automatically trained)
— normalized outputs of softmax fit nicely into perplexity criterion
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Language Modeling

Word Classes
MLP w/o and with Word Classes: Trigram LM

[OO0O@00000] [co@00| [oflo]oe[oo[000]
0000 0000
ooolooo ooolooo
(O®@0000000 0O0000@000| [O@0000000 00000000

factorization of conditional language model probability p(w|h) for each history h:

p(w|h) = p(gl|h) - p(w|g, h)

using a unique word class g for each word w
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Language Modeling

Word Classes
RNN without and with Word Classes

« NN with memory for sequence processing
« left-to-right processing of word sequence w;...w,....

Wy
p(w]’) = HP(Wn|W(?_1) = HP(Wn‘Wn—la hn-1)

« input to RNN in position n:
— output h,_; of hidden layer at position (n — 1)
— immediate predecessor word w;,_;

00000000

00O

0000

000008000 00000000
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Language Modeling

LSTM RNN [Hochreiter & Schmidhuber 1997, Gers & Schraudolph™ 2002]

000@00000
refinement of RNN: oy
LSTM = long-short term memory OO0

- RNN: problems with vanishing/exploding gradients ~ N\__ 1 N\~ |

 remedy: cells with gates rather than nodes

« details: see literature 00000
00000000
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Language Modeling

Outline

Language Modeling

Experiments
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Language Modeling

Experiments

« results on QUAERO English (like before):

— vocabulary size: 150k words
— training text: 50M words
— dev and eval sets: 39k and 35k words
« MLP: structure:
— projection layer: 300 nodes
— hidden layer: 600 nodes
— size of MLP is dominated
by input and output layers:
150k - 300 4 600 - 150k = 135M

« RNN (and LSTM RNN): structure

— projection and hidden layer: each 600 nodes

— size of RNN is dominated
by input and output layers:

150k - 600 + 600 - 150k = 180M

perplexity PPL on dev data:

approach hidden| PPL
layers
count model — 163.7
1 136.5
10-gram MLP 5 130.9
RNN 1 125.2
1 107.8
LSTM-RNN 5 100 5

observation:
(huge) improvement by 40%
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Language Modeling

Complexity: Computation Times

Training times (without GPUs!) for training corpus of 50 Million words:

Models PPL | CPU Time (Order)
Count model | 163.7 30 min
MLP 136.5 1 week
LSTM-RNN | 107.8 3 weeks

« problem: high computation times

« remedy: two types of language models:

— count model: trained on a huge corpus: 3.1 Billion words
— NN models: trained on a small corpus: 50 Million words

« resulting language model:
linear interpolation of two models
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Language Modeling

Interpolated Language Models: Perplexity and WER

« linear interpolation of two models: count model + NN model

« perplexity and word error rate on test data:

Models PPL | WER[%]
count model 131.2 12.4
+ 10-gram MLP 112.5 11.5
+ Recurrent NN 108.1 11.1
+ LSTM-RNN 96.7 10.8
+ 10-gram MLP with 2 layers | 110.2 11.3
+ LSTM-RNN with 2 layers 92.0 10.4

« experimental result:

— significant improvements by NN language models
— best improvement in perplexity: 30% reduction (from 131 to 92)
— empirical observation:

power law between WER and perplexity (cube to square root)
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Language Modeling

Outline

Language Modeling

Perplexity vs. Word Error Rate
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Language Modeling

Perplexity vs. Word Error Rate
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Language Modeling

Extended Range: Perplexity vs. Word Error Rate
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Language Modeling

Word Error Rate vs. Local Perplexity

(3-word window, 20 bins)
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Sequence Modeling and Search

Outline

Sequence Modeling and Search
Motivation & Review of HMMs
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Sequence Modeling and Search

Motivation

« End-to-end model:
— Consistence of modeling, training, and decoding.
— Cover segmentation problem by NN structure:
sequence length, duration, and positioning of words are unknown.
— Context dependence needs to be modeled.

« Ultimate goals (not fully achieved yet):
— Integration of NN models into Bayes decision rule.
— Separation of acoustic & language model (resources usually differ).
— Consistence between decision rule, evaluation measure,
and training objective.
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Sequence Modeling and Search

Review: Hidden Markov Modeling

« models words/word sequences by HMM state sequences

« within Bayes decision rule:

arg max p(wy") - p(xq'|w’) = arg max p(wy") - Y p(x, s ")

W1 N,w{ T
Sp W
T
_ N t—1 t t— t—1
— arg max p(wy') - E | | p(xelxi ™, s7) - psehq ™ st Y)
N,wi T. N t=1
— arg max p(w") - E | | p(x¢|st) - p(st|si—1) 1 order Markov
N
Nowm sT:wl t=1
T
~ arg max p(w;') - max | | p(xt|st) - p(s¢|si—1) Viterbi approx.
N
Wi s ]! F—1
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Sequence Modeling and Search

Review: Hidden Markov Modeling

Discussion:
« HMM-based standard decision rule:
.
arg maxp wy') - max Hp x¢|st) - p(se|st—1)
wy' sy wfl F—1

— In practice: maximum over segmentations, especially in search (Viterbi approximation)
— Ideally: sum over segmentations.

« Inconsistency for (hybrid) NN integration into acoustic model:

) — p(s|xt) - p(xt)
p(Xt| ) p(S)

— NN provides state posterior, but state cond. probability needed.
— p(s) approximated, e.g. [Manohar & Povey™ 2015].
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Sequence Modeling and Search

Review: Hidden Markov Modeling

Discussion:
« Assumption of independence of acoustic context:
— Can be relaxed by considerung window around each time frame t: x/*?

— Hybrid modeling: emission probability modelled by rescaled state posteriors p(s|x;)
— observation here appears in condition only and may be replaced by full acoustic context:
— p(s|t,x{) (e.g. obtained by bi-directional recurrent modeling).
- Segmentation /alignment of observations to HMM states:
— Stochastic: ideally sum over all aligments.
— Explicit in case of Viterbi approximation: maximizing alignment.
« Integration of language model:
— Clearly defined, can be trained separately
(text data vs. transcribed acoustic data).
— However, language model scaling exponent statistically unclear.

— Open issue: interaction of context dependence on observation and symbol /word level.
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Sequence Modeling and Search

Outline

Sequence Modeling and Search

End-to-End Approach
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Sequence Modeling and Search

End-to-End Approach

« Motivation: End-to-end trainable neural network recognizer
— Consistently integrate input and output sequences.
— Does not need explicit segmentation.
— Avoids Markov and independence assumptions.

- Sequence-to-sequence modeling [Sutskever & Vinyals™ 2014]:
— |Idea: separate processing of input and output into two models:
— Encoder: Read the inputs and generate discriminative features
— Decoder: Write the output symbol sequence label by label considering all encoded features

« Encoder can be viewed as non-linear transformation of input:
— Similar to tandem in hybrid approach (hierarchical model), but:
— Encoder output is not related to specific output labels.
— Jointly trained within the complete end-to-end structure.
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Sequence Modeling and Search

End-to-End Approach “Listen, Attend and Spell” [Chan & Jaitly™ 2015]

ORS out put (M.P)
I nner state
ORY e e (LSTM RNN)
ORP . attention
. (weighted sum
T attention weights
OR (2 M.Ps and
scal ar prod.)
I nput
(from
ORP ®o o0 oo 0 encoder)
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Sequence Modeling and Search

End-to-End Approach
“Listen, Attend and Spell” [Chan & Jaitly™ 2015]
Approach:

1. “Listen”:
i. Encode input (bidirectional recurrent (LSTM) network, omitted in figure).
Encoding usually includes gradual temporal subsampling/integration.
2. “Attend”: at each output symbol position n:

I. Compute the current inner state value r, from previous state r,_;, output y,_;, and expected
input &,_; from attention.
ii. Compute attention weights o, = attend(r,, . ..) from current state r, and further input (see
next slide).
iii. Compute expected network input &, as linear combination of input sequence x;” weighted by
]
3. “Spell”:
i. Recurrently classify characters (symbols) from current state r, and input £, from attention.
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Sequence Modeling and Search

Attention in Detail @

“Listen, Attend and Spell”
[Chan & Jaitly™ 2015]
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Sequence Modeling and Search

Outline

Sequence Modeling and Search

Discussion & Experimental Results
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Sequence Modeling and Search

Discussion

« The attention process controls the segmentation

— (soft) alignment between symbol position and observations.

« The dependencies of the attention process still are an open research issue, choices investigated:
— [Chan & Jaitly™ 2015] (“Listen, Attend and Spell’): «, = attend(r,, x{)
— [Bahdanau & Chorowski* 2015]: «, = attend(r, 1, ¥Yn-1,&n-1)

« Discussion:

— No explicit alignment to specific input vectors needed.

— However, attention is determined by context, i.e. it is not handled as an independent hidden
stochastic variable.

— As a consequence, suboptimal attention results (misalignments) cannot be rectified in the
subsequent search process, as in HMM based modeling.
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Sequence Modeling and Search

Attention Modeling Example from Handwriting
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Sequence Modeling and Search

Sequence-to-Sequence Approach
Results: RIMES Offline Handwriting Recognition

e Input: 8 X 32 image slices resulting from sliding window (shift 3).

« Input layer: CNN with filter size 3 x 3 and 64 features, no pooling.
« Hybrid: 4 BLSTM layers with 512 cells in each direction,
— realignment: retraining on new alignment created based on hybrid.
« Attention-based: encoder (almost) equal to hybrid:
— “subsampling” by factor of 2 after 2" and 4™ BLSTM layer (stacking)
(no subsampling/stacking in framewise system).

« decoder network: single BLSTM with 512 cells for each direction.
« # params: ~ 20.8M for encoder/hybrid +700k for decoder BLSTM.

Approach WER [%] CER [%]

Hybrid HMM 13.0 7.6
+ realignment 12.9 5.8

Attention-based 16.2 8.0
+ LM rescoring  14.2 6.3
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Sequence Modeling and Search

Outline

Sequence Modeling and Search

Inverted Search
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Sequence Modeling and Search

Inverted Search

« Neural network based modeling provides HMM state posteriors.

« Can (sub)word sequences directly be modeled using state posteriors?

« ldea: invert alignment problem:
— state boundaries t{V as hidden variables,
— (triphone state) label sequence ! directly represents word (sequence) template.
— Approach: alternative decomposition by chain rule/Bayes identity:

plar|x) = Z plog 17 |x)
t’
= plaf g, x]) - p(e 1)
N

- ZHP anla] 1 X ) - p(taltf X))

N
tl n=1

N
7 _
= > 11 planlal ™, tos, to,x]) - pltalta-1)

_ TV
t{V n=1 NN-based posterior length model
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Sequence Modeling and Search

Inverted Search

Discussion:

- inverted search, as times are aligned to triphone (state) labels, instead of vice versa.

o |x") ZHP a0 by, b0, X)) - pltaltr1),

~
tN n=1 NN-based posterior length model

« Symbol by symbol hypothesis generation.
 Language model integrated into state posterior.
Open questions:

« How to model state posterior? - not necessearily the same, as in
hybrid approach: here state posterior covers multiple time frames.

« Length model? - existing HMM based work less successful.

« Where are the words? - word sequence determines state sequence:
Effectively states represent subwords (or even words itself!).

« How to fit in (separately trained) language model?

66 of 125 Automatic Speech Recognition based on Neural Networks
Schliiter et al. — Human Language Technology and Pattern Recognition Rm
RWTH Aachen University — Aug. 24, 2016



Specific Work

Outline

Specific Work
Acoustic Modeling of Raw Time Signal
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Specific Work

Acoustic Modeling of Raw Time Signal [Golik & Tiiske™ 2015]

- large effort went into feature engineering for DNNs
(e.g. [Seide & Li™ 2011, Yu & Yao™ 2013], ...)
« previous work [Tiiske & Golik™ 2014] showed:

— a simple fully connected 12-hidden-layers DNN performs well
even without any feature extraction
— WER: 22.1% (MFCC) vs. 25.5% (raw time signal)
— first layer weights learned impulse responses of band pass filters
— the learned filter bank roughly resembles manually defined filter bank
- convolutional neural network (CNN) is a natural tool

that combines learning a filter bank and acoustic modeling

« research questions:

— how much do CNNs reduce the performance gap to hand-crafted features?
— how can we interpret the learned weights?
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Specific Work

Convolutional neural networks
« CNNs and were introduced about 25 years ago [LeCun & Boser™ 1989]

- today: state-of-the-art in computer vision
([Krizhevsky & Sutskever™ 2012, Jaderberg & Simonyan™ 2015])

- applied to speech recognition tasks by [Abdel-Hamid & Mohamed™ 2012]:
2D filters perform convolution on a “spectrogram”

« convolution on raw time signal: 1D operation along time axis only
« output of convolutional unit / at position m:

m+k—1
Yim =0 E Wi j—mXj + bi
Jj=m

— x; are the PCM samples
— {w;_, b;}: trainable parameters shared across all positions in the input
— k is the length of the impulse response of a filter

« temporal sub-sampling by shifting m in steps of 32 and max pooling
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Specific Work

2D convolution in time/frequency (for ASR)

frequency
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Specific Work

1D convolution in time only
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Specific Work

Learned weights: first convolutional layer
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« Thus, after reordering, the output of the first convolutional layer
approximates critical band energies
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Specific Work

Learned weights: second convolutional layer
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Specific Work

Conclusions

- training on raw time signal works surprisingly well
« convolutional layers improve ASR performance over fully-connected layers
« the gap to MFCC'’s performance reduces from 15% to 6% relative WER

model | input WER [%]

DNN | MFCC 22.1
raw time signal 25.5

CNN 23.4

* non-stationary patterns can be captured precisely

- first and second layer weights can be interpreted as filters in time/frequency

« for sufficient amounts of training data, models trained on the raw time signal can even
outperform standard preprocessing, even for multichannel scenarios [Sainath & Weiss™ 2015]
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Outline

Specific Work

Multilingual Modeling
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Specific Work

Multilingual MLP Features [Tiiske & Schliiter™ 2013]

- Exploitation of language independent information is viable:

— Cross-lingual application of MLP features can improve performance [Stolcke & Grézl™ 2006].
— Training MLP on target language usually better for similar amount of training data.

« Training MLPs on multiple languages

— Spoken languages are based on the same speech production mechanisms.

— Allows parameter sharing between languages.

— |dea: share common bottleneck layer for multiple languages.

— Robust feature: better portability to new language.

— Exploits data available in other/multiple languages.

— Serves as initialization prior to additional language specific training/fine-tuning.
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Specific Work

Multilingual Bottleneck MLP

Handling multiple targets:

« Phone set incl. language id [Grézl & Karafiat™ 2011]:
— NN also has to learn language identification.

« Mapping to common phone set [Schultz & Waibel 2001]:
— Knowledge based (e.g IPA, SAMPA):
often ambiguous due to simplified lexicons.
— Data-driven.

- Language dependent output layer [Scanzio & Laface™ 2008]:
— No need to map phonetical units to common set.
— Error back-propagation only from the active output.
— Related to multi-task training.

77 of 125 Automatic Speech Recognition based on Neural Networks
Schliiter et al. — Human Language Technology and Pattern Recognition
RWTH Aachen University — Aug. 24, 2016

@‘RWH-I



Specific Work

Architecture of Multilingual Hierarchical Bottleneck MLP
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Specific Work

Experiments - Quaero, Small Scale

« Experimental setup
— Target task: French.
— 50h of speech per language (balanced corpus size)

— Data available for French (FR), English (EN), German (DE), Polish (PL)
— Tandem /bottleneck approach

— GMM: 4500 tied-states for each language
— Shallow BN-MLPs (7000,60,7000), with phoneme targets
— Speaker independent WER reported on Evalll

« Effect of number of languages

training languages WER
FR EN PL DE [%]

v 22.2
v v 216
v v v 215
v v v v 211
— The more languages, the better.
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Specific Work

Effect of Multi- and Unilingual Bottleneck Features

input WER [%)] for languages:
features FR EN DE PL

MFCC 255 31.6 25.0 18.9
+BN,, 222 26.8 21.3 157
+BNpus 21.1 249 201 154

« All languages benefit from multilingual bottleneck features BN ;.
« 2-5% rel. improvement over unilingual features BN,

« 17-21% overall rel. improvement over MFCC baseline.
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Specific Work

Experiments - Quaero, Large Scale

« Speaker adaptative training.
« Unbalanced corpus sizes for languages: 100h to 300h.

« Deep NN structure and context-dependent NN targets.
« Tuning the language dependent part of the MLP:

— Language dependent hidden layer
increases no. of parameters, but same training time

last layer: huge, but block diagonal weight matrix
(8000x6000)

— Large, but common hidden layer
increases no. of parameters even further, slower training

last layer: huge full weight matrix (8000x6000)

===z ===
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Specific Work

Experiments - Quaero, Large Scale

WER [%] for languages:

intput features FR EN DE PL
MFCC 21.6 264 214 159
+BNyni 17.3 19.7 17.2 123
+BNuri 17.0 19.2 16.3 12.1
+deep BN 16.7 18.8 16.8 12.1
+deep BNy 16.2 18.1 15.7 11.7
w/lang. dep. hidden layer 16.3 18.2 15.7 11.7

w/large lang. indep. hidden layer 16.0 17.7 154 11.7

 Multilingual always outperform monolingual model.

« Deep structure increases margin between uni- and multilingual:
relative improvement in WER: shallow BN: 2-5%, deep BN: 3-7%.

« 25-30% rel. WER impr. over speaker adaptive MFCC baseline.
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Specific Work

Multilingual Hybrid NN: Quaero English

« Hybrid NN acoustic model with recent improvements.
— 50 dim. gammatone input features, 17 frames context.
— 12 hidden layers, 2000 nodes each.
— Activation function: rectified linear units.
— Low-rank factorized 12k output using 512 dim. linear BN.
— WER reported on Quaero Eval corpus, 250h training data.

Model Criterion WER [%]
unilingual GMM MPE 26.2
hybrid NN MPE 16.2
multilingual hybrid NN CE 17.3
+fine-tuning  CE 16.7
MPE 15.6

« Initial multilingual hybrid NN results w/o further training.
« Fine tuning: further optimization on target data.
« Still ~4% rel. improvement by multilingual training.
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Specific Work

Outline

Specific Work

Log-Linear Interpolation of Multi-Domain Neural Network LM
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Specific Work

Log-Linear Interpolation of Multi-Domain Neural Network LM
[Tiiske & Irie™ 2016]

« Usual approach: linear interpolation of count LMs trained on different domains/data sets.

— Interpolation weights optimized on target domain validation set.

— Optimized using expectation maximization (EM) algorithm.

— Count models are suited to be linearly combined into one single model
(with union of n-grams and recomputing back-off weights)

« Goal: combination approach for neural network LMs.

— Aiming at single model after interpolation of neural network LMs.
— Linear interpolation not straightforward for NN LMs to obtain single model.

Log-Linear combination fits better;

« Initial investigation using feed-forward NN LMs.
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Specific Work

Joint Model

domain ID (] ) |

h

| <X>=Z—4710wn |

« Multiple posterior estimates

— Active output: selected by the domain of the input vector
— Hidden layers are shared between the domains
— Shared vocabulary, common softmax

« Log-linear combination to obtain single overall neural network LM:

— Leads to weighted sum of domain specific output layers.
— Weighted sum of softmax outputs can rewritten as a single softmax output layer.
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Specific Work

Experimental Results: Perplexities

« Training corpus: 3B words, 11 domains
(Gigaword, BN/BC, TED, IWSLT, ...
— 50M and 2M best matching subset
selected for fine-tuning
« KN 4-gram: 132.7 PPL after interpolation

« 50M LSTM-RNN: 100.5

« Retraining only multi-domain output
(log-linear!) on the best BN, and
interpolation: PPL 92.0

multi

log-lin.

fine-tuning

LM domain | interp. | 50M | 2M PPL
110.5

50M < 1100.0
129.0

X X 06.2

X 133.1

3B X X X 05.7*
X X 117.6

X X X x | 94.3

*using the best matching output
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Specific Work

Experimental Results: WER

- Lattice generation with count model

« Lattice rescoring using rwthlm [Sundermeyer & Alkhouli* 2014]

— Traceback lattice approximation
— Linear-interpolation of NN LM and count LM (KN 4-gram)

« Measuring word error rate

— Acoustic model: 12-layer multilingual BN (800h), fine tuned on 250h BN/BC target data

— Standard Viterbi (Vi.) and confusion network (CN) decoding of the lattices

Language Model Dey EVE.]I

PPL | Vi. CN | PPL | Vi. | CN
KN4 132.7112.6|12.3|133.4|15.4|15.0
+ 50M FENN 96.5/11.4/11.1| 95.0/14.2/13.8
+ 3B, fine-tune 80.6/10.9|10.7| 88.0/13.713.4
+ Multi-domain,log-lin,fine-tune| 88.5/10.8| 9.1| 87.0/13.7|13.5
+ 50M LSTM 91.6/10.9| 9.0 91.0/13.7/13.5
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Specific Work

Tandem vs. Hybrid - Integrating GMM into DNN
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Specific Work

Tandem vs. Hybrid - Integrating GMM into DNN [Tiiske & Tahir™ 2015]

« State-of-the-art acoustic models (AM) are
— Tandem acoustic models

* Gaussian Mixture Models (GMM) are trained on the output of a neural
network based features
* Probabilistic or bottleneck (BN) tandem approach
[Hermansky & Ellis* 2000, Grézl & Karafiat™ 2007]
* Joint training, e.g. in [Paulik 2013]
— Hybrid models

* Proposed in the early 90's [Bourlard+Morgan:1993]
* Estimates state posterior probabilities p(s|x) directly
* BN layer to train efficiently on huge number of states [Sainath & Kingsbury™ 2013]

o After careful optimization they show similar performance
- Goal: convert tandem into hybrid neural network representation [Tiiske & Tahirt 2015]

- Idea: rewrite GMM to equivalent log-linear model [Anderson 1982, Heigold & Wiesler™ 2010]
— softmax NN layer
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Specific Work

Joint GMM and Bottleneck DNN Training

« GMM with pooled covariance is a softmax layer with hidden variables

« Maximum approximation, for fast score calculation:
T
exp(w,_ y + b
z,: (a7 + bsi) _exp(wly + bg)

Z(y) - Z(Y) i=argmax(w,] y+bs;)

 No need for special element to implement:
— sum- or max-pooling
- Efficient softmax is crucial (low-rank factorization; GPU)
— GMM of 4500 states after 8 splits: ~ 1 million nodes
« Joint training of BN and GMM:

— Maximum likelihood training of GMM on BN features
— Convert to LMM

— Start the joint training

« Remark: maximum approximation with given labeling (s,i)
same as classical hybrid, E-M style training is also possible
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Specific Work

ASR Experiments

« Task: Quaero English (250h BC/BN)
« MLP structure:

— 12 hidden layers
— 50 dimensional Gammatone input

— 5
System r|:r\:vk trJaOiInr:Eg #output | #param. | split | criterion \Q\QSRGEV/:]]I
Hybrid no 45k 54.7TM 13.3/18.1
yes — ' 49.0M | - CE |135/18.2

12.0k| 52.8M 13.0|17.7

BN tandem | no A5k 613.0M| 8 ML |14.2/19.0
yes ' 83.5M| 4 CE 11311738

« Same results with less tied-triphone states

« Smaller lexical prefix-tree
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Conclusions
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Conclusions

Statistical approach

« four key ingredients:
— choice of performance measure: errors at string, word, phoneme, frame level
— probabilistic models at these levels and the interaction between these levels
— training criterion along with an optimization algorithm
— Bayes decision rule along with an efficient implementation

« about recent work on artificial neural nets (2009-15):

— significant improvements by deep MLPs and LSTM-RNNs
— they provide one more type of probabilistic models

« long-term research topics at RWTH:
— training criteria and error rates (at frame, phoneme, word, sentence levels)
— open lexicon ASR: any letter sequence can be recognized
— (fully) unsupervised training: without any transcribed training data
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Conclusions

Future Challenges

- specific future challenges for statistical approach (incl. NNs) in general:

— complex mathematical model that is difficult to analyze

— questions: can we find suitable mathematical approximations
with more explicit descriptions of the dependencies and level interactions
and of the performance criterion (error rate)?

- specific challenges for artificial neural networks:
— methods with better convergence?
— can the HMM-based alignment mechanism be replaced?
— can we find NNs with more explicit probabilistic structures?
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Conclusions

Questions and Interpretations

« Do the NNs discover dependencies that we cannot model explicitly?
« Is it a better way of smoothing that makes the NN better?

o Is it the use of crossvalidation that makes NNs succesful?
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Thank you for your attention

Any questions?
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