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Abstract—Among various parking assignment methods,
auction-based procedures have emerged as a relatively simple
and flexible mechanism to solve parking assignment and parking
pricing problems. In the present contribution, we extend the usual
purely financial bidder objective function with a mixed utility that
also involves the walking distance to parking lots.

We demonstrate numerous interesting properties of the new
parking scheme; some of them are provable analytically; while
others are traceable in simulation. At the end of the paper, we
also present some practically useful examples.

Index Terms—auctions, parking, parking assignment, parking
pricing, parking simulation

I. INTRODUCTION

While cars offer convenient transportation, finding available
parking is often difficult. Since Shoup’s 2005 study, it has been
commonly cited that 30% of urban traffic results from drivers
searching for parking; though actual rates vary between 8–74%
depending on location and time [1]. As parking occupancy
nears 100%, search times can rise to 10–13 minutes [1].

An automated parking assignment system could reduce
this inefficiency, saving time, easing congestion, and lower-
ing environmental impact. With smartphones, cyber-physical
systems, and IoT, deploying such a system (either as a new app
or as part of a navigation tool) is feasible. Drivers could set
their destination, parking budget, and walking preference, and
be guided to a suitable spot. For instance, a Vickrey-Clarke-
Groves (VCG) auction-based app was proposed in [2].

Beyond assigning parking spaces, auctions can dynamically
adjust pricing based on demand. In 2011, San Francisco’s
SFPark initiative optimized parking fees using real-time oc-
cupancy data [3]. The program successfully maintained ideal
occupancy levels by influencing behavior (encouraging long-
term and budget-conscious drivers to choose cheaper, more
distant spots). However, field studies [4], [5] show many
drivers, especially on errands or commutes, are unwilling to
forgo close parking. Preferences also vary by age, income, trip
type, and number of passengers.

Motivated by these differing preferences, we propose a
simultaneous online auction system that assigns and prices
parking based on driver attitudes toward cost and walking
distance. A smartphone app would automatically bid on behalf
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of users, reflecting these preferences. We demonstrate that
this system aligns with user expectations through theoretical
analysis and simulations using Eclipse SUMO [6].

To broaden the understanding of auction-based parking
assignment, we present a short literature review in section II,
an abstract parking supply and demand models are described in
section III, and the handling of drivers’ attitude is introduced in
section IV. We formally describe how this algorithm influences
parking itself and what would be the experience of the stake-
holders of the system (e.g., drivers, municipalities, and parking
lot operators) from a monetary (section V) and a monetary
and distance related (section VI) point of view. Moreover,
by explaining its implementation details in section VII, we
also provide demonstrations for the theoretical results in
section VIII, including an Eclipse SUMO-based simulation.
After a short discussion of the applied method in section IX,
section X concludes this paper.

II. RELATED WORKS

In 1969, parking lots occupied 87% of U.S. land-use cover-
age [7]. Today, European cities increasingly integrate parking
policies into broader transport strategies to enhance accessi-
bility, stimulate local economies, and improve quality of life.
Common measures include limiting supply and using real-time
dynamic pricing [8]. Criteria for evaluating such policies—like
cost, walking time, capacity, and search time—are outlined in
[9], which also classifies models by scale, from individual lots
to city-wide systems.

For example, queueing models such as [10] analyze parking
behavior within a single facility, while broader models like
[11] examine city-wide impacts of pricing, congestion, and
travel time, finding that real-time occupancy data can improve
travel times by 4% and dynamic pricing can lead to socially
optimal outcomes.

Dynamic pricing, first proposed in the 1950s, gained traction
with large-scale implementations in the 2010s [12]. A wide
range of techniques could be applied, including numerical op-
timization [13], Gale-Shapley algorithm-based matching tech-
niques [14], [15]. Besides centralized approaches, distributed
matching algorithms can also serve intelligent parking [16].
However, most of these solutions require additional steps to
compute parking prices. The posted pricing algorithm also
solves the parking charging problem [17].

Besides matching algorithms, dynamic programming, and
game theory-based approaches [18] lead to auction-based
systems. VCG auctions, originally designed for divisible goods
with few participants [19], have been adapted for parking

Attitude-driven Simultaneous Online Auctions
for Parking Spaces

Levente Alekszejenkó and Tadeusz Dobrowiecki

Abstract—Among various parking assignment methods, 
auction-based procedures have emerged as a relatively simple 
and flexible mechanism to solve parking assignment and parking 
pricing problems. In the present contribution, we extend the 
usual purely financial bidder objective function with a mixed 
utility that also involves the walking distance to parking lots.

We demonstrate numerous interesting properties of the new 
parking scheme; some of them are provable analytically; while 
others are traceable in simulation. At the end of the paper, we 
also present some practically useful examples.

Index Terms—auctions, parking, parking assignment, parking 
pricing, parking simulation

L. Alekszejenkó and T. Dobrowiecki were collegues of the Department 
of Artificial Intelligence and Systems Engineering, Budapest University 
of Technology of Economics, Budapest, Hungary e-mail: {alelevente, 
dobrowiecki} (at) mit.bme.hu

Project no. TKP2021-EGA-02 has been implemented with the support 
provided by the Ministry of Culture and Innovation of Hungary from the 
National Research, Development and Innovation Fund, financed under the 
TKP2021-EGA funding scheme.

1

Attitude-driven Simultaneous Online Auctions
for Parking Spaces
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cupancy data [3]. The program successfully maintained ideal
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of users, reflecting these preferences. We demonstrate that
this system aligns with user expectations through theoretical
analysis and simulations using Eclipse SUMO [6].

To broaden the understanding of auction-based parking
assignment, we present a short literature review in section II,
an abstract parking supply and demand models are described in
section III, and the handling of drivers’ attitude is introduced in
section IV. We formally describe how this algorithm influences
parking itself and what would be the experience of the stake-
holders of the system (e.g., drivers, municipalities, and parking
lot operators) from a monetary (section V) and a monetary
and distance related (section VI) point of view. Moreover,
by explaining its implementation details in section VII, we
also provide demonstrations for the theoretical results in
section VIII, including an Eclipse SUMO-based simulation.
After a short discussion of the applied method in section IX,
section X concludes this paper.

II. RELATED WORKS

In 1969, parking lots occupied 87% of U.S. land-use cover-
age [7]. Today, European cities increasingly integrate parking
policies into broader transport strategies to enhance accessi-
bility, stimulate local economies, and improve quality of life.
Common measures include limiting supply and using real-time
dynamic pricing [8]. Criteria for evaluating such policies—like
cost, walking time, capacity, and search time—are outlined in
[9], which also classifies models by scale, from individual lots
to city-wide systems.

For example, queueing models such as [10] analyze parking
behavior within a single facility, while broader models like
[11] examine city-wide impacts of pricing, congestion, and
travel time, finding that real-time occupancy data can improve
travel times by 4% and dynamic pricing can lead to socially
optimal outcomes.

Dynamic pricing, first proposed in the 1950s, gained traction
with large-scale implementations in the 2010s [12]. A wide
range of techniques could be applied, including numerical op-
timization [13], Gale-Shapley algorithm-based matching tech-
niques [14], [15]. Besides centralized approaches, distributed
matching algorithms can also serve intelligent parking [16].
However, most of these solutions require additional steps to
compute parking prices. The posted pricing algorithm also
solves the parking charging problem [17].

Besides matching algorithms, dynamic programming, and
game theory-based approaches [18] lead to auction-based
systems. VCG auctions, originally designed for divisible goods
with few participants [19], have been adapted for parking
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Fig. 1. Modeling parking in a city. Closer parking lots are more demanded
and more expensive ones than further away alternatives.

allocation and pricing [20]–[23], although they often involve
complex and time-consuming integer programming. To ad-
dress this, [24] proposes more efficient alternatives.

In addition to VCG, ascending-bid English auctions are also
viable. Bansal and Garg [25] introduce Simultaneous Inde-
pendent Online Auctions (SIA), with Local Greedy Bidding
(LGB). This LGB strategy ensures a bidder only bids on the
items maximizing its utility, with auction prices increasing
incrementally by ϵ.

Literature on parking mechanisms often emphasizes theoret-
ical guarantees, such as individual rationality, budget balance,
incentive compatibility, and asymptotic efficiency [20]–[23].
However, in-depth analysis of how these systems affect the
stakeholders (e.g., drivers or parking operators) are rarely
carried out. For example, [23] addresses user privacy, [18]
discusses pricing-related properties, and [22] demonstrates
expected utilities.

In this paper, we use the SIA/LGB approach of [25] to
implement a solution similar to that in [26], in which all
parking lot operators can organize an auction to sell their
free parking spaces. Parking operators can set predefined
starting prices1 to be able to define a minimum parking costs,
i.e., corresponding to traditional parking fees. The auctions
shall run simultaneously, and they can increase actual bids
by a predefined ϵ amount. With an attitude factor, drivers
can express whether they prefer cheaper or closer parking
lots. Our main contribution is the analytical and numerical
analysis, including an Eclipse SUMO [6] traffic simulation-
based demonstration of the SIA-based parking assignment and
pricing system.

III. PARKING MODEL

This paper uses a simplified model of parking supply and
demand, assuming negligible differences in driving times, no
traffic congestion or road tolls. Parking costs and walking
distance are considered the primary factors influencing parking
choice.

Parking demand is shaped by human activity and peaks at
predictable times, such as just before working hours or some
special events. We assume this demand is concentrated in the
central business district (CBD), following some probability
distribution.

1Starting prices are usually referred as reserve prices [27], but in this paper,
we will use the term ‘starting prices’ to avoid confusion.

People vary in their tolerance for walking. Some, like
plumbers or delivery drivers, require parking directly at their
destination. Others, such as leisure visitors, may accept longer
walks in exchange for lower fees.

Supply mirrors this pattern: parking prices are highest in
the CBD and decrease toward the outskirts. Despite equal
aerial distances, perceived walking distances can differ due to
obstacles like rivers or railways, which help define parking
zones [7]. These zones often reflect the same gradient in
parking prices, see Fig. 1.

We propose an auction mechanism to assign parking spots
based on drivers’ preferences for cost and walking distance. In
the following, we assume that there is an idealistic SIA with
LGB algorithm-based application through which the drivers
can reserve parking lots. This idealistic application has perfect
information of free parking spaces, it is tamper-proof, and
strictly follows the protocols of the proposed auction scheme.
Additionally, drivers also obey the rules and occupy exactly
those parking spots that the SIA-based algorithm assigns
to them. For this study, we also assume that the parking
supply and demand (including drivers’ attitudes) are externally
defined.

IV. PARKING ASSIGNMENT WITH SIMULTANEOUS
INDEPENDENT ONLINE AUCTIONS

In classical auctions, surplus has a monetary definition;
however, when we use SIAs for parking assignment, the mone-
tary surplus definition might not consider a natural behavior of
drivers. Traditionally, when drivers arrive at their destination,
they start cruising around until they can find a suitable parking
place. As drivers generally turn [28], or generally drive in
circles [29], trying to minimize the walking distance between
the parking space and their destination. On the other hand, it is
rational that one would like to minimize its parking expenses.

In traditional parking searches, it doubles the challenge to
optimize both parking fees and walking distances. However,
in an automated parking assignment method, we can expect to
solve (at least partially) these optimization problems. There-
fore, in this paper, we define a suitable preference function
for the SIA with LGB strategy fusing monetary costs with
walking distances to the parking lots.

Considering that there are N ∈ N+ parking lots in the area
and each driver j, j ∈ {1, 2, . . . ,M},M ∈ N+ has a limited
monetary parking budget pvj corresponding to the valuation
concept of classical auctions. Moreover, a driver agent j can
compute the dj,i walking distance between the ith parking lot
and its destination, where i ∈ {1, 2, 3, . . . N}. Let pi denote
the actual parking cost at the ith parking lot, and let dj,max =
maxi dj,i. Reflecting the attitude towards walking distance and
parking prices, we propose to define a utility function Uj(i)
of each vehicle j for a parking lot i that is a combination
of a monetary 0 ≤ Up,j(i) ≤ 1 and a distance-related 0 ≤
Ud,j(i) ≤ 1 utility component corresponding to the state of
the auctions:

Uj(i) = βjUp,j(i) + (1− βj)Ud,j(i), (1)
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using an attitude factor βj , 0 < βj ≤ 1. By setting a
low βj , for example, a furniture deliveryman can prefer the
closest parking lots. On the other hand, if we plan some leisure
activity where walking is desired, we can set a high βj and
leave our vehicle in more distant, yet cheaper parking lots.

The monetary utility component can be: Up,j(i) =
pmax−pi

pmax
,

where pmax = maxi pi corresponds to the maximum price
achievable in auctions (e.g., the maximum valuation that
drivers can afford). Similarly, the distance-related utility com-
ponent can be: Ud,j(i) =

dj,max−dj,i

dj,max
, where dj,max is the

distance between the most remote parking lot from the jth
driver’s destination.

Substituting these utility components with (1), we get the
Uj(i) utility function:

Uj(i) = βj
p max − pi

pmax
+ (1− βj)

dj,max − dj,i
dj,max

= (2)

= 1− βj
pi

pmax
− (1− βj)

dj,i
dj,max

= 1− cj,i, (3)

where cj,i is the overall cost of the jth vehicle parking at
the ith parking lot.

Therefore, we can define the Πj auction with highest utility
for the LGB strategy as:

Πj = argmax
i

Uj(i) = argmin
i

cj,i. (4)

Naturally, since the j th driver’s parking budget is limited by
pvj , they shall only bid for the Πj th parking lot, if pΠj

≤ pvj .
Consequently, at each moment, driver agent j can select a
Πj parking lot that appears to be suitable for bidding. As
there could be multiple parking lot auctions that fulfill the
criterion of (4), in the following, we will treat Πj as a
set of appropriate parking auctions. The following Theorem
proves that the proposed algorithm will stop after receiving a
sufficient amount of bids.

Theorem 1. If βj > 0 and pvj > 0 are finite (individual) con-
stants for all bidders, then the SIA algorithm will terminate.

Proof. The SIA method terminates if and only if it finds
a good assignment. As current prices increase by ϵ upon
receiving a new bid, sooner or later the current prices will
either reach a state that is a solution or they reach the pvj
valuation of the bidders. Denoting pvmax

= maxj pvj and
p
(0)
min = mini p

(0)
i , where p

(0)
i stands for the starting price of

auction i, the tmax number of bids to reach the valuation of
all bidders in all N auctions is bounded by:

tmax =

⌈
pvmax

− p
(0)
min

ϵ

⌉
N. (5)

Consequently, the SIA method terminates after receiving
t ≤ tmax bids.

In the following, to analyze the proposed system, we
demonstrate some theoretically provable properties, illustrate
them by numerical simulations, and also provide some appli-
cation use cases.

V. DISTANCE-INDEPENDENT PROPERTIES OF THE
PARKING SIA

Now, we will examine the SIA mechanism for parking lot
assignment with the utility function defined in (2), analytically
if it is possible or by simulations. By varying the βj attitude
factor, we favor smaller walking distances or lower parking
costs.

If a driver chooses an βj ≈ 0.0 value, it results in a classical
parking search algorithm, when people want to park near their
destination, regardless of parking fees. In this case, the SIA
algorithm is only expected to provide an assignment between
parking lots and vehicles without optimizing parking costs,
which in over-demand situations (M > N ) can reach pvj .

On the other hand, βj ≈ 1.0 can also be a relevant selection
if there are multiple parking lots, possibly having different
parking prices, in such a small area, in which drivers will not
perceive significant differences in walking distance. Supposing
a small area and an βj = 1.0 setting, the SIA method can
purely optimize parking costs in addition to assigning vehicles
and parking spaces. The following lemmas and theorems help
us to understand the effect of SIAs on parking prices.

A. Expected Parking Prices

First of all, let us check how prices change during the
execution of SIA. Let p(t) parking prices vector collect all
the actual parking prices p

(t)
i that received bids after t steps of

auctions. Then, Lemma 1. expresses the price changes in SIA.

Lemma 1. ∃T , such that after running SIA for t > T steps,
the difference between the elements of the current price vector
p(t) will be ≤ ϵ.

Proof. The proof is given in Appendix A.

Naturally, the rate of supply and demand for parking lots
define parking costs in market-driven pricing scheme. As SIA
reacts to the actual parking situation, we can expect that the
obtained parking prices obtained also reflect it. Theorem 2.
refers to the situation in which the supply is either in equilib-
rium with the demand or exceeds it.

For a compact notation, let us define two symbols. Firstly,
let us create an ascending list of starting prices of the
auctions. Here, p(0)M− will denote the M th element of the list,
corresponding to the M th lowest starting price. Secondly, we
create a descending list of valuations of the bidders. Here,
pv,N+ will denote the N th element of the list, corresponding
to the N th highest valuation.

Theorem 2. Assuming that there is no over-demand for
parking (N ≥ M ) and βj = 1.0, each element of the assigned,
won parking prices vector p, p ∈ RM ,M > 1 provided
by the SIA method will be approximately equal to the M th
lowest p(0)M− starting price: p

(0)
M− ≤ pi ≤ p

(0)
M− + ϵ < pvj for

pi ∈ p, j ∈ {1, 2, . . . ,M}.

Proof. With the assumptions, the utility function of each j

driver agent simplifies to Π
(t)
j = argmaxi

(
1 − p

(t)
i

pmax

)
in

the tth step of the auction. Consequently, following the LGB
strategy, each j driver will bid for one of the cheapest parking
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lots. Moreover, p(t+1)
i = p

(t)
i or p

(t+1)
i = p

(t)
i + ϵ, depending

on whether or not someone has bid for it.
If the starting prices are identical, p

(0)
i = p

(0)
i+1, ∀i : i ∈

{1, 2, . . . N − 1}, and there is no over-demand, the statement
is a natural consequence, and the resulting prices will be the
original starting prices.

If the starting prices are different, we shall prove that the M
vehicles will compete for the cheapest M parking lots until the
resulting prices will not differ more than ϵ, and each vehicle
will have been winning exactly one parking space auction.
Lemma 1. proves this case.

On the other hand, the demand can also exceed the supply
of parking lots. Theorem 3. shows what would happen in this
scenario when we use the SIA algorithm.

Theorem 3. Assuming that there is an over-demand for
parking (N < M ) and βj = 1.0, each element of the winning
parking prices vector p, p ∈ RN , N > 1 provided by the SIA
method will be approximately equal to the (N + 1)th highest
pv,(N+1)+ valuation: pv,(N+1)+ ≤ pi ≤ pv,(N+1)+ + ϵ for
i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,M}.

Proof. The proof is given in Appendix B.

In summary, due to Lemma 1., prices increase rationally.
In a non-over-demand scenario, this process leads to an
assignment on the price of the M th cheapest parking lot
according to Theorem 2. In contrast with this, in an over-
demand scenario, the richest N drivers (those who have the
highest pvj valuations) can find parking spaces for themselves
because of Theorem 3.

B. Optimal Parking Lot Size

From another perspective, parking lot operators might face
the problem of having to decide how many parking spaces are
required to maximize their revenue. The following corollary
helps find the optimal parking lot size to maximize parking
incomes if the parking pricing system is driven by SIA with
the LGB strategy.

Corollary 3.1. Taking into account the constant demand
of M > 2 vehicles with βj = 1.0, pvj > p

(0)
i for

i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . .M}, an optimal parking lot,
which maximizes parking incomes by running SIA with the
LGB strategy, provides N = M − 1 parking spaces.

Proof. Let Npv =
∑N

j=1 pv,j . Then, in the over-demanded
(N < M ) case, the operator can obtain an income of Npv ,
while in the N ≥ M case, it can earn Np

(0)
i . As pv > p

(0)
i , at

the N = M setting (Npv > Np
(0)
0 ), the operator would lose

a significant amount of money.
As Npv is a strict monotonic function of N , let us check

whether the total income in the N = M − 1 exceeds the
N = M setting:

(M − 1)pv >? Mp
(0)
i (6)

M >? 1 +
p
(0)
i

pv − p
(0)
i

(7)

As pv > p
(0)
i , the right hand side converges to 1.0; hence,

if M > 2, then the statement is true.

VI. DISTANCE-DEPENDENT PROPERTIES OF THE PARKING
SIA

To make driver decisions more flexible, we introduced a
mixed cost and distance-aware utility (2) in section IV. We
anticipate a more cost-aware driver (who bids with a high
attitude factor βj) would win a cheaper yet more distant
parking lot, and vice versa.

As drivers bids for parking lots maximizing their momentary
utility, the following lemma clarifies the relation between the
maximum utility and the driver’s awareness of costs over
distances.

Lemma 2. Assuming that two parking lots i and i′ are equally
useful for a vehicle j, at some βj: Uj(i) = Uj(i

′). Without loss
of generality, let us also assume that pi > pi′ and dj,i < dj,i′ .

Then, by changing βj with ∆β > 0, vehicle j will prefer
either parking lot i or i′ as follows:

(I) If β1 = βj − ∆β , then vehicle j will prefer the closer
but more expensive parking lot, i.e.: U ′

j(i) > U ′
j(i

′).
(II) If β2 = βj + ∆β , then vehicle j will prefer the more

distant but cheaper parking lot, i.e.: U ′
j(i) < U ′

j(i
′).

Proof. We check the two cases:
(I) If β1 = βj −∆β then U ′

j(i) > U ′
j(i

′).

U ′
j(i) >? U

′
j(i

′) (8)

Uj(i) + ∆β

(
pi

pmax
− dj,i

dj,max

)
>? (9)

>? Uj(i
′) + ∆β

(
pi′

pmax
− dj,i′

dj,max

)
(10)

Following the assumption Uj(i) = Uj(i
′):

0 >? ∆β

(
pi′ − pi
pmax

+
dj,i − dj,i′

dj,max

)
(11)

pi > pi′ and dj,i < dj,i′ yield that the right-hand side
of the above expression is negative. Hence, the first
statement is true.

(II) If β2 = βj + ∆β then U ′
j(i) < U ′

j(i
′). Analogously to

(I), and following the assumption Uj(i) = Uj(i
′), we

can get:

0 <? ∆β

(
dj,i′ − dj,i
dj,max

+
pi − pi′

pmax

)
(12)

As pi > pi′ and dj,i < dj,i′ , the right-hand side of
the above expression is positive. Hence, the second
statement is also true.

Lemma 2 only presents an elementary step of the bidding
process. Following analytically the distribution of the winners’
attitudes is perhaps inextricable considering the parallel bid-
ding and the randomness of the driver attitudes. However, we
expect that a certain overall regularity might emerge (on the
average) in the bidding process.
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Fig. 2. Distribution of winners’ attitudes in function of distance of the won
parking lots.

To illustrate it, we present in Fig. 2. the attitude distribution
among the winner drivers as a function of the parking lot
distance, for an individual auction (sample), and for the
auction results averaged over 10000 auction runs (average).
In the simulation (see section VII), M = 35 drivers com-
peted for N = 24 parking lots with the same starting price
(∀i : p(0)i = pr,const), evenly spaced with increasing distance
from the center. The drivers’ attitudes were sampled from a
uniform distribution βj ∼ U(0.1, 0.9). The drivers’ validations
were constant i.e.: ∀j : pvj = V in the Val1 scenario;
and in Val2, they were sampled from a uniform distribution
pvj ∼ U( 23V, V ) where V was the maximal validation and
2
3V > pr,const.

We can observe in Fig. 2. that sample runs are increas-
ing erratically; however, the expected values are smoothly
monotonic. Indeed, with the introduced utility mechanism,
drivers who opt for cheaper but more distant parking lots
win on the average accordingly, and in a distance-dependent
proportional way. The difference in behavior of the two cases
is most certainly due to the uncorrelated character of random
validations (Val2) and the random attitudes. When a strong
negative correlation is introduced between random validation
and random attitudes (i.e., the higher validation pairs with
a lower attitude; those who have more money want to park
closer), the sample and average curves are similar to the
Val1 case.

VII. ON THE IMPLEMENTATION OF PARKING SIA

Originally, SIA algorithm can be executed in a highly paral-
lel way, in which each parking space can run its own auction
server and all parking-seeking drivers (or automated bidder
agents impersonating them) can send bids asynchronously.
Unfortunately, simulating this parallelism on the PC-based
research architecture is not efficient because of the frequent
context changes during parallel execution.

Consequently, we serialize the execution of the SIA algo-
rithm. It requires a slight modification of the original behavior
of the bidders. Instead of asynchronous execution, the bidder
will execute an event-driven program, following the state
machine in Fig. 3, of which more complex functions are
described by Algorithm 1.

Upon request from a particular auction ai, a bidder com-
putes whether it is willing to bid for it or not following
Algorithm 1. In parallel execution, this function would be

Algorithm 1 Bidders’ main functions
1: function BIDDER.ASK BID(ai)
2: bids ← False
3: recall state
4: recall p ▷ all price values
5: F ← {aj : pj ≤ pv, j ∈ {1, 2, . . . , N}} ▷ feasible aj’s
6: Π = argmink ck ▷ computing preferences as in (4)
7: if (state = ’overbid’) ∧ (pi ≤ pv) then
8: P ← {aj : aj ∈ F

⋂
Π} ▷ preferred auctions

9: bids ← (ai ∈ P)
10: if bids then
11: store state ← ’winning’
12: end if
13: end if
14: return bids
15: end function
16: function BIDDER.INFORM PRICE(pi)
17: store pi
18: recall state
19: if (∄j : pj ≤ pv) ∧ (state ̸= ’winning’ ) then
20: store state ← ’out of budget’
21: end if
22: end function

Fig. 3. States machine representing the Bidder agent.

similar; the only difference is that some scheduler algorithm
would call this subroutine, and it would return a random
element from the F ∩Π set to bid for.

The main difference between SIAs and the serialized simu-
lation is described in detail in Algorithm 2. Instead of running
many algorithms in parallel, we iterate over them and over all
the bidder agents in line 6 and line 7. The code inside these
iterations executes the event-driven calculations.

As stated above, we modified SIA in numerous points to
be able to simulate it on simple PCs. Theorem 4. justifies
that a fully parallel SIA is the generalization of the serialized
auction implementation. Consequently, all theorems, lemmas,
and corollaries of sections IV, V, and VI are also necessarily
true for serialized auctions.

Theorem 4. The fully parallel execution of the SIA is a
generalization of the serial execution of the auction method.

Proof. The proof is given in Appendix C.

VIII. EXAMPLES

By running the serialized SIA defined in section VII, we
made experiments to demonstrate some of the theorems,
lemmas, and corollaries of section V and VI. Furthermore, we
provide some application examples of the proposed method.
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Algorithm 2 Auctioneers’ algorithm
1: function RUN AUCTIONS(A, B, ps, ϵ, rmax)
2: w ← ∅ ▷ init: no winner
3: p ← ps ▷ init: price = starting price
4: Bj .state ← ‘overbid‘ ∀Bj ∈ B ▷ init: state of bidders
5: while ∃l : Bl.state = ‘overbid‘ do ▷ ∃running bidder
6: for i ∈ {1, 2, . . . N} do ▷ iterating on auctions
7: for j ∈ {1, 2, . . . ,M} do ▷ iterating on bidders
8: bids ← Bj .ASK BID(ai)
9: if bids then

10: if wi ̸= ∅ then ▷ inform previous winner
11: wi .TELL OVERBID
12: end if
13: wi ← Bj ▷ new winner
14: pi ← pi + ϵ ▷ increase price
15: for k ∈ {1, 2, . . . ,M} do
16: Bk.INFORM PRICE(pi)
17: end for
18: end if
19: end for
20: end for
21: end while
22: for i ∈ {1, 2, . . . N} do
23: wi .TELL WON
24: end for
25: return w,p
26: end function

Fig. 4. Parking prices during auctions.

A. Illustration of Lemma 1

According to Lemma 1, prices will be approximately equal
after a number of auction rounds. To demonstrate this, we
created a simple simulation with N = 10 parking spaces
and M = 8 vehicles. The starting prices at the correspond-
ing A0, A1, A2, . . . A9 auctions were 20, 18, 16, . . . 2 ¢. For
a simple illustration, we assumed here that drivers do not
differentiate parking spaces by distance. We used a bid step
of ϵ = 1.0 ¢, and the valuation of each j ∈ {1, 2, 3, . . . 8}
vehicle was pvj = 1000 ¢.

Fig. 4. shows the resulting parking prices after each auction
round. An auction round corresponds to the state achieved after
a run of iteration of line 6 in Algorithm 2. The results show
that the current prices at each of (the cheapest M ) auctions
increase together. The final winning prices are at most ϵ apart
from each other.

Fig. 5. Optimal sizing of a parking lot to maximize the operator’s income at
a demand of M = 25 vehicles.

B. Illustration of Corollary 3.1

As Corollary 3.1 combines the consequences of Theorem 2
and Theorem 3, we created a simulation to demonstrate them
together. Hence, we assume a parking demand of M = 25 ve-
hicles, and after running SIAs we computed the total income
of the parking lot operator for various N ∈ {1, 2, 3, . . . , 40}.
The attitude factor was β = 1.0, the bid step was ϵ = 1.0
¢, and the valuation of each j ∈ {1, 2, 3, . . . 8} vehicle was
pvj = 1000 ¢. The starting prices for each auction were 500 ¢.

On the left-hand side of Fig. 5., when M < 25, we can find
the demonstration of Theorem 3 regarding the parking prices
obtained in the over-demanded case. On the right-hand side of
Fig. 5., when M ≥ 25, we can observe the consequences of
Theorem 2 regarding parking prices in a not over-demanded
scenario. Finally, Fig. 5. also shows that the operator of the
parking lot can maximize its income with an N = M−1 = 24
setting, which aligns with Corollary 3.1.

C. Application: Offline Parking Pricing

The proposed auction mechanism is suitable to provide an
intelligent parking pricing model in a city that calculates with
a spatial (s) parking demand D(s). The demand model D(s)
can originate from historical time series. By setting a lower
attitude towards walking, e.g., β = 0.1, and using the D(s)
demand model, we can simulate the auction methods for a
known number of vehicles (M ) and parking lots (N ).

To demonstrate that the auction method can suggest efficient
parking price settings, we created an abstract simulation. As
there are hundreds of cities in the European Union that have
imposed low emission zones (LEZs), various restrictions on
vehicles that can enter specific areas [30], we also model
parking prices at the perimeter of an LEZ. We used N = 474
parking spaces in groups of 6 spaces, 50 m apart from each
other. Between the positions of 3000 m and 4000 m, there was
an LEZ where there were no parking lots.

From a cross section view of a city, the parking demand of
M = 200 vehicles followed the mixed probability distribution
of D1(s) ∼ U(0, 5000)|100+N (1000, 100)|100, where 100 ve-
hicles had a uniform demand across the whole a city, and
100 vehicles were headed towards the 1000 m point, following
a normal distribution with σ = 100 m. For all j vehicles, the
valuation was pvj = 1000 ¢, and the bid step was ϵ = 1.0 ¢in
each auction. In the initial phase, there was free parking in
the city. After running the SIA method, we got the results
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Fig. 6. SIA simulation results for a city containing a peak in the demand at
the position of 1000 m, and a low emission zone between positions of 3000 m
and 4000 m.

of Fig. 6., yielding that parking prices shall increase around
the peak of demand, and at the perimeter of the LEZ, while
parking could remain free in the rest of the city.

D. Application: Online SIA in a rural town’s parking

Besides offline parking pricing optimization, SIAs might run
in real time. For example, drivers might use their smartphones
to navigate to a parking lot assigned to them by the SIA
method, depending on their destination and attitude towards
walking and parking prices. Hence, we have tested the SIA
method in generated but realistic simulation of a typical
European small rural town [31] having 10.000 inhabitants and
commuters carrying out their daily activities. Consequently,
this test is hardly a corner case for parking assignment, but
there might be spatial and temporal over-demands in particular
parts of the small town.

After 3 simulated days of bootstrapping, we simulated
the morning traffic of the fourth day between 6:00 am and
10:00 am. During this simulation, we started SIAs for all
empty parking spaces, and the simulated vehicles had to
bid for them to reserve parking places, and to negotiate an
hourly parking price. The starting prices for each auction were
50 ¢, and the bid step was ϵ = 5 ¢. Each vehicle j had a
valuation of pvj

= 1000 ¢= 10 C. Originally, vehicles aimed
to use the curbside parking lot, provided on both sides of
each road segment, but at the most visited sites, we placed
8 parking garages, see Fig. 7. Parking garages are considered
alternative parking solutions and had a fixed price of 1000 ¢.
Consequently, if a vehicle could not get a curbside parking
space on auctions, it would be able to use the nearest parking
garage.

We experimented with different βj settings. We tried 3 sce-
narios in which all vehicles had the same attitude βj of 0.1, 0.5
or 0.9. Furthermore, we simulated a MIX scenario with 90% of
the vehicles having a β = 0.1 and 10% of the vehicles having
a β = 0.9 attitude, representing that 90% of the drivers want
to park near their destinations, but there is a minority, who
prefers longer walking distances in favor of cheaper parking
alternatives.

In addition to walking distances and auctioned hourly
parking prices pj,i, we also measured the duration of parking

Fig. 7. Road network of the simulated town in Eclipse SUMO. Parking
garages are indicated on their corresponding side of the roads.

TABLE I
ECLIPSE SUMO SIMULATION RESULTS (AVERAGE OF 5 RUNS)

total price distance auctioned price parking garage
β [C] [m] [C/h] alternatives

0.1 4.86 13.81 51.97 3.28%
0.5 4.68 32.03 50.05 0.00%
0.9 4.68 32.02 50.00 0.00%
MIX 4.82 14.84 51.40 3.14%

τj,i (in seconds) to calculate the total parking price Pj,i as:

Pj,i = pj,i ·
⌈

τj,i
60·60

⌉
.

Moreover, we tracked the ratio of taking the parking garage
alternative to the number of all simulation participation.

Table I summarizes the average results obtained from 5 dis-
tinct simulation runs of all β attitude settings. As we expected,
when drivers prefer closer parking lots, it decreases walking
distances and increases parking prices. In approximately 3%
of the cases in this particular scenario, low β attitude setting
creates such an over-demand that some vehicles have to opt
for parking in parking garage instead of curbside parking lots.

IX. DISCUSSION

In this paper, we assume that parking fees and walking
distances are the primary determinants of the choice of parking
lot. In reality, there are additional influencing factors, for
example, road tolls, traffic congestion, and the availability
of public transportation. From an abstract point of view, this
extra information could be integrated into (1), and with proper
modifications, one could design attitude factors towards these
new factors as well.

Moreover, the survey of [32] indicates some usual perfor-
mance metrics to evaluate a dynamic parking pricing scheme.
In the following, we describe how the SIA/LGB for parking
assignment performs according to the factors relevant for
dynamic parking pricing.

As the proposed method provides parking assignment, it
reduces environmental factors, eliminates parking searching
time; therefore, it improves average speed and traffic flow. By
properly setting the attitude factor βj , drivers can optimize
its travel time and utility corresponding to their ridership and
actual demand. Considering drivers’ attitudes, the proposed
SIA-based solution provides a more flexible approach of park-
ing assignment compared to a posted pricing-based method,
in which walking distance is defined as the social cost [17].



Attitude-driven Simultaneous Online Auctions
for Parking Spaces

SEPTEMBER 2025 • VOLUME XVII • NUMBER 380

INFOCOMMUNICATIONS JOURNAL

8

Following the offline results of SIA/LGB as in sec-
tion VIII-C, municipalities can optimize parking prices or,
following Corollary 3.1, the number of available parking lots
to optimize their revenue by balancing the supply. However,
drivers might face higher parking costs in periods of overde-
mand. Operators can use this extra income to cover their
operational costs. Furthermore, Corollary 3.1 can also help
parking lot operators maximize their incomes by optimizing
the number of offered parking spaces on the auction rounds. If
they have a demand forecast for parking, they can offer fewer
than all free parking spaces in an area in specific periods. For
example, a municipality might not offer all free parking spaces
in the early morning to be able to serve the parking demand
during later rush hours.

In terms of computational complexity, a fully parallel im-
plementation of SIA auctions can run in linear time, see
Theorem 1., while bidders shall run in a second-order poly-
nomial time of the number of auctions (they shall regularly
check the state of all auctions and send bids if necessary).
In section VIII-D, we also presented that in a usual European
rural town, around 3% of the users get rejected, and shall look
for an alternative parking solution. In this study, we demon-
strated the core parking assignment method, assuming all the
drivers are cooperative, obey the rules, and occupy exactly
those parking spaces reserved for them by the auction method.
However, in the real world, not all drivers will or can use
the implementation of the proposed system. To this end, we
plan further analysis with different rates of participating and
non-participating drivers to evaluate the system’s properties in
mixed traffic. Moreover, it would also be a further research
question how strategic bidding of a group of drivers would
impede the proposed method.

We have also assumed that the method has perfect informa-
tion about parking lot occupancies. We ran simulations to relax
this assumption and found that relatively accurate measure-
ments are necessary (at least 93% of accuracy). Fortunately,
state-of-the-art camera-based solutions can achieve this level
of accuracy [33].

In this study, we assumed a predefined parking demand. In
reality, various factors can influence where drivers would like
to park. For example, one is likely to avoid standing in traffic
congestion and prefer a park-and-ride (P+R) parking facility
with good public transportation connections. We can model
this attitude in the proposed solution as a slight preference
for higher walking distances over parking costs. Moreover,
there could be road tolls along the way from the suburbs
towards the CBD of a city. One might offset the starting
prices of the inner parking spaces with these fees to model
the overall costs. Drivers with limited transportation budgets
or who prefer cheaper parking lots might avoid these expensive
alternatives by properly setting their βj attitude factor.

Actual traffic situations, such as unusually slow traffic,
also influence the choice of parking lot. By adjusting the
βj attitude factor, the proposed method could react to the
changed situation. Consequently, properly setting the attitude
factor might be a challenging task. By applying reinforcement
learning, we might implement an automated approach to set
the attitude factor for each driver appropriately. However, it

would require feedback from the drivers, which, for example,
would be given by answering some questions (e.g., Did you
have to walk far? or Did you find the parking fees high?).

X. CONCLUSION

In this paper we systematically analyzed how simultaneous
online independent auctions with local greedy bidding strategy
of [25] could be applied to the assignment of parking spaces.
In our solution, similarly to [26], we used an attitude factor
βj that could be set by drivers to reflect their attitude towards
closer and more expensive over more distant but cheaper
parking spaces.

We theoretically proved that this method sooner-or-later
terminates (Theorem 1). Additionally, we had propositions on
how the prices are reaching each other and then increasing
together during the auctions (Lemma 1), and what could be
the price outcome of the auction method in non-overdemanded
(Theorem 2, vehicles win parking spaces for the N th lowest
starting prices) and over-demanded situations (Theorem 3,
richest M vehicles obtains parking lots for the valuation of the
M th richest drivers). Following those theorems, we provide
a formula to calculate the optimal parking size (M − 1), if
the incoming parking demand (M ) is known (Corollary 3.1).
Moreover, we showed that different attitude factors have an
effect on the obtained parking lots (preferring cheaper parking
lots results in more distant parking), see Theorem 2 and
section VI.

By implementing SIAs in a PC environment, we demon-
strated in section VIII-C how a municipality can use offline
results of the auction method to implement demand-related
parking prices, or how can an online deployment conduct
the parking assignment in a simulated rural town, see sec-
tion VIII-D.

With modern smartphones and mobile connection, there is
no longer an obstacle to implement an auction-based parking
guidance, assignment, and pricing system. We hope that our
results add to the vision of a modern city’s parking system that
has the potential to make parking more efficient, and lead to
urban redevelopment, leaving more space to parks, sustainable
micromobility-based transportation, and local businesses, to
make our habitat more livable. To encourage further experi-
mentation and facilitate further studies, we provide our source
codes here: https://github.com/alelevente/auction theories.

APPENDIX A
PROOF OF LEMMA 1.

Proof. We prove the statement by induction.
Without loss of generality, consider a simple scenario with

two parking lots (A1, A2), two vehicles (B1, B2), and p
(0)
A1

>

p
(0)
A2

. Following the LGB strategy, B1 and B2 bid for A2 in

the first T =

⌊
p
(0)
A1

−p
(0)
A2

ϵ

⌋
steps. Let us assume that p(T+1)

A1
=

p
(T+1)
A2

in the (T + 1)st step, and B2 placed the last bid on
A2. Then B1 can randomly select one of the following two
options.
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B1 might bid for A1 and wins it for p
(0)
A1

, and B2 wins
A2 for p

(0)
A1

− ϵ, since both B1 and B2 have placed bids on
auctions and there will be no one who could overbid them.

Additionally, B1 perhaps bids for A2 and overbids B2.
Hence, B2 shall place a new bid. At this point, at T + 2,
p
(T+2)
A1

= p
(0)
A1

and p
(T+2)
A2

= p
(0)
A1

+ ϵ. In this case, B2 will bid
for A1 as it is cheaper, and the auctions terminate: B1 wins
A2 for p(0)A1

and B2 wins A1 for p(0)A1
.

Let us assume that this statement is also true for M − 1
vehicles (and N ≥ M parking lots).

Now, we shall prove the statement for M vehicles. Ac-
cording to the induction assumption, after T − δ steps of
the SIA, the first M − 1 vehicles are not overbid, and have
bid for the cheapest M − 1 parking lots following the LGB
strategy. Additionally, all of these i ∈ {1, 2, . . .M − 1}
auctions have a current p

(0)
(M−1)− ≤ p

(T−δ)
i ≤ p

(0)
(M−1)− + ϵ

price. However, the M th vehicle is currently overbid in the
M −1 cheapest auctions in the (T −δ)th step. Supposing that
p
(0)
M− ≥ p

(0)
(M−1)− + ϵ, the M th vehicle will bid for a parking

space of which auction is inside the first M − 1 auctions as it
is still cheaper than the M th parking space. Therefore, in the
(T − δ + 1)st step, a vehicle that has not been overbid yet in
the first M −1 auctions, shall bid again on an auction making
another vehicle bid in the (T−δ+2)th step. This chain reaction

ensures that in δ =

⌊
p
(0)
M−−p

(0)

(M−1)−
ϵ

⌋
additional steps the first

M − 1 auctions will reach the p
(0)
M− price. Consequently, in

the T th step, an overbid driver agent j will have two options:
Firstly, driver agent j might bid for parking lot with M th

cheapest starting price p
(T )
M− = p

(0)
M−. As the M − 1 other

vehicles will not be overbid this way, it will win this parking
lot for p

(0)
M−, and the others will pay either p

(T )
i = p

(0)
M− or

p
(T )
i = p

(0)
M− + ϵ for their parking spaces. Otherwise, the M th

parking lot would not be the cheapest for its p
(0)
M− price.

Secondly, if j bids on any of the first (M − 1) auctions for
p
(T )
M− = p

(0)
M− price, it will overbid another vehicle. It starts

another chain reaction; however, at this time, the M th auction
will be a relevant alternative for the M vehicles; hence, all the
vehicles will win a parking lot for either a p

(0)
M− or a p

(0)
M−+ ϵ

price.

APPENDIX B
PROOF OF THEOREM 3.

Proof. We prove the statement by induction.
Without loss of generality, consider a simple scenario with

two parking lots (A1, A2), three vehicles (B1, B2, B3), and
pvB1

> pvB2
> pvB3

. Following the LGB strategy, B1, B2,
and B3 bid for A1 and A2. According to Lemma 1, after T

steps, we reach a p
(T+1)
A1

= p
(T+1)
A2

= pv,B3
+ ϵ state. In this

state, B3 is no longer capable of making additional bids for
any of the auctions. Furthermore, if B1 and B2 sent the last
bids for A1 and B2, then they win A1 and A2 for a price
of pv,B3 . On the other hand, if B3 has sent the last bid for
for example A1 for pv,B3

, then, for example, B1 is currently
overbid. The B1 vehicle has two options in the (T +1)th step.

It might bid for A1, it will win it for the current p(T+1)
A1

=
pv,B3

+ ϵ price. As B2 is currently winning on A2 (for pv,B3
),

and B3 cannot place further bids, the SIA terminates. On the
other hand, if B1 bids for A2, it will overbid B2 for p(T+1)

A2
=

pv,B3
+ ϵ. It makes B2 bid for A1 for p(T+2)

A1
= pv,B3

+ ϵ. As
B3 cannot make any further bids, the SIA will terminate.

Now, let us assume that the statement is also true for M −
N − 2 vehicles (and N < M − 2 parking lots).

To prove the statement for M −N − 1 vehicles and N <
M − 1 parking lots, it is easy to see that after some T − δ
steps, M − N − 2 vehicles with the (M − N − 2)nd lowest
(or the (N + 2)nd highest) valuations will not be able to bid
further, as ∀i : p

(T−δ)
i > p

v,
(
M−N−2

)− . After additional δ

steps, the current prices will reach the valuation of the (M −
N −1)st lowest (or the (N +1)st highest) vehicle: ∀i : p(T )

i =
pv,(M−N−1)− + ϵ(= pv,(N+1)+ + ϵ). Regarding the vehicle
with the (N + 1)st highest valuation is overbid or not, there
are two possibilities.

If it is overbid and it cannot place any further bids, then the
first N vehicles with the highest N valuations will win the
SIA for the price of pv,(N+1)+ .

If the vehicle is currently not overbid, then, in the (T +
1)st step, a vehicle with higher valuation shall pose another
bid, causing a chain reaction, after which each of the first N
vehicles with the highest valuations will win the auctions for
pv,(N+1)+ + ϵ.

APPENDIX C
PROOF OF THEOREM 4.

Proof. We will prove the statement by Petri nets [34]. A
general Petri net could cover all transitions and places of
a restricted, i.e., deterministically timed Petri nets that has
identical structure and entry points to the general Petri net.
Hence, it would be easy to see that the fully parallel SIA
is a generalization of the serialized implementation if we
can define two Petri nets having similar structures and initial
positions: one general Petri net modeling the former, and a
deterministic timed Petri net modeling the latter algorithm. In
the following, we demonstrate how such Petri nets could be
constructed.

To construct corresponding Petri nets, we shall track the
bids and the possibility of bidding of the bidder agents. Let
us model the possibility of bidding, i.e., the Overbid state
of a bidder in Fig. 3, as Bj places in the Petri net. Moreover,
Ai,j will be places in the Petri net to represent that bidder j
is currently in Winning state on auction i. Naturally, there
shall be no bids on the auctions at the beginning; hence,
starting transitions ts,j put exactly one token to each Bj

places. In addition to the starting ts,j transitions, the rest
of the transitions are defined between the two sets of places
mentioned above. There are exactly two transitions between
any Bj and Ai,j pair of places. Bidding transitions tbi,j
originated from the Bj places and pointing to Ai,j places
represent that the bidder j bids at the i auction. Gating
transitions tgi,j originate from Ai,j places and terminate in Bj

places, represent the tell_overbid transitions in Fig. 3. To
ensure that a bidder always wins at most one auction, and to
also ensure that auctions run the LGB strategy for a single
item demand, each bidding transition tbi,j passes tokens to
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Fig. 8. Structure of the Petri net models. With deterministic timing, it
represents the serialized version. Without the timing, the Petri net corresponds
to the fully parallel SIA execution with LGB strategy for 1-item demand.

each tgi,k gate transition, where k ∈ {1, 2, . . .M}, k ̸= j. The
tgi,k gate transitions require at least two tokens on its inputs to
release a single one. In this Petri net, if there is a token at the
Ai,j place, it means that the bidder j is currently winning on
auction i. If there is a token at some Bj place, it means that
the bidder j had been overbid, and it has not placed a newer
bid since then. Fig. 8 demonstrates this Petri net structure for
a simple N = 2,M = 2 case. This Petri net represents the
SIA with an LGB strategy of [25].

Now, we shall focus on the necessary modifications of
the untimed Petri net to represent the process defined in
Algorithm 2. To model the iterations of line 6 and line 7 of Al-
gorithm 2, we shall use a deterministic timed transitions Petri
net. We assume that the transitions fire in an instant; however,
they get enabled and disabled due to a periodic clock signal.
Fundamentally, the outer iteration of line 6 prescribes that all
transitions related to auction i shall precede the transitions of
auction i+ 1. Moreover, the inner iteration of line 7 requires
that bidding transitions of bidder j shall precede the bidding
transitions of bidder j + 1. Yielding bidding transitions tbi,j
shall get enabled at exactly the NMc+iM+j, c ∈ {0, 1, . . . }
moments. As bidding transitions are required for firing the
gating transitions, gating transitions can remain untimed ones.
Fig. 8 shows an example of a simple N = 2,M = 2 case of
the resulting timed Petri net.

As both Petri nets have a common structure and starting
transitions, the timed Petri net is a restriction of the untimed
version. Consequently, the untimed Petri net, corresponding
to the method described in [25], can cover all transitions of
the timed version. That yields that the parallelly running SIA
with LGB strategy is a generalization of our serialized auction
simulation method.
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