
Model-based mutation testing for Finite State
Machine specifications with MTR

SEPTEMBER 2025 • VOLUME XVII • NUMBER 384

INFOCOMMUNICATIONS JOURNAL

DOI: 10.36244/ICJ.2025.3.10

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 1

Model-based mutation testing for Finite State
Machine specifications with MTR

Gábor Árpád Németh

Abstract—In this article a model-based mutation testing tech-
nique has been introduced to a free and open-source model-
based testing framework. The approach utilizes test suites that
are generated with various test generation algorithms. It is inves-
tigated how efficient the resulting test suites are killing different
types of mutations and their respective complexity. Guidelines
are proposed to select the appropriate test generation methods
for each mutation operator type independently. Using the ability
to define a target score, the wide range of mutation generation
and test generation options, one can create an appropriate trade
off between fault coverage and test execution complexity.

Index Terms—model-based mutation testing, model-based test-
ing, finite state machine, fault coverage, mutation operators

I. INTRODUCTION

In large software companies, while test execution is largely
automated, the process of test design often remains a manual,
thus resource-intensive and error-prone process. In Model-
based testing (MBT) the product requirements are transformed
into a formal specification model, from which test cases can
be generated automatically according to some preset criteria
[5]. This significantly reduces the cost and labor associated
with traditional test design. However, selecting the right test
generation algorithms that provide a proper trade off between
the required fault detection capabilities and the complexity of
the resulting test suite can be still a challenging task. To cope
with this problem one can use model-based mutation testing
(MBMT) approach [2], [3], [18], when different mutation
operators are applied to the specification model itself to
generate all possible mutated models which then can be used
to select a test suite which has the desired fault coverage.

This article focuses on the MBMT of deterministic Fi-
nite State Machine (FSM) specifications which models have
been extensively used in different problem domains such as
telecommunication protocols and software [10], [11]. It is
discussed, how Model ≫ Test ≫ Relax1 (MTR) [20], a
free and open source model-based tool can be used to discover
the fault detection capabilities of different test generation
algorithms for various types of mutation operators. It is also
demonstrated how one can apply a MBMT technique in MTR
to generate test suites that fulfill a given mutation target score
for a given list of mutation operators. The main contribution
of this article is that guidelines are proposed to select the
appropriate test generation algorithms with their respective
parameters for each mutation operator type separately that

Gábor Árpád Németh is with the Department of Computer Algebra, Faculty
of Informatics, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter
sétány 1/C., Hungary, e-mail: nga@inf.elte.hu

1https://modeltestrelax.org/

result in the shortest test suite while providing a preset
coverage of faults. Different strategies for the combinations
of the above methods are also discussed.

The article is organized as follows. Section II discusses
related terms regarding FSMs, MBT, MBMT, fault models
and mutation operators. Section III overviews MBMT with
the MTR framework. Section IV presents simulations to show
the fault detection capabilities of different test generation
approaches and to provide guidelines for selecting the most
efficient ones for each mutation operator separately. The main
results of the paper are concluded in Section V.

II. PRELIMINARIES

A. Finite State Machines

A Mealy Finite State Machine (FSM) M can be defined as
M = (I,O, S, T, s0) where I , O, S and T are the finite and
non-empty sets of input symbols, output symbols, states and
transitions between states, respectively. s0 denotes the initial
state, where the machine starts from. Each transition t ∈ T is
a quadruple t = (sj , i, o, sk), where sj ∈ S is the start state,
i ∈ I is an input symbol, o ∈ O is an output symbol and
sk ∈ S is the next state or end state.

FSM M is deterministic, if for each (sj , i) state-input pair
there exists at most one transition in T , otherwise it is non-
deterministic. If there is at least one transition t ∈ T for
all state-input pairs, the machine is said to be completely
specified (CS), otherwise it is partially specified (PS). In case
of deterministic FSMs the output and the next state of a
transition can be given as a function of the start state and the
input of a transition, where λ: S × I → O denotes the output
function and δ: S×I → S denotes the next state function. Let
us extend δ and λ from input symbols to finite input sequences
I∗ as follows: for a state s1, an input sequence x = i1, . . . , ik
takes the machine successively to states sj+1 = δ(sj , ij),
j = 1, . . . , k with the final state δ(s1, x) = sk+1, and
produces an output sequence λ(s1, x) = o1, . . . , ok, where
oj = λ(sj , ij), j = 1, . . . , k.

An FSM M is strongly connected iff for each pair of states
(sj , sl), there exists an input sequence which takes M from
sj to sl. Two states, sj and sl of FSM M are distinguishable,
iff there exists an x ∈ I∗ input sequence – called a separating
sequence – that produces different output for these states, i.e.:
λ(sj , x) ̸= λ(sl, x). Otherwise states sj and sl are equivalent.
A machine is reduced, if no two states are equivalent.

An FSM M has a reset message, if there exists a special
input symbol r ∈ I that takes the machine from any state
back to the s0 initial state: ∃r ∈ I : ∀sj : δ(sj , r) = s0. The

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 1

Model-based mutation testing for Finite State
Machine specifications with MTR

Gábor Árpád Németh

Abstract—In this article a model-based mutation testing tech-
nique has been introduced to a free and open-source model-
based testing framework. The approach utilizes test suites that
are generated with various test generation algorithms. It is inves-
tigated how efficient the resulting test suites are killing different
types of mutations and their respective complexity. Guidelines
are proposed to select the appropriate test generation methods
for each mutation operator type independently. Using the ability
to define a target score, the wide range of mutation generation
and test generation options, one can create an appropriate trade
off between fault coverage and test execution complexity.

Index Terms—model-based mutation testing, model-based test-
ing, finite state machine, fault coverage, mutation operators

I. INTRODUCTION

In large software companies, while test execution is largely
automated, the process of test design often remains a manual,
thus resource-intensive and error-prone process. In Model-
based testing (MBT) the product requirements are transformed
into a formal specification model, from which test cases can
be generated automatically according to some preset criteria
[5]. This significantly reduces the cost and labor associated
with traditional test design. However, selecting the right test
generation algorithms that provide a proper trade off between
the required fault detection capabilities and the complexity of
the resulting test suite can be still a challenging task. To cope
with this problem one can use model-based mutation testing
(MBMT) approach [2], [3], [18], when different mutation
operators are applied to the specification model itself to
generate all possible mutated models which then can be used
to select a test suite which has the desired fault coverage.

This article focuses on the MBMT of deterministic Fi-
nite State Machine (FSM) specifications which models have
been extensively used in different problem domains such as
telecommunication protocols and software [10], [11]. It is
discussed, how Model ≫ Test ≫ Relax1 (MTR) [20], a
free and open source model-based tool can be used to discover
the fault detection capabilities of different test generation
algorithms for various types of mutation operators. It is also
demonstrated how one can apply a MBMT technique in MTR
to generate test suites that fulfill a given mutation target score
for a given list of mutation operators. The main contribution
of this article is that guidelines are proposed to select the
appropriate test generation algorithms with their respective
parameters for each mutation operator type separately that

Gábor Árpád Németh is with the Department of Computer Algebra, Faculty
of Informatics, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter
sétány 1/C., Hungary, e-mail: nga@inf.elte.hu

1https://modeltestrelax.org/

result in the shortest test suite while providing a preset
coverage of faults. Different strategies for the combinations
of the above methods are also discussed.

The article is organized as follows. Section II discusses
related terms regarding FSMs, MBT, MBMT, fault models
and mutation operators. Section III overviews MBMT with
the MTR framework. Section IV presents simulations to show
the fault detection capabilities of different test generation
approaches and to provide guidelines for selecting the most
efficient ones for each mutation operator separately. The main
results of the paper are concluded in Section V.

II. PRELIMINARIES

A. Finite State Machines

A Mealy Finite State Machine (FSM) M can be defined as
M = (I,O, S, T, s0) where I , O, S and T are the finite and
non-empty sets of input symbols, output symbols, states and
transitions between states, respectively. s0 denotes the initial
state, where the machine starts from. Each transition t ∈ T is
a quadruple t = (sj , i, o, sk), where sj ∈ S is the start state,
i ∈ I is an input symbol, o ∈ O is an output symbol and
sk ∈ S is the next state or end state.

FSM M is deterministic, if for each (sj , i) state-input pair
there exists at most one transition in T , otherwise it is non-
deterministic. If there is at least one transition t ∈ T for
all state-input pairs, the machine is said to be completely
specified (CS), otherwise it is partially specified (PS). In case
of deterministic FSMs the output and the next state of a
transition can be given as a function of the start state and the
input of a transition, where λ: S × I → O denotes the output
function and δ: S×I → S denotes the next state function. Let
us extend δ and λ from input symbols to finite input sequences
I∗ as follows: for a state s1, an input sequence x = i1, . . . , ik
takes the machine successively to states sj+1 = δ(sj , ij),
j = 1, . . . , k with the final state δ(s1, x) = sk+1, and
produces an output sequence λ(s1, x) = o1, . . . , ok, where
oj = λ(sj , ij), j = 1, . . . , k.

An FSM M is strongly connected iff for each pair of states
(sj , sl), there exists an input sequence which takes M from
sj to sl. Two states, sj and sl of FSM M are distinguishable,
iff there exists an x ∈ I∗ input sequence – called a separating
sequence – that produces different output for these states, i.e.:
λ(sj , x) ̸= λ(sl, x). Otherwise states sj and sl are equivalent.
A machine is reduced, if no two states are equivalent.

An FSM M has a reset message, if there exists a special
input symbol r ∈ I that takes the machine from any state
back to the s0 initial state: ∃r ∈ I : ∀sj : δ(sj , r) = s0. The

Gábor Árpád Németh is with the Department of Computer Algebra, Faculty
of Informatics, Eötvös Loránd University, Budapest, Hungary.
(e-mail: nga@inf.elte.hu)

1 https://modeltestrelax.org/

Abstract—In this article a model-based mutation testing tech-
nique has been introduced to a free and open-source model-
based testing framework. The approach utilizes test suites that
are generated with various test generation algorithms. It is inves-
tigated how efficient the resulting test suites are killing different
types of mutations and their respective complexity. Guidelines
are proposed to select the appropriate test generation methods
for each mutation operator type independently. Using the ability
to define a target score, the wide range of mutation generation
and test generation options, one can create an appropriate trade
off between fault coverage and test execution complexity.

Index Terms—model-based mutation testing, model-based
testing, finite state machine, fault coverage, mutation operators

Model-based mutation testing for Finite State
Machine specifications with MTR

Gábor Árpád Németh

https://doi.org/10.36244/ICJ.2025.3.10
mailto:nga%40inf.elte.hu?subject=
https://modeltestrelax.org/

Model-based mutation testing for Finite State
Machine specifications with MTR

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2025 • VOLUME XVII • NUMBER 3 85

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 2

reset is reliable if it is guaranteed to work properly in any
implementation machine Impl of M .

B. Model-based testing

In FSM model-based testing (MBT) the requirements of
the product are described as a specification FSM model M .
The test cases – consisting of input sequences and their
expected output sequences – are generated from M according
to some preset criteria. The collection of test cases are called
as test suite. To connect M to an actual System Under Test
(SUT), a source code, called adaptation code is required that
implements each transition of M as keywords. Utilizing the
adaptation code, one can transform abstract test suites into
executable ones to test the SUT2. The SUT can be considered
as a black-box Impl implementation machine of M with an
unknown internal architecture, i.e. only its output responses
to specific input sequences can be observed. Conformance
testing verifies if the observed output sequences of Impl are
equivalent to the expected output sequences derived from M
– i.e. it determines if Impl conforms to M .

C. Mutation testing and model-based mutation testing

Mutation testing (MT) is a white-box testing technique,
when various faulty system versions – called mutants – are
created by applying simple modifications – called mutation
operators – on the SUT itself that represents typical program-
ming errors [17]. If a test can detect the modification from the
original SUT, then it kills a given mutant, otherwise the given
mutant remains live. A mutant can remain alive either if it is
equivalent to the original SUT or if the test suite was unable
to kill it. The efficiency of a test suite can be detected with a
metric called mutation score that shows the ratio of the number
of killed and the number of non-equivalent mutants. The MT
technique relies on the competent programmer hypothesis [7]
and the coupling effect [16]. The former one claims that
experienced programmers tend to “create programs that are
close to being correct”, i.e. it differs from the specification with
relatively simple syntax and semantic faults [7]. The coupling
effect assumes that those tests that identify all simple faults
probably uncover more complex ones too [16].

In contrast to MT, in Model-based mutation testing
(MBMT) the SUT is considered as a black-box i.e. its source
code can not be mutated. Thus, a feasible approach is to
introduce mutation operators in the formal system specification
model itself [2], [3], [18]. In MBMT the following two
different approaches can be used:

• In [3] a technique is presented, when a ts′x test suite
is generated from each M ′

x mutated model and then
executed on the SUT to be able to discover those faults
that can not be identified by the ts test suite generated
from the original, non-mutated M model. Note that as

2The time required for test execution is the function of the number of steps
(i.e. the number of elements in the input/output sequence) in the test suite
and the complexity of the adaptation code keywords. For example, in API
(Application Programming Interface) testing, the adaptation code created for
a given transition typically requires only a fraction of time to be executed
compared to the one used in GUI (Graphical User Interface) testing.

test suites are generated from all mutant models inde-
pendently and many possible non-equivalent mutations
may exist for a given mutation operator type, the overall
complexity of test generation and the resulting test suites
can be enormous even in case of small specifications.

• Another method is when test suites are generated from
the original model M , and then the given ts test suite is
executed on all mutated models of M ′. The fault detection
capability of ts is determined by inspecting the amount of
mutants it is able to kill, i.e. when ts provides an output
executed on M ′

x that differs from the one expected from
M [2], [18]. The advantage of this approach compared
to the first one is that the complexity of test generation
and the resulting test suite is the fraction of the first one
as the test suite is generated only once from model M .
However, non-equivalent mutants may exist that can not
be discovered from test suites generated just from M .

The current article focuses on the 2nd strategy.

D. FSM fault models and mutation operators

FSM fault models describe the assumptions of the test
engineer about the FSM Impl (s)he is about to test. The
following types of faults were introduced for CS, deterministic
FSMs [6]:

• Output fault: for a given state-input pair, Impl produces
an output that differs from the one specified in M .

• Transfer fault: for a given state-input pair, Impl goes into
a state that differs from the one specified in M .

• Missing state: A state of M does not exist in Impl.
• Extra state: A non-specified state exists in Impl.
For PS, non-deterministic FSMs, these faults were extended

with the following [4]:
• Missing transition: A transition of M does not exist in
Impl.

• Extra transition: A non-specified transition exists in
Impl.

These faults were extended later in other articles that dealt
with FSM-based mutation operators [2], [12], [18]:

• Initial State Change: The state where the FSM starts from
and reset leads to is changed to another state of M .

• Input change: The input of a transition is changed/deleted.

Used terminology in...
[4], [6] [12] [2], [18] Notes

- Wrong-start-state ISC (Initial State Changed) -
- Event-exchanged COI (Change of Input) May result in a non-det. FSM
- Event-missing MOI (Missing of Input) Special case of COI. Contradicts

to FSM formalism.
Output fault Output-exchanged COO (Change of Output) -
- Output-missing MOO (Missing of Output) Special case of COO
Transfer fault Destination-

exchanged
ESC (End State Changed) May result in a non-strongly

connected FSM
- - ROT (Reverse of Transition) Combination of MOT and Extra

Transition
Missing transition Arc-missing MOT (Missing of Transition) May result in a non-strongly

connected FSM
Extra transition - DOT (Redundant of Transition) May result in a non-det. FSM
Missing state State missing MOS (Missing of State) Associated transitions are also

removed. May result in a non-
strongly connected FSM

Extra state State extra - Results in a non-strongly con-
nected FSM

- - SSR (Start State Redundant) Special case of extra state
- - ESR (End State Redundant) Special case of extra state

TABLE I
DIFFERENT TERMINOLOGIES FOR FSM FAULTS/MUTATION OPERATORS

Model-based mutation testing for Finite State
Machine specifications with MTR

SEPTEMBER 2025 • VOLUME XVII • NUMBER 386

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 3

The used fault types of the referred papers and the differ-
ences in their terminologies are concluded in Table I.

Missing of Input (MOI) results in the changing of a state
without receiving an actual input symbol which contradicts to
the original FSM formalism. Change of Input (COI) may result
in a non-deterministic FSM and in case of CS FSMs the set of
input symbols must be extended to preserve determinism. Also
COI can be created as a combination of Missing of Transition
(MOT) and Extra Transition (ET).

An isolated, extra state (ES) can not be discovered with
test suites generated from FSM M . Thus, the end state of an
existing transition should be also modified to point to ES, and
an ET that originates from ES should also be added.

Thus, the following mutation operators are considered:
Initial State Changed (ISC), Change of Output (COO), Missing
of Output (MOO), End State Changed (ESC), Missing of
Transition (MOT), Extra Transition (ET), Missing of State
(MOS), Extra State with 1-1 incoming/outgoing transitions
(ES+).

III. MODEL-BASED MUTATION TESTING WITH MTR

Model ≫ Test ≫ Relax (MTR) offers a wide range of
test generation algorithms for FSM-based specifications [20],
this article focuses on the following:

• Transition Tour (TT) [14] for the transition coverage
criteria, which generates the shortest test sequence that
traverses all transitions of the specification, then it returns
to the initial state.

• All-Transition-State (ATS) algorithm [19] for the ATS
criteria [9]. This algorithm first traverses all transitions,
then traverses all states again. It also creates alternative
subsequences that try to reach all states in a way, that
are as transition adjacent to each other as possible. In the
current article ATS0, the non-iterative version of ATS is
considered which provides 2 alternative subsequences.

• N-Switch Coverage (N-SC) algorithm [20] for the N-
SC criteria [6], that covers all topologically possible,
consecutive N + 1 transitions of the specification.

• Test generation using Harmonized State Identifiers (HSI)
[13]. This algorithm creates a structured test suite that
identifies all states of the machine, then all end states
of transitions. The resulting test suite can be extended
with sequences that guarantee to find a given θ number
of extra states in Impl [8]. Note that in contrast with
other algorithms listed above, HSI assumes that FSM M
has reliable reset.

An overview of these algorithms which also compares their
analytical and specific in MTR their practical complexities in
detail (both for test generation and for the size of the resulting
test suite) is presented in [20].

MBMT test generation can be selected in MTR, its pseudo
code is described in Algorithm 1.

The inputs of the algorithm:
• The M specification FSM
• The Ω list of mutation operators, for which each ωn

element can either contain one (first order mutants) or
more elements (higher order mutants)

Algorithm 1: Model-based mutation testing (MBMT)
input : M ; Ω = {ω1, .., ωK}; target score, ALG
output: TS; mutation score

1 T := {}, TS := {}
2 foreach ωn ∈ Ω do
3 M ′ := generateMutants(M , ωn)
4 foreach ts ∈ T do
5 execTestSuite(M ′, ts)
6 if reachedTarget(M ′,ts,target score) and ts

̸∈ TS then
7 TS := TS ∪ {ts}
8 if ∄ ts ∈ T : reached target score for ωn then
9 while ¬ reachedTarget(M ′,ts,target score)

∧ ∃ unused ∈ ALG do
10 alg := First unused element of ALG
11 ts := generateTestSuite(M , alg)
12 T := T ∪ {ts}
13 execTestSuite(M ′, ts)
14 if reachedTarget(M ′,ts,target score)

then
15 TS := TS ∪ {ts}
16 break // goto line 2
17 if ∄ ts ∈ T : reached target score for ωn then
18 cts := element of ALG with the highest score
19 TS := TS ∪ {cts}
20 mutation score := calcMutScore(M , Ω, TS)
21 return TS, mutation score

• The target score the test engineer would like to achieve
• The ALG ordered list of applicable test generation algo-

rithms with their parameters

The outputs of the algorithm:

• The TS set of test suites used to achieve target score
• The actually achieved mutation score

After initialization (line 1), the algorithm goes through the
Ω list of mutation operators (line 2) and generates all possible
M ′ mutant models for the given ωn operator (line 3). Then
it checks if there is a previously generated test suite ts in
T (created for previous element(s) of Ω) that can be used
to achieve target score on all possible mutant models M ′

created for ωn (lines 4-6). If such ts exists, ts is added to TS
(line 7). If no such ts in T exist, then until target score is
reached and there exists any alg unused element of ALG,
ts test suite is generated according to alg test generation
algorithm and its parameters setting and ts is added to the
T set of generated test suites (lines 8-12). Then it is checked
if the test suite ts can be used to achieve target score; if
yes, ts is added to TS and process with next element of
Ω (lines 13-16). If none of the test suites ts can be used
to achieve target score, then the algorithm simply adds the
one that has the biggest score for ωn (lines 17-19). If all
elements of Ω list of mutation operators have been processed,
the algorithm calculates the culminated mutation score (lines
20), returns the TS set of used test suites, the actually achieved
mutation score and terminates (line 21).

Model-based mutation testing for Finite State
Machine specifications with MTR

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2025 • VOLUME XVII • NUMBER 3 87

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 4

Note that by modifying the value of the target score, the
Ω list of mutation operators and the ALG ordered list of test
generation algorithms (with their parameters), the test engineer
has the ability to create a proper trade off between the desired
fault coverage and the complexity of the generated test suites.

IV. SIMULATION RESULTS

Simulations were performed to find answers to the research
questions related to MBMT in MTR below:
Q1 What is the memory consumption of mutation generation

in function of the size of the system and the type of the
mutation operator?

Q2 What is the fault coverage of the test suites of different
test generation algorithms for different mutation types?

Q3 What is the length of the test suites above?
Q4 How different strategies for the ALG ordered list of

applicable test generation algorithms perform best for
different target scores regarding the size of the resulting
test sets?

Q5 What are the answers to the Q2-Q4 questions for edge
cases?

Q6 How efficient are the different test suites to discover 2nd

order mutants?

Number of states
ID min max size of step |I| |O| section Connecting to question

Scenario 1 5 50 5 5 10 IV-A1 Q1, Q2, Q3, Q4

Scenario 2 5 50 5 2 2 IV-A2 Q5
IV-B Q6

SIP UAC
registration

4 - 11 3 IV-C Q2

To answer the above questions, strongly connected, reduced,
CS, deterministic random FSMs with reliable reset
capability were generated with MTR in 2 scenarios and a
small scale specification from the telecommunication
domain was also investigated (see Table II). All possible
ISC, COO, MOO, ESC, MOT, ET, MOS and ES+ mutant
models were generated for each model, which keep the
machine strongly connected and deterministic. The
simulations were executed on servers running an Ubuntu
22.04.2 LTS operating system with 8 GB memory and
one core of a shared AMD EPYC 7763 64-core CPU.
Based on the results, guidelines are proposed in subsection
IV-D to select the appropriate test generation methods for
each mutation operator type independently.

A. First order mutations

1) Scenario 1: Consider Scenario 1, where the number of
input and output symbols is 5 and 10, respectively.

Figure 1 shows the number of generated mutant models for
each mutation operator. ES+ provided the most mutants as
here the end state of all existing transitions can be changed
to point to the extra state, and the input and the output of the
new transition originating from the extra state can be selected
from any combinations of the I/O sets of M . The memory
consumption is shown in Table III. For ES+ mutants, the
simulations could be performed only up to 15 states before
the system ran out of the available 8 GB memory.

Figure 1. Scenario 1: Number of mutated models

Mutation Memory consumption in GB for different number of states
operator 5 10 15 20 25 30 35 40 45 50

ISC 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
COO 0.01 0.03 0.06 0.09 0.13 0.22 0.29 0.36 0.43 0.51
MOO 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.06
ESC 0.01 0.03 0.09 0.19 0.35 0.72 1.07 1.50 2.07 2.74
MOT 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.06
ET 0.01 0.06 0.19 0.41 0.72 1.48 2.23 3.14 4.26 5.60
MOS 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ES+ 0.18 1.36 4.90 - - - - - - -

TABLE III
SCENARIO 1: MEMORY CONSUMPTION OF MUTATED MODELS

Mutation scores
Mutation operator min average median 90th percentile max

ISC 1 1 1 1 1
COO 1 1 1 1 1
MOO 1 1 1 1 1
ESC 0.96 0.9971 1 0.9921 1
MOT 1 1 1 1 1
ET 0 0 0 0 0
MOS 1 1 1 1 1
ES+ 0.9557 0.9937 0.9999 0.9773 1

TABLE IV
SCENARIO 1: MUTATION SCORE DISTRIBUTION FOR ALL MUTATED

MODELS AND TEST GENERATION ALGORITHMS

Test Mutation scores for different number of states
gen.
alg.

5 10 15 20 25 30 35 40 45 50

TT .96 .968 0.969 0.983 0.987 0.992 0.988 0.996 0.996 0.993
ATS0 1 .997 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.999
HSI 1 1 1 1 1 1 1 1 1 1
HSI
(θ=1)

1 1 1 1 1 1 1 1 1 1

1-SC 1 1 1 1 1 1 1 1 1 1
2-SC 1 1 1 1 1 1 1 1 1 1

TABLE V
SCENARIO 1: MUTATION SCORES FOR ESC

Mutation scores for different number of states
Test generation algorithm 5 10 15

TT 0.9557 0.9773 0.9849
ATS0 0.9989 0.9995 0.9998
HSI 0.9813 0.9902 0.9994
HSI (θ=1) 1 1 1
1-SC 1 1 1
2-SC 1 1 1

Test suites were generated with the TT, ATS0, 1-SC,
2-SC and HSI (with and without the extension to discover
an extra state) test generation algorithms from the original,
non-modified model M . The mutation detection capability
of the generated test suites were investigated for all generated
mutant models M ′ of each mutation operator type separately.

Table IV shows that all ISC, COO, MOO, MOT, MOS
mutants were identified by all of the applied test generation
algorithms, but none of the ET faults were discovered by any
of these methods. The reason for the latter one is that by
adding a new transition to a CS model, the I input symbol

TABLE II
INVESTIGATED SCENARIOS

TABLE VI
SCENARIO 1: MUTATION SCORES FOR ES+

Model-based mutation testing for Finite State
Machine specifications with MTR

SEPTEMBER 2025 • VOLUME XVII • NUMBER 388

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 5

set of M should be extended to preserve determinism, but the
new input symbol has not existed in the test suites generated
from M , thus the new transition could not be selected.

The ESC and ES+ mutations were partially identified by
the applied test suites, so the coverage of these faults were
investigated for each test suite separately. Table V shows that
HSI, 1-SC and 2-SC killed all ESC mutants, while ATS0
nearly all of them and TT performed the worst. Table VI
shows that 1-SC and 2-SC killed all of the ES+ mutants
and ATS0 nearly all of them. Interestingly, the test suite of
the HSI-method has performed worse than ATS0 to discover
ES+ faults. As expected, when HSI was extended with the
sequences designed to catch an extra state (θ=1), it discovered
all ES+ faults and TT performed the worst.

Figure 2. Scenario 1: Length of different test suites

Figure 3. Scenario 1: Test generation time of different test suites

The length and the generation time of the different test suites
are presented in Figures 2 and 3, respectively. As each test
suite was generated from the original model M , its length
and test generation time are independent from the type of the
mutation operator, that was later applied on M .

ALG / Length of the test suite for different number of states
target score 5 10 15 20 25 30 35 40 45 50

ATS0, HSI / 1 83 271 672 774 1139 1468 1583 2203 2523 2561
ATS0, 1-SC / 1 83 400 565 780 945 1124 1431 1763 1652 1907
ATS0, HSI /
0.998

83 271 271 420 474 561 719 864 905 989

ATS0, 1-SC /
0.998

83 400 271 420 474 561 719 864 905 989

ATS0, HSI /
0.99

83 173 271 420 474 561 719 864 905 989

ATS0, 1-SC /
0.99

83 173 271 420 474 561 719 864 905 989

TABLE VII
SCENARIO 1: LENGTH OF TEST SUITES USING DIFFERENT STRATEGIES TO

KILL ALL, 99.8% AND 99% OF ESC MUTANTS

Mutation scores
Mutation operator min average median 90th percentile max

ISC 0.7857 0.9765 1 0.9411 1
COO 1 1 1 1 1
MOO 1 1 1 1 1
ESC 0.8 0.9905 1 0.9743 1
MOT 1 1 1 1 1
ET 0 0 0 0 0
MOS 1 1 1 1 1
ES+ 0.8142 0.9925 1 0.9855 1

Test gen. Mutation scores for different number of states
algorithm 5 10 15 20 25 30 35 40 45 50

TT 1 1 0.7857 1 0.9583 1 0.9411 1 0.9772 1
ATS0 1 1 0.7857 1 0.9583 1 0.9411 1 0.9772 1
HSI 1 1 1 1 1 1 1 1 1 1
HSI
(θ=1)

1 1 1 1 1 1 1 1 1 1

1-SC 1 0.8888 0.8571 1 0.9583 1 1 0.9743 0.9545 1
2-SC 1 0.8888 0.8571 1 0.9583 1 1 0.9743 0.9545 1

The achieved mutation scores were investigated for each test
suite separately for ISC, ESC and ES+ mutations. As shown
in Table IX, only HSI was able to kill all ISC mutants and TT,
ATS0, 1-SC and 2-SC were able to discover roughly the same
amount of them. The reason for the former one is that HSI
applied a reset symbol at the beginning of each test sequence
and at the end of each test sequence the end state was verified.
The reason for the latter one is that the test suites of TT, ATS0,
1-SC and 2-SC contain just one sequence, and the starting
input subsequence x0 of this sequence may enter the same
state and produce the same output sequence for different initial
states making it impossible to discover some ISC mutations.

The results for ESC are presented in Table X. All ESC
mutations were killed by the HSI and 2-SC. The remaining
test suites, ordered by efficiency, are: 1-SC, ATS0 and TT.
For ES+ mutations (Table XI) the HSI with the extension
that is designed to catch 1 extra state and 2-SC were able

The length of the resulting test suites were also investigated
in the case when one was using different strategies for the
ALG ordered list of applicable test generation algorithms
(with their parameters) to kill all, 99.8% and 99% of ESC
mutants. As Table VII shows, the ALG=ATS0, HSI and
ALG=ATS0, 1-SC strategies result in almost the same length
of test suites to kill all ESC mutants for Scenario 1. If
target score was 0.998, the test suites of ATS0 were included
in the resulting T S set of test suites in all cases, but the one
with 10 states. In case of target score = 0.99, the test suites
of ATS0 were included in T S in all cases.

2) Scenario 2: An edge case was also investigated in Sce-
nario 2, where both the number of input and output symbols
were 2.

TABLE VIII
SCENARIO 2: MUTATION SCORE DISTRIBUTION FOR ALL MUTATED

MODELS AND TEST GENERATION ALGORITHMS

One can observe in Table VIII, that due to less input
and output symbols, the faults were harder to detect
compared to Scenario 1. Again, all COO, MOO, MOT, MOS
mutants were identified, but none of the ET faults were
discovered by any of the test suites. In contrast to Scenario 1,
not all ISC mutations are detected by all of the test suites.
Also a higher rate of ESC faults remained undetected.

TABLE IX
SCENARIO 2: MUTATION SCORES FOR ISC

Model-based mutation testing for Finite State
Machine specifications with MTR

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2025 • VOLUME XVII • NUMBER 3 89

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 6

Test Mutation scores for different number of states
gen.
alg.

5 10 15 20 25 30 35 40 45 50

TT 0.8 0.978 0.899 0.973 0.957 0.969 0.968 0.978 0.974 0.983
ATS0 1 1 0.994 0.993 0.995 0.991 0.994 0.996 0.995 0.997
HSI 1 1 1 1 1 1 1 1 1 1
HSI
(θ=1)

1 1 1 1 1 1 1 1 1 1

1-SC 1 1 0.997 0.998 0.998 0.997 0.999 0.999 0.999 0.999
2-SC 1 1 1 1 1 1 1 1 1 1

TABLE XI
SCENARIO 2: MUTATION SCORES FOR ES+

Test Mutation scores for different number of states
gen.
alg.

5 10 15 20 25 30 35 40 45 50

TT .814 .966 0.931 0.984 0.975 0.987 0.985 0.988 0.990 0.991
ATS0 .971 .995 0.996 0.995 0.997 0.996 0.998 0.997 0.998 0.998
HSI 1 .990 1 1 1 1 1 1 1 1
HSI
(θ=1)

1 1 1 1 1 1 1 1 1 1

1-SC 1 1 1 1 1 1 1 0.999 1 1
2-SC 1 1 1 1 1 1 1 1 1 1

to discover all mutations. Even HSI without this
extension and 1-SC discovered all ES+ faults in almost all
cases. At and above 10 states ATS0 was able to catch at least
99.5% of ES+ faults. As expected, the TT was again the least
effective to kill ES+ mutations.

Figure 4. Scenario 2: Length of different test suites

ALG / Length of the test suite for different number of states
target score 5 10 15 20 25 30 35 40 45 50

ATS0, HSI / 1 51 123 336 470 706 973 1116 1304 1650 1790
ATS0, 1-SC, 2-SC
/ 1

51 123 308 423 577 656 822 732 1146 1046

ATS0, HSI / 0.998 51 123 336 470 706 973 1116 1304 1650 1790
ATS0, 1-SC, 2-SC
/ 0.998

51 123 308 155 250 656 326 279 494 400

ATS0, HSI / 0.99 51 123 199 310 350 428 543 537 758 705

The length of the different test suites is shown in Figure 4.

B. Second order mutations

Second order mutation operators generate much more mu-
tated models, than first order ones, thus simulations could be
performed only for the subset of states even for Scenario 2.
The mutation scores of different test suites for ES+, ISC and

ALG / Length of the test suite for different number of states
target score 5 10 15 20 25 30 35 40 45 50

ATS0, HSI,
HSI (θ=1) / 1

60 372 336 470 706 973 1116 1304 1650 1790

ATS0, 1-SC, 2-SC
/ 1

37 69 113 155 250 255 326 732 494 400

1-SC, HSI,
HSI (θ=1) / 1

37 69 113 155 250 255 326 1304 494 400

ATS0, HSI,
HSI (θ=1) / 0.99

60 123 199 310 350 428 543 537 758 705

1-SC, HSI,
HSI (θ=1) / 0.99

37 69 113 155 250 255 326 279 494 400

TABLE XIII
SCENARIO 2: LENGTH OF TEST SUITES USING DIFFERENT STRATEGIES TO

KILL ALL AND 99% OF ES+ MUTANTS

Mutation scores for different number of states
Test generation algorithm 5 10 15 20 25

TT 0.9957 0.9996 0.9784 0.9999 0.9989
ATS0 0.9985 1 0.9992 1 0.9999
HSI 1 1 1 1 1
HSI (θ=1) 1 1 1 1 1
1-SC 1 0.9996 0.9999 1 1
2-SC 1 1 1 1 1

Mutation scores for different number of states
Test generation algorithm 5 10 15 20 25 30 35

TT 1 1 0.9704 1 0.9982 0.9999 0.9971
ATS0 1 1 0.9989 1 0.9998 1 0.9997
HSI 1 1 1 1 1 1 1
HSI (θ=1) 1 1 1 1 1 1 1
1-SC 1 1 0.9991 1 0.9999 1 1
2-SC 1 1 1 1 1 1 1

ESC, ISC second order mutants are presented in Table
XIV and XV, respectively. HSI and 2-SC test suites were
able to kill all of these mutants. The remaining test suites,
ordered by efficiency, are: 1-SC, ATS0 and TT.

C. SIP UAC registration example

NotRegistered

AwaitRegResponse

USER.init
/ REGISTER

403 Forbidden
/ USER.notdone

404 Not Found
/ USER.notdone

400 Invalid Request
/ USER.notdone

423 Interval Too Brief
/ REGISTER

 Response timeout / REGISTER

401 Unauthorized
/ REGISTER

Registered

200 OK
/ USER.done

Registration timeout
 / REGISTER

AwaitDeregResponse

USER.exit
/ REGISTER

 200 OK
 / USER.done

 Response timeout
/ USER.done

Figure 5. FSM for the registration process of the SIP user agent client

The mutation scores of the TT, ATS0, HSI, 1-SC and 2-SC
test suites for different mutation operators for a specification
FSM presented in Figure 5 were also observed. This FSM
describes the registration process of the SIP (Session Initiation
Protocol) User Agent Client (UAC) [1]3.

Before the results presented in Table XVI are discussed, a
quick overview of ESC and ES+ faults are given. An ESC bug
results to enter an invalid state. For example, the UAC assumes
that its REGISTER request given for the 401 Unauthorized

3Here only the signaling level was considered; a step-by-step description
of the construction of this FSM from call-flows can be found in [15].

TABLE XIV
SCENARIO 2: MUTATION SCORES FOR ES+, ISC 2nd ORDER MUTANTS

TABLE X
SCENARIO 2: MUTATION SCORES FOR ESC

Different strategies were investigated for the ALG ordered
list to kill all, 99.8% and 99% of ESC mutants in Table XII
and to kill all and 99% of ES+ mutants in Table XIII.

TABLE XV
SCENARIO 2: MUTATION SCORES FOR ESC, ISC 2nd ORDER MUTANTS

TABLE XII
SCENARIO 2: LENGTH OF TEST SUITES USING DIFFERENT STRATEGIES TO

KILL ALL, 99.8% AND 99% OF ESC MUTANTS

Model-based mutation testing for Finite State
Machine specifications with MTR

SEPTEMBER 2025 • VOLUME XVII • NUMBER 390

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 7

Mutation Mutation scores for PS / CS machines...
operator TT ATS0 HSI HSI (θ=1) 1-SC 2-SC

ISC 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
COO 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
MOO 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
ESC 0.8928 /

0.9758
1 / 1 0.0357 / 1 1 / 1 1 / 1 1 / 1

MOT 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
ET 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
MOS 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
ES+ 0.8939 /

0.9707
0.9939 /
0.9948

0.1 / 0.9951 0.9848 / 1 0.9939 / 1 0.9962 / 1

answer was successful without waiting for the 200 OK answer
from the server, thus it enters the state Registered instead of
AwaitRegResponse. ES+ mutations introduce a new func-
tionality in the implementation, that was not specified. For
instance, instead of returning to the NotRegistered state after
an 400 Invalid Request has been received, the UAC goes to a
distinct Error state.

Note that two different approaches were considered for test
suite generation. In the first case, the test suites were generated
directly from the original PS model presented in Figure 5. In
the second case the former PS machine has been converted
into a CS one by MTR by adding a loop transition without an
output symbol for each undefined state-input symbol pair and
test suites were generated from this CS FSM.

The actually achieved mutation scores for the PS and CS
machines (see Table XVI) highly differ from each other for
ESC and ES+ mutations in case of HSI test generation. The
reason is the following: Most of the input symbols were defined
only for 1 transition in case of the PS machine. Due to this, HSI
was unable to find seperating sequences4, resulting in that the
structured test suite of HSI was unable to perform its state
verification process at the end of each sequence. Thus, HSI
could not identify ESC and ES+ mutations. However, this
problem could be easily fixed by converting the PS machine
into a CS one; in this case the test suite of HSI was able to
apply state verifications at the end of each sequence. The test
suite of HSI (θ=1) contains longer subsequences which made it
less sensitive to whether the FSM was partially or completely
specified. As TT, ATS0, 1-SC and 2-SC provide just one
sequence in their test suite, they were also affected much less
by the completeness of the machine. But the fault detection
capabilities of all methods were improved when the PS FSM
was converted into a CS one.

D. Guidelines for selecting test generation algorithms

Based on the achieved mutation scores and the length of
the resulting test suites observed previously, our proposals
for selecting the appropriate test generation algorithms for
different types of mutation operators are summarized in Table
XVII. Note that as COO, MOO, MOT, MOS mutations can be
discovered by just traversing all transitions of FSM M , here
the application of the shortest TT test suite is advised as it
provides transition coverage. Due to its state verification part,
HSI guarantees to find all ISC and ESC mutants in case of

4Note that the HSI test generation implemented in MTR throws a warning
if separating sequence does not exist for a given state pair.

Mutation Proposed test generation algorithm for...
operator complete coverage good balance Notes

ISC HSI TT HSI for CS FSMs with reliable reset or if a separating
sequence exist for all state pairs4,5 .

COO TT TT -
MOO TT TT -
ESC HSI / (2-SC) ATS0, 1-SC HSI for CS FSMs with reliable reset or if a separating

sequence exist for all state pairs4,5 . 1-SC over ATS0 is
advised for sparse FSMs. No proof for 100% coverage
of 2-SC.

MOT TT TT -
ET - - This type of fault can not be discovered.
MOS TT TT -
ES+ HSI (θ=1) / (2-SC) ATS0, HSI /

1-SC
HSI (θ=1) for CS FSMs with reliable reset or if a
separating sequence exist for all state pairs4,5 . No
proof for 100% coverage of 2-SC. 1-SC & 2-SC over
other options are advised for sparse FSMs. HSI over
ATS0 is advised for higher coverage.

CS machines5 or if a separating sequence exists for all pairs of
states in case of PS machines4. HSI also assumes that the SUT
has reliable reset. If these assumptions of HSI can not be
fulfilled, for sparse models (where |T | < 5 · |S|, that is |I| < 5
in case of CS FSMs) 2-SC can be used, as it found all ESC
faults in our simulations, but there is no analytical proof for
complete coverage. Although ATS0 does not guarantee to find
all ESCs, but can be a proper trade off between fault coverage
and the length of the test suite as it discovers most of the ESC
mutants with a fraction of the length of HSI and 2-SC test
suites. For sparse models (where |T | < 5 · |S|) 1-SC can be a
suitable option over ATS0 to find most of the ESCs. In edge
cases, some ISCs may be undiscovered by TT, ATS, 1-SC and
2-SC, but as they provide roughly the same fault detection
capability, the shortest TT is proposed as a trade off between
ISC coverage and the complexity of the test suite. For ES+, one
can extend the HSI with extra state searching part (θ=1) that
kills all mutants in case of CS FSMs or if a separating sequence
exists for all pairs of states in case of PS machines. For sparse
models 2-SC can be also applied, as it also discovered all
mutants in our simulations, but there is no analytical proof for
complete coverage of ES+ mutations. The ATS0 and HSI
without the extra state extension can also be a suitable option to
cover the most of ES+ faults, the latter one is proposed for a
higher fault coverage at the cost of a longer test suite.
Alternatively, one can use 1-SC for less dense models to find
most of the ES+ mutants. As discussed previously, ET
mutations can not be discovered with test suites which are
generated from the original, non-mutated specification M .

 If one uses MBMT with MTR, for the ALG ordered list of
test generation algorithms the following strategies are pro-
posed to discover different mutation types. For COO, MOO,
MOT, MOS mutation operators: ALG=TT. For ESC faults:
ALG=1-SC, HSI for sparse FSMs and ALG=ATS0, HSI for
more dense FSMs. If the FSM does not have reliable reset, then
ALG=1-SC, 2-SC strategy can also be applied for ESCs in case
of sparse models. For ISC mutations ALG=TT, HSI is advised
(or if HSI not applicable, just ALG=TT). For ES+ mutations
ALG=1-SC, 2-SC, HSI (θ=1) for sparse FSMs and ALG=ATS0,
HSI (θ=1) for more dense FSMs are proposed .

 Note that the processing order for the Ω list of mutation
operators are not optimized in line 2 of Algorithm 1. Thus,

5Note that PS machines can be easily converted into CS ones.

TABLE XVII
GUIDELINES FOR TEST GENERATION ALGORITHMS FOR DIFFERENT

MUTATION OPERATORS

TABLE XVI
MUTATION SCORES FOR THE SIP UAC REGISTRATION EXAMPLE

Model-based mutation testing for Finite State
Machine specifications with MTR

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2025 • VOLUME XVII • NUMBER 3 91

Gábor Árpád Németh obtained his MSc in Electri-
cal Engineering and his PhD in Computer Science at
the Budapest University of Technology and Economics
(BME), Department of Telecommunication and Media
Informatics (TMIT) in 2007 and 2015, respectively.
He worked at Ericsson between 2011 and 2018 on a
performance testing tool used in the telecommunica-
tion industry. Currently, he works at the Eötvös Loránd
University (ELTE) on topics related to requirement en-
gineering and software testing.

INFOCOMMUNICATIONS JOURNAL, VOL. XVII, NO. 1, 2025 8

if one would like to generate a set of test suites that is able
to catch different mutation types this should be taken into
account. One should apply those mutations first in the Ω
ordered list of mutation operators, that are harder to detect to
avoid adding a weaker test suite to the test set before adding
a stronger one that would make the former one unnecessary.
According to presented results, in case of first order mutants,
the following order is suggested in Ω: (1) ES+, (2) ESC, (3)
ISC, (4) MOT/MOS/COO/MOO.

Using the results discussed previously, one can set a
target score that is to be achieved for a given Ω list of muta-
tion operators and the proper ALG ordered list of applicable
test generation algorithms to fulfill the desired coverage with
the lowest possible length in the resulting test set of test suites.

V. CONCLUSION

In the current paper it is presented how model-based muta-
tion testing can be applied for finite state machine specifica-
tions in the free and open source Model ≫ Test ≫ Relax
model-based testing framework. The test engineer can set the
list of different types of first or higher order mutants (s)he
interested in, the ordered list of test generation algorithms
(with their parameters) to be applied from a wide list of options
and a target mutation score which is to be achieved.

The memory consumption of mutation generation, the fault
coverage of the different test generation strategies for different
mutation operators and the length of the resulted test suites
were investigated by simulations including first and second
order mutants. Guidelines were also given for selecting the
appropriate test generation algorithm and the ordered list
of these methods with their respective parameters for each
mutation operator separately. A processing order for different
types of mutation operators for efficient test suite generation
is also proposed if one would like to cover multiple types of
mutations. Using the above guidelines with the wide range
of setting possibilities one can create an appropriate trade off
between fault coverage and the size of the resulting test set of
test suites.

ACKNOWLEDGEMENTS

The author would like to thank the students who took part
in implementation of the following parts of the framework:
Máté István Lugosi for the TT and ATS test generation,
for the simulation script, and for the basic change injection
functionality, Tódor Dávid Nyeste for the HSI-method, Bálint
Miksa Rumpler for the N-SC test generation, the extension of
change injection and for the mutation testing logic above all
test generation algorithms.

REFERENCES

[1] RFC 3261: SIP: Session Initiation Protocol, 2002. https://tools.ietf.org/
html/rfc3261 Accessed: 2025-07-10.

[2] Danial Nikbin Azmoudeh and Yvan Labiche. Analysis of mutation
operators for FSM testing. In 2023 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages
300–307, 2023. https://doi.org/10.1109/ICSTW58534.2023.00060.

[3] Fevzi Belli, Christof J. Budnik, Axel Hollmann, Tugkan Tuglular,
and W. Eric Wong. Model-based mutation testing—Approach and
case studies. Science of Computer Programming, 120:25–48, 2016.
https://doi.org/10.1016/j.scico.2016.01.003.

[4] Gregor von Bochmann, Anindya Das, Rachida Dssouli, Martin Dubuc,
Abderrazak Ghedamsi, and Gang Luo. Fault Models in Testing. In
Proceedings of the IFIP TC6/WG6.1 Fourth International Workshop on
Protocol Test Systems IV, pages 17–30, Amsterdam, The Netherlands,
1991. North-Holland Publishing Co.

[5] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner (Eds.). Model-Based Testing of Reactive Systems.
Springer, 2005. https://doi.org/10.1007/b137241.

[6] T. Chow. Testing software design modelled by finite-state machines.
IEEE Transactions on Software Engineering, 4(3):178–187, May 1978.
https://doi.org/10.1109/TSE.1978.231496.

[7] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on Test Data
Selection: Help for the Practicing Programmer. Computer, 11(4):34–
41, 1978. https://doi.org/10.1109/C-M.1978.218136.

[8] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An Improved
Conformance Testing Method. In Farn Wang, editor, Formal Techniques
for Networked and Distributed Systems – FORTE 2005, volume 3731
of Lecture Notes in Computer Science, pages 204–218. Springer, Berlin,
Heidelberg, 2005. https://doi.org/10.1007/11562436 16.

[9] István Forgács and Attila Kovács. Practical Test Design. BCS, The
Chartered Institute for IT, 2019.

[10] Drago Hercog. Protocol Specification and Design. In Commu-
nication Protocols. Springer, Cham, 2020. https://doi.org/10.1007/
978-3-030-50405-2 2.

[11] Gerard J. Holzmann. Design and Validation of Protocols. Prentice-Hall,
1990.

[12] Yue Jia and Mark Harman. An Analysis and Survey of the Development
of Mutation Testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011. https://doi.org/10.1109/TSE.2010.62.

[13] Gang Luo, Alexandre Petrenko, and Gregor V. Bochmann. Selecting
Test Sequences for Partially-Specified Nondeterministic Finite State
Machines. In Proceedings of the IFIP WG6.1 7th International
Workshop on Protocol Test systems VI, pages 91–106. Springer, 1995.
https://doi.org/10.1007/978-0-387-34883-4 6.

[14] S. Naito and M. Tsunoyama. Fault detection for sequential machines
by transition-tours. In Proceedings of the 11th IEEE Fault-Tolerant
Computing Conference (FTCS 1981), pages 238–243. IEEE Computer
Society Press, 1981.

[15] Gábor Árpád Németh and Péter Sótér. Teaching performance test-
ing. Teaching Mathematics and Computer Science, 19(1):17–33, 2021.
https://doi.org/10.5485/TMCS.2021.0518.

[16] A. Jefferson Offutt. Investigations of the software testing coupling
effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20, January 1992.
https://doi.org/10.1145/125489.125473.

[17] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Chapter six - mutation testing advances: An analysis and
survey. volume 112 of Advances in Computers, pages 275–378. Elsevier,
2019. https://doi.org/10.1016/bs.adcom.2018.03.015.

[18] S.C. Pinto Ferraz Fabbri, M.E. Delamaro, J.C. Maldonado, and
P.C. Masiero. Mutation analysis testing for finite state ma-
chines. In Proceedings of 1994 IEEE International Sympo-
sium on Software Reliability Engineering, pages 220–229, 1994.
https://doi.org/10.1109/ISSRE.1994.341378.

[19] Gábor Árpád Németh and Máté István Lugosi. Test gen-
eration algorithm for the All-Transition-State criteria of Finite
State Machines. Infocommunications Journal, 13(3):56–65, 2021.
https://doi.org/10.36244/ICJ.2021.3.6.

[20] Gábor Árpád Németh and Máté István Lugosi. MTR Model-Based
Testing Framework. Infocommunications Journal, 16(2):11–18, 2024.
https://doi.org/10.36244/ICJ.2024.2.2.

Gábor Árpád Németh obtained his MSc in Electri-
cal Engineering and his PhD in Computer Science
at the Budapest University of Technology and Eco-
nomics (BME), Department of Telecommunication
and Media Informatics (TMIT) in 2007 and 2015,
respectively. He worked at Ericsson between 2011
and 2018 on a performance testing tool used in
the telecommunication industry. Currently, he works
at the Eötvös Loránd University (ELTE) on topics
related to requirement engineering and software test-
ing.

	 [1]	 RFC 3261: SIP: Session Initiation Protocol, 2002.
		 https://tools.ietf.org/html/rfc3261 Accessed: 2025-07-10.
	 [2]	 Danial Nikbin Azmoudeh and Yvan Labiche. Analysis of mutation

operators for FSM testing. In 2023 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 300–307, 2023. doi: 10.1109/ICSTW58534.2023.00060.

	 [3]	 Fevzi Belli, Christof J. Budnik, Axel Hollmann, Tugkan Tuglular, and
W. Eric Wong. Model-based mutation testing—Approach and case
studies. Science of Computer Programming, 120:25–48, 2016.

		 doi: 10.1016/j.scico.2016.01.003.

References

	 [4]	 Gregor von Bochmann, Anindya Das, Rachida Dssouli, Martin
Dubuc, Abderrazak Ghedamsi, and Gang Luo. Fault Models in
Testing. In Proceedings of the IFIP TC6/WG6.1 Fourth International
Workshop on Protocol Test Systems IV, pages 17–30, Amsterdam, The
Netherlands, 1991. North-Holland Publishing Co.

	 [5]	 Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner (Eds.). Model-Based Testing of Reactive
Systems. Springer, 2005. doi: 10.1007/b137241.

	 [6]	 T. Chow. Testing software design modelled by finite-state machines.
IEEE Transactions on Software Engineering, 4(3):178–187, May
1978. doi: 10.1109/TSE.1978.231496.

	 [7]	 R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data
Selection: Help for the Practicing Programmer. Computer, 11(4):34–
41, 1978. doi: 10.1109/C-M.1978.218136.

	 [8]	 Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An
Improved Conformance Testing Method. In Farn Wang, editor, Formal
Techniques for Networked and Distributed Systems – FORTE 2005,
volume 3731 of Lecture Notes in Computer Science, pages 204–218.
Springer, Berlin, Heidelberg, 2005. doi: 10.1007/11562436_16.

	 [9]	 István Forgács and Attila Kovács. Practical Test Design. BCS, The
Chartered Institute for IT, 2019.

	[10]	 Drago Hercog. Protocol Specification and Design. In Commu-
nication Protocols. Springer, Cham, 2020.

		 doi: 10.1007/978-3-030-50405-2_2.
	[11]	 Gerard J. Holzmann. Design and Validation of Protocols. Prentice-

Hall, 1990.
	[12]	 Yue Jia and Mark Harman. An Analysis and Survey of the

Development of Mutation Testing. IEEE Transactions on Software
Engineering, 37(5):649–678, 2011. doi: 10.1109/TSE.2010.62.

[13]	 Gang Luo, Alexandre Petrenko, and Gregor V. Bochmann. Selecting
Test Sequences for Partially-Specified Nondeterministic Finite State
Machines. In Proceedings of the IFIP WG6.1 7th International
Workshop on Protocol Test systems VI, pages 91–106. Springer, 1995.
doi: 10.1007/978-0-387-34883-4_6.

[14]	 S. Naito and M. Tsunoyama. Fault detection for sequential machines
by transition-tours. In Proceedings of the 11th IEEE Fault-Tolerant
Computing Conference (FTCS 1981), pages 238–243. IEEE Computer
Society Press, 1981.

	[15]	 Gábor Árpád Németh and Péter Sótér. Teaching performance testing.
Teaching Mathematics and Computer Science, 19(1):17–33, 2021.
doi: 10.5485/TMCS.2021.0518.

[16]	 A. Jefferson Offutt. Investigations of the software testing coupling
effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20, January 1992.
doi: 10.1145/125489.125473.

	[17]	 Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon,
and Mark Harman. Chapter six - mutation testing advances: An analysis
and survey. volume 112 of Advances in Computers, pages 275–378.
Elsevier, 2019. doi: 10.1016/bs.adcom.2018.03.015.

[18]	 S. C. Pinto Ferraz Fabbri, M. E. Delamaro, J. C. Maldonado, and P.
C. Masiero. Mutation analysis testing for finite state machines. In
Proceedings of 1994 IEEE International Symposium on Software
Reliability Engineering, pages 220–229, 1994.

		 doi: 10.1109/ISSRE.1994.341378.
	[19]	 Gábor Árpád Németh and Máté István Lugosi. Test generation

algorithm for the All-Transition-State criteria of Finite State
Machines. Infocommunications Journal, 13(3):56–65, 2021.

		 doi: 10.36244/ICJ.2021.3.6.
[20]	 Gábor Árpád Németh and Máté István Lugosi. MTR Model-Based

Testing Framework. Infocommunications Journal, 16(2):11–18, 2024.
doi: 10.36244/ICJ.2024.2.2.

https://tools.ietf.org/html/rfc3261
https://doi.org/10.1109/ICSTW58534.2023.00060
https://doi.org/10.1016/j.scico.2016.01.003
https://doi.org/10.1007/b137241
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1007/11562436_16
https://doi.org/10.1007/978-3-030-50405-2_2
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1007/978-0-387-34883-4_6
https://doi.org/10.5485/TMCS.2021.0518
https://doi.org/10.1145/125489.125473
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/ISSRE.1994.341378
https://doi.org/10.36244/ICJ.2021.3.6
https://doi.org/10.36244/ICJ.2024.2.2

