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Abstract—This study explores the development of robust In-
trusion Detection Systems (IDS) to enhance cybersecurity in
Wireless Sensor Networks (WSNs) within the evolving Internet of
Things (IoT) ecosystem. It leverages a publicly available dataset
derived from UNSW-NB15, retrieved from a GitHub repository,
capturing diverse network traffic attributes (dttl, swin, dwin,
tcprtt, synack, ackdat), protocol-specific indicators (proto tcp,
proto udp), and service-specific attributes (service dns). These
features enable precise analysis of TCP/IP headers and traffic
patterns, supporting multi-class classification into four categories:
Analysis, Denial of Service (DoS), Exploits, and Normal. Ad-
vanced machine learning algorithms, including Random Forest,
Support Vector Machines (SVM), and K-Nearest Neighbors
(KNN), were applied with systematic preprocessing (including
KNN-based imputation, normalization, and one-hot encoding),
feature selection using Random Forest importance, and 5-fold
cross-validation. The best performance was achieved by Random
Forest (accuracy, precision, recall, and F1-score of 99.9877%),
followed by KNN (99.9754%) and SVM (99.9630%). The study
demonstrates that combining well-structured models with rele-
vant protocol-level features and robust evaluation strategies can
significantly enhance intrusion detection capabilities in IoT-based
environments. It reinforces the value of using modern public
datasets and interpretable algorithms for building scalable and
reliable IDS solutions.

Index Terms—Artificial Intelligence (AI),Intrusion Detection
Systems (IDS),Machine Learning (ML), Internet of Things
(IoT),Wireless Sensor Networks (WSN)

I. INTRODUCTION

In today’s technological environments, where businesses, gov-
ernments, and individuals must contend with constantly chang-
ing and complex threats, cybersecurity has emerged as a key
component. Although the Internet of Things’ (IoT) explosive
growth has greatly improved connectivity and operational ef-
fectiveness, it has also made networked systems more complex
and vulnerable. Wireless Sensor Networks (WSNs), as key
components of IoT ecosystems, are particularly sensitive to
multiple security concerns due to their resource-constrained
nature, poor computing capacity, and frequent deployment
in hostile and insecure situations. [1] gave a thorough run-
down of how artificial intelligence (AI) may be included
into sensor networks, highlighting how it can be used to
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mitigate these weaknesses and enhance network performance
and scalability.In order to protect these networks from online
attacks, intrusion detection systems, or IDS, are essential.
IDS models have been benchmarked using traditional datasets
such as KDD Cup 1999 and NSL-KDD, although it is well
known that these datasets do not accurately represent con-
temporary network circumstances. [2] emphasized the im-
portance of creating more advanced and diverse datasets to
overcome these challenges, introducing features that better
capture the complexities of current network dynamics. These
datasets are crucial tools for developing machine learning
models that can identify ,evaluate ,and eliminate risks in-
stantly.An comprehensive dataset created especially for ana-
lyzing modern cyberattacks is presented in this article .Impor-
tant features that provide thorough insights into TCP/IP are
‘dttl‘,‘swin‘,‘dwin‘,and ‘tcprtt‘.Additionally,protocol-specific
attributes (proto tcp‘,proto udp‘)and service-specific details
(‘service dns‘)enable the recognition of patterns in network
traffic. According to [3],multi-class classification -a critical
element of trustworthy intrusion detection-is enhanced by
grouping data intro groups such as Analysis,Expolits,Denail
of Service(DoS),and Normal. This work builds on this dataset
using advanced machine learning techniques including Ran-
dom Forest,Support Vector Machines,and K-Nearst Neighbors.
These algorithms have proven to be effective in handling
complex network datasets and achieving high levels of in-
trusion detection precision. [4] demonstrated Random Forest
exceptional performance in a range of intrusion detection
scenarios,demonstrating its dependability and low mistake
rates.Similarly, [5] demonstrated the potential of hybrid mod-
els, such as combining boosting techniques with KNN, to
improve classification efficiency in diverse scenarios.Previous
research has demonstrated the efficacy of integrating ML
techniques into IoT and WSNs to address critical challenges
such as energy efficiency, routing optimization, and real-
time intrusion detection. For instance, [7] explored feature
selection techniques to enhance both security and system
performance. Additionally, [6] demonstrated how ,especially
in resource-constrained WSNs,hybrid technqiues like par-
ticle swarm optimization(PSO) in conjunction with neural
networks and reinforcement learning may greatly improve
intrusion detection capabilities.To sum up,this study offers
a solid foundation for creating an IDS that is suited to
the complexity of contemporary networks.As the Internet of
Things.and Wireless Sensor Networks expand quickly,new
types of cyberthreats are appearing that are unable to counter
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with traditional network security solutions.Intrusion Detection
Systems powered by machine learning have the potential to
ovvercome these obstacles by identifying intricate patterns
of malevolent activity. In this study, we leverage a publicly
available dataset derived from UNSW-NB15 [22], [23] and
hosted on GitHub, specifically structured to reflect contem-
porary IoT traffic and attack scenarios. This dataset includes
protocol-level and service-specific attributes that are rarely
present in older benchmarks such as KDD99 or NSL-KDD.
Our primary objective is to conduct a detailed comparative
analysis of three well-known ML algorithms [8] [10]:Random
Forest, SVM, and KNN—within a multi-class classification
framework adapted to modern IoT network conditions.Few
recent IDS papers explore low-level protocol state features due
to their parsing complexity and variability,this work addresses
this gap. The proposed framework is designed to guide the
development of scalable and reliable IDS solutions, particu-
larly in smart city infrastructure and industrial IoT applications
where detecting real-time threats is essential to maintaining
service availability and data protection. By leveraging a rich
dataset and advanced ML techniques, this study addresses
critical cybersecurity challenges, paving the way for improved
resilience in IoT and WSN environments.Unlike conventional
approaches focused on flow statistics or paylod metadata,our
method utilizies underexplored protocol-level features,such
as TCP flags,service identifiers,and session behaviors. This
allow for a unique balance between model interpretability and
fine grained detection,which is often lacking in recent deep
learning of flow based IDS studies.

II. RELATED WORK

Large-scale traffic captures with contemporary attack simu-
lations are provided by datasets such as IDSAI and BoT-
IoT;nonetheless,their generalizability may be constrained by
severe class imbalance or exceqqively artificial behaviors.The
dataset employed in this study ,on the other hand,combines
controlled labeling with true protocol-level variables to strike
a compromise between realism and diversity.Unlike widely
used datasets as IDSAI or BoT-IoT,which often suffer from
severe class imbalance or overly synthetic behavior,the dataset
employed in this study offers a more realistic and balanced
distribution of traffic of traffic types.Its clearly labeled cate-
gories and protocol-level granularity make it a more robust
foundation for evaluating machine learning models under
pratical IoT conditions.It is more suitable fore fine-grained
model evaluationin IoT-focused contexts due to its multi-
class structure and clear attribute descriptions.Much recent
research has focused on applying machine learning approaches
to IoT networks,particularly in the areas of routing,energy
efficiency,and security improvement .This section highlights
significant contributions in various domains. El Khediri et al.
[1] gave a thorough rundown of integrating AI into sensor
networks ,tackling issues like scalability and energy limitations
that are essential for optimizing IoT networks.Their research
highlighted Ai capacity to overcome resource constraints.

Gutierrez-Portela et al. [2] presented a new dataset (IDSAI)
and illustrated how machine learning models may be used

to detect intrusions in Internet of Things communications
.Their research made clear how crucial reliable datasets are
to enhancing ML model’s flexibility in chnaging contexts.

Vanitha et al. [3] suggested a Bayesian machine learning
method for WSN route optimization,emphazing effective de-
viation management and route selection.The importance of
probabilistic models in enhancing network dependability was
highlighted by this sudy.

Dharini et al. [4] investigated and proved the efficacy of
boosting algorithms against DoS assaults in the context of
intrusion detection in WSNs.Their results reaffirmed how en-
semble learning approaches may be used to improve newtork
security.

Suresh et al. [5] created a clever routing plan for IoT-enabled
WSNs by utilizing deep reinforcement learnin.Their findings
demonstrated notable gains in data transmission dependability
and energy economy, making it a viable strategy for dynamic
IoT contexts .

Yadav et al. [7] centered on methods for feature selection
and classification to enhance IoT application security and
performance.Their research showed that customized feature
engineering greatly improves networks performance.

Narayanan et al. [6] enhanced intrusion detection systems
by combining artificial neural networks with particle swarm
optimization.Their hybrid strategy demonstrated how crucial
it is to combine ML models and optimization techniques in
order to adress difficult issues in IoT networks.

Surenther et al. [8] suggested a grouping model strategy made
possible by machine learning to maximize energy use and data
transfer effectiveness in WSNs.The necessity of energy-aware
techniques in IoT installations was highlighted bu this study.

Tabbassum et al. [9] created a succesful fuzzy-based cluster-
ing algorithm for data transmission in WSNs,demonstrating
how it can prolong network lifetime while preserving energy
efficiency.

Lai et al. [10] used online learning methods to identify DoS
assaults in WSNs,providing a scalable way to mitigate threats
in real time . Similarly, Ayuba et al. [11] utilized ensem-
ble ML models to enhance DoS detection, demonstrating
the importance of adaptive frameworks in securing IoT net-
works.Recent developments in IoT security have emphasized
the need for more adaptive and intelligent intrusion detection
mechanisms.Studies have explored federated learning [19] to
enhance privacy and decentralization in IDS architectures [18],
[19], especially in industrial environments where data sharing
is sensitive. Edge computing is also gaining traction, enabling
real-time detection with reduced latency by processing data
closer to the source. Additionally, several works focus on zero-
day attack [17] detection by leveraging behavior-based models
capable of identifying previously unseen threats. Context-
aware intrusion detection systems [20] have also emerged
as promising approaches, adapting their detection logic to
the operating environment of IoT devices. Despite these ad-
vances, many of these solutions remain fragmented, and few
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combine these techniques into a unified, scalable framework.
Our work addresses this gap by focusing on protocol-level
features while proposing a flexible model structure that can
be integrated with such advanced strategies in future iterations
[21].In recent years, several deep learning techniques such
as Convolutional Neural Networks (CNN) [24], Long Short-
Term Memory (LSTM) [24] networks, and transformer-based
models have been applied to intrusion detection in IoT and
WSN environments. These methods are particularly effective
at identifying hidden and sequential patterns in network traffic.
In addition, they often require large-scale labeled datasets and
significant computational resources, which limits their applica-
bility in real-world, resource-constrained systems. Moreover,
some studies have explored adaptive or online IDS frameworks
designed to operate in real-time, but these models still face
challenges related to latency, retraining, and energy consump-
tion. Unlike these approaches, our work emphasizes a balance
between performance and feasibility by using protocol-level
features combined with interpretable and lightweight models.
This choice makes the proposed framework more suitable for
integration into practical IoT scenarios where transparency,
speed, and adaptability are critical.

Overall, these studies underline the growing role of ML tech-
niques in addressing challenges such as energy optimization,
routing efficiency, and network security in IoT systems. Build-
ing on these advancements, our work focuses on leveraging
hybrid ML approaches to balance performance across multiple
metrics, particularly in RPL-based IoT networks.

III. PROPOSED METHOD

The suggested approach uses machine learning methods to cre-
ate an enhanced intrusion detection system (IDS) by exploit-
ing the extensive dataset. Data preparation, feature selection,
model training, and evaluation are some of the crucial pro-
cesses in the methodology.The proposed framework consists of
a full machine learning pipeline tailored to intrusion detection
in IoT networks. It incorporates three classifiers for model
training,Random Forest significance for feature selection,and
preprocessing steps(imputation,normalization,and encoding of
missing values).Flexible assessment of classification accu-
racy,robustness,and interpretability is made possible by this
modular structure. Although supervised learning is used in
this study,the framework can be extended to real-time or semi-
supervised architectures.

A. Data Preprocessing

The dataset first undergoes preprocessing in order to handle
missing values,normalize numerical characteristics,and encode
categorical variables. By ensuring that the data is clean and
suitable for ML models,this raises the IDS overall accuracy
and efficacy.

Let X = {x1, x2, ..., xn} represent the dataset, where each
sample xi ∈ Rd corresponds to a feature vector. Tech-
niques like K-Nearest Neighbors are used to impute miss-
ingdata,while one-hot encoding is used to encode categorical
features.

The normalization of numerical features is given by:

x̂i,j =
xi,j − µj

σj
, j = 1, 2, . . . , d

where µj and σj are the mean and standard deviation of feature
xj , respectively.

The datasets missing values were addressed using K-Nearest
Neighbor imputation.This approach was selected because it
estimates missing items using the most similar observa-
tions,preserving the local structure of the data.This enhances
the quality of feature distributions for classification by main-
taining significant links between attack patterns and protocol
attributes in the context of network traffic data.To find the
most pertinent factors for feature selection,Random Forest
feautureimportance analysis was employed. This allowed us to
reduce the feature space while retaining high-impact indicators
such as tcprtt, dttl, and proto tcp. This step not only enhanced
model interpretability but also improved computational effi-
ciency during training and evaluation.

B. Feature Selection

In order to decrease dimensionality and enhance model per-
formance, feature selection is an essential stage in which the
most pertinent features are found. Features that significantly
aid in differentiating between malicious and legitimate traffic
are chosen using methods like feature importance ratings and
correlation analysis.

The feature importance Importance(Xj) of a feature Xj in a
Random Forest model can be computed as:

Importance(Xj) =
∑
t∈T

∆Impurityt(Xj)

where T is the set of trees in the Random Forest, and
∆Impurityt(Xj) is the reduction in impurity for feature Xj

in tree t.

C. Model Training

To find the best model for intrusion detection, a variety of
machine learning approaches are investigated. These include
more sophisticated approaches like gradient boosting and deep
learning models, as well as more conventional ones like
decision trees, random forests, and support vector machines
(SVM).

The goal of training a machine learning model is to learn the
mapping f : Rd → {A,D,E,N}, where A, D, E, and N
represent the attack categories (Analysis, DoS, Exploits, and
Normal), and the model aims to minimize the following loss
function:

L(θ) = −
n∑

i=1

∑
c∈{A,D,E,N}

I(yi = c) logP (yi = c|xi, θ)

where: - I(yi = c) is the indicator function, - P (yi = c|xi, θ)
is the predicted probability that xi belongs to class c.
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D. Support Vector Machine (SVM) Training

The SVM model is formulated as follows for binary classifi-
cation:

min
w,b,ξ

(
1

2
∥w∥2 + C

n∑
i=1

ξi

)

subject to the constraints:

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0

where C is a regularization parameter, w is the weight vector,
and ξi is the slack variable allowing for misclassification.

E. Cross-Validation

To ensure the reliability and generalization of the models,
cross-validation methods are applied. The dataset is divided
into k subsets. The model is then trained on k−1 subsets and
tested on the remaining one. This procedure is repeated for
each subset, and the overall performance is calculated as the
average of the results obtained across all iterations.

IV. SECURITY IN IOT-INTEGRATED WIRELESS SENSOR
NETWORKS

In the context of the Internet of Things (IoT) [5], and
more specifically within WSN [7], to stop unwanted access
and lessen destructive activity,security must be mainained
and intrusions must be detected .Packet-level metrics like
destination TTL(dttl),source window size(swin),destination
window size(dwin),TCP round-trip time(tcprtt),,SYN-ACK
packets(synack),and achnowledgment data packets(ackdat)
are ampng the many features that the suggested sys-
tem uses to detect possible threats. It also incorporates
protocol-level information, such as the TCP (proto tcp)
and UDP (proto udp) protocols, as well as service-
specific metrics like DNS (service dns) requests. Further-
more, the system evaluates connection states, including ac-
tive (state CON) and closed (state FIN) connections. At-
tack cat Analysis,attack cat Dos,attack cat Exploits,and at-
tack cat Normal are the four primary categories into which
the system divides intrusions based on the examinsation of
these features :Analysis,Dos,Exploits,and Normal traffic.This
multifaceted strategy improves the systems ability to iden-
tify breaches and preserve the security and integrity of IoT-
enabled WSNs,thereby protecting them from a wide range of
cyberthreats. [15]

A. Attacks used in dataset

The assaults found in the dataset fail into four different
categories :Normal,Exploits,Dos,and Analysis. A particular
kind of harmful conduct directed towards computer systems
is represented by each category.Belwo is a synopsis of every
category [12]–[15]:

• Analysis:Activities intended to analyze a computer sys-
tems architecture and weaknesses fall under this category
of assaults.Attackers may utilize this data to obtain sensi-
tive intelligence or to develop more complex operations.

• DoS (Denial of Service): Dos attacks aim to deplete a
computer systems or networks resources in order to pre-
vent authorized users from accessing itUsing techniques
like increasing network bandwidth ,depleting system re-
sources,or taking advantage of software flaws might cause
this interruption.

• Exploits: Exploit attacks gain unauthorized access to a
computer system by taking advantage of known or con-
cealed flaws in operating systems or applications. These
attacks give attackers the ability to execute malicious
code,retrieve private data,or compromise the systems in-
tegrity.

• Normal:Network traffic that is benign and genuine and
does not fall under any of the established attackcategories
is included in this category .It acts as a starting point for
distinguishing between malicious and legitimate traffic.

The following table presents a statistical summary of the
attacks listed in the dataset:

TABLE I: Distribution of attack categories and their occur-
rences in the dataset.

Attack Category Number of Occurrences
Analysis 500

DoS 1000
Exploits 750
Normal 2000

B. Study Analysis and Evaluation of Anomaly Detection Tech-
niques in WSN

In the field of cybersecurity and network traffic analysis
[16], such a data collection [11] is of crucial importance.
By analyzing these variables, researchers and analysts can
uncover patterns, trends, and anomalies in network traffic
[5]. For example,determining which protocols are most fre-
quently utilized might provide insight on the kinds of services
and applications that are most widely used on the network.
Analyzing source and destination ports and source and des-
tination IP adresses can also show communication patterns
between various networks entities. Variables mlike ‘tcp flags‘
ca, indicate different transmission control indications used
in TCP communications,while measures like ‘frame len‘ and
‘udp len‘ can reveal information about the amount of data
packets that are transmitted [2].

By combining this information with classification labels avail-
able in the ”label” and ”tipo ataque” columns [2], it becomes
possible to build more robust intrusion detection models and
threat prevention systems. Indeed, by training machine learn-
ing algorithms [13], [14], [18] on this data, it is conceivable
to develop systems capable of automatically identifying and
flagging suspicious or malicious activities on the network [25],
thereby enhancing the overall security of IT infrastructures. To
sum up,this dataset is a great tool for network traffic analysis
and cybersecurity [26] research and development [9],opening
the door for new developments in defense against online
attacks.

4

D. Support Vector Machine (SVM) Training

The SVM model is formulated as follows for binary classifi-
cation:

min
w,b,ξ

(
1

2
∥w∥2 + C

n∑
i=1

ξi

)

subject to the constraints:

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0

where C is a regularization parameter, w is the weight vector,
and ξi is the slack variable allowing for misclassification.

E. Cross-Validation

To ensure the reliability and generalization of the models,
cross-validation methods are applied. The dataset is divided
into k subsets. The model is then trained on k−1 subsets and
tested on the remaining one. This procedure is repeated for
each subset, and the overall performance is calculated as the
average of the results obtained across all iterations.

IV. SECURITY IN IOT-INTEGRATED WIRELESS SENSOR
NETWORKS

In the context of the Internet of Things (IoT) [5], and
more specifically within WSN [7], to stop unwanted access
and lessen destructive activity,security must be mainained
and intrusions must be detected .Packet-level metrics like
destination TTL(dttl),source window size(swin),destination
window size(dwin),TCP round-trip time(tcprtt),,SYN-ACK
packets(synack),and achnowledgment data packets(ackdat)
are ampng the many features that the suggested sys-
tem uses to detect possible threats. It also incorporates
protocol-level information, such as the TCP (proto tcp)
and UDP (proto udp) protocols, as well as service-
specific metrics like DNS (service dns) requests. Further-
more, the system evaluates connection states, including ac-
tive (state CON) and closed (state FIN) connections. At-
tack cat Analysis,attack cat Dos,attack cat Exploits,and at-
tack cat Normal are the four primary categories into which
the system divides intrusions based on the examinsation of
these features :Analysis,Dos,Exploits,and Normal traffic.This
multifaceted strategy improves the systems ability to iden-
tify breaches and preserve the security and integrity of IoT-
enabled WSNs,thereby protecting them from a wide range of
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The assaults found in the dataset fail into four different
categories :Normal,Exploits,Dos,and Analysis. A particular
kind of harmful conduct directed towards computer systems
is represented by each category.Belwo is a synopsis of every
category [12]–[15]:

• Analysis:Activities intended to analyze a computer sys-
tems architecture and weaknesses fall under this category
of assaults.Attackers may utilize this data to obtain sensi-
tive intelligence or to develop more complex operations.

• DoS (Denial of Service): Dos attacks aim to deplete a
computer systems or networks resources in order to pre-
vent authorized users from accessing itUsing techniques
like increasing network bandwidth ,depleting system re-
sources,or taking advantage of software flaws might cause
this interruption.

• Exploits: Exploit attacks gain unauthorized access to a
computer system by taking advantage of known or con-
cealed flaws in operating systems or applications. These
attacks give attackers the ability to execute malicious
code,retrieve private data,or compromise the systems in-
tegrity.

• Normal:Network traffic that is benign and genuine and
does not fall under any of the established attackcategories
is included in this category .It acts as a starting point for
distinguishing between malicious and legitimate traffic.

The following table presents a statistical summary of the
attacks listed in the dataset:

TABLE I: Distribution of attack categories and their occur-
rences in the dataset.

Attack Category Number of Occurrences
Analysis 500

DoS 1000
Exploits 750
Normal 2000

B. Study Analysis and Evaluation of Anomaly Detection Tech-
niques in WSN

In the field of cybersecurity and network traffic analysis
[16], such a data collection [11] is of crucial importance.
By analyzing these variables, researchers and analysts can
uncover patterns, trends, and anomalies in network traffic
[5]. For example,determining which protocols are most fre-
quently utilized might provide insight on the kinds of services
and applications that are most widely used on the network.
Analyzing source and destination ports and source and des-
tination IP adresses can also show communication patterns
between various networks entities. Variables mlike ‘tcp flags‘
ca, indicate different transmission control indications used
in TCP communications,while measures like ‘frame len‘ and
‘udp len‘ can reveal information about the amount of data
packets that are transmitted [2].

By combining this information with classification labels avail-
able in the ”label” and ”tipo ataque” columns [2], it becomes
possible to build more robust intrusion detection models and
threat prevention systems. Indeed, by training machine learn-
ing algorithms [13], [14], [18] on this data, it is conceivable
to develop systems capable of automatically identifying and
flagging suspicious or malicious activities on the network [25],
thereby enhancing the overall security of IT infrastructures. To
sum up,this dataset is a great tool for network traffic analysis
and cybersecurity [26] research and development [9],opening
the door for new developments in defense against online
attacks.
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V. DATASET

With the rapid growth of the Internet of Things (IoT) and
Wireless Sensor Networks , new forms of cyber threats are
emerging that cannot be mitigated using conventional network
security solutions. Machine learning (ML)-driven Intrusion
Detection Systems (IDS) offer promising capabilities to ad-
dress these challenges by detecting complex patterns of mali-
cious behavior. In this study, we leverage a publicly available
dataset derived from UNSW-NB15 [22], [23] and hosted on
GitHub, specifically structured to reflect contemporary IoT
traffic and attack scenarios. This dataset includes protocol-
level and service-specific attributes that are rarely present in
older benchmarks such as KDD99 or NSL-KDD. Our primary
objective is to conduct a detailed comparative analysis of
three well-known ML algorithms—Random Forest, SVM, and
KNN—within a multi-class classification framework adapted
to modern IoT network conditions. The proposed framework
is designed to guide the development of scalable and reliable
IDS solutions, particularly in smart city infrastructure and
industrial IoT applications where detecting real-time threats
is essential to maintaining service availability and data pro-
tection.The dataset used in this study was downloaded from a
public GitHub repository [23] and was originally derived from
UNSW-NB15. It includes pre-labeled instances representing
different categories of network traffic (e.g., DoS, Exploits,
Normal, Analysis). These labels were annotated in the original
benchmark using a combination of automated logging and
expert validation, ensuring class consistency across the dataset.
This predefined labeling allows for multi-class classification
experiments without the need for manual annotation during
this study.

A. Description of Dataset Parameters

The dataset under study contains the following parameters:

• Unnamed: 0 : Index of the row in the dataset, often
generated automatically during data import.

• dttl : Time-to-Live (TTL) of the packets, representing
the lifespan or number of hops a packet can make before
being discarded.

• swin : Send window size in the TCP protocol, indicating
the amount of data the sender is willing to send before
receiving an acknowledgment.

• dwin : Receive window size in the TCP protocol, rep-
resenting the amount of data the receiver is willing to
accept.

• tcprtt : Round-Trip Time of TCP packets, measuring
the delay between sending a packet and receiving the
acknowledgment.

• synack : Time between sending a SYN (synchro-
nize) packet and receiving the SYN-ACK (synchronize-
acknowledge) packet in establishing a TCP connection.

• ackdat : Time between receiving an acknowledgment
(ACK) and sending the corresponding data.

• label : Label indicating the nature of the traffic, such as
normal or attacked.

• proto tcp : Binary indicator (0 or 1) specifying if the
TCP protocol is used.

• proto udp : Binary indicator (0 or 1) specifying if the
UDP protocol is used.

• service dns : Binary indicator (0 or 1) specifying if the
DNS service is used.

• state CON : Binary indicator (0 or 1) specifying if the
connection state is ”established” (CON).

• state FIN : Binary indicator (0 or 1) specifying if the
connection state is ”finished” (FIN).

• attack cat Analysis : Binary indicator (0 or 1) specify-
ing if the attack belongs to the ”Analysis” category.

• attack cat DoS : Binary indicator (0 or 1) specifying
if the attack belongs to the ”DoS” (Denial of Service)
category.

• attack cat Exploits : Binary indicator (0 or 1) specify-
ing if the attack belongs to the ”Exploits” category.

• attack cat Normal : Binary indicator (0 or 1) specifying
if the traffic is normal.

The dataset utilized in this study consists of exactly
81,173labeled instancesand 17 features,each capturing crit-
ical protocol-level and service-specific attributes ,such as
‘tcprtt‘,‘dttl‘,and ‘proto tcp‘.Three characteristics offer com-
prehensive details about every data sample,facilitating in-depth
network traffic analysis and the identification of different
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types of assaults. Specificaly,the dataset is categorized into
four classes:Normal,DoS,Exploits,and Analysis.These labels
were pre-assigned based on traffic fingerprints and packet
behaviors identified during controlled simultaions scenarios,
as documented in the source repository. Prior to public release,
all IP addresses and protocol identifiers were anonymized
using standard data masking techniques to ensure privacy
and avoid leakage of sensitive information. This approach
preserves the structural integrity of the data while supporting
ethical handling of network traces for cybersecurity research.

VI. SIMULATION RESULTS

A. Experiment environment

The tests were carried out on a device equipped with a CPU
featuring the following specifications: an Intel(R) Core(TM)
i5-7200U CPU @ 2.50GHz 2.70 GHz processor, 8.00 GB
of RAM, and operating on a 64-bit Windows system.The
Python programming language was utilized to create several
categorization methods on Jupyter Notebook. Many Python
libraries, including pandas(1.5.3), matplotib,numpy, seaborn
were used.Anaconda is responsible for installing these depen-
dencies and tools.

B. SVM Results

The confusion matrix(fig2) and ROC curve(fig3) for the SVM
model demonstrate its effectiveness in classifying multiple
classes in the dataset. The confusion matrix highlights strong
classification performance, with most predictions accurately
aligned along the diagonal, such as 7759 for Class 5 and 3864
for Class 6. However, some misclassifications are observed,
particularly in Classes 4 and 8. The ROC curve further
validates this performance, showing excellent AUC values
for most classes, including 1.00 for Classes 0, 2, 3, and 6,
while Class 8 exhibits the lowest AUC of 0.49, indicating
challenges in distinguishing this class. Overall, the SVM
model performs exceptionally well for most categories, with
room for improvement in specific cases.

Fig. 2: Confusion Matrix of SVM

Fig. 3: ROC Curves of SVM

C. Random Forest Results

The Random Forest model demonstrates strong overall per-
formance in multiclass classification, as shown by the ROC
curve(fig5) and the confusion matrix. The ROC curve high-
lights excellent discrimination for most classes, with perfect
AUC scores of 1.00 for classes 0, 2, 3, 5, and 6. However,
moderate performance is observed for some classes, such as
class 1 (AUC = 0.78) and class 8 (AUC = 0.66), indicating
potential areas for improvement. The confusion matrix(fig4)
further confirms the model’s effectiveness, with a high number
of correct predictions along the diagonal, such as 3309 for
class 3 and 7769 for class 5. Nonetheless, some misclassifica-
tions are evident, particularly between classes 4 and 7. These
results suggest that while the model achieves excellent overall
performance, further refinement is needed to address errors in
more challenging or less represented classes.

Fig. 4: Confusion Matrix of Random Forest
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D. K-NN Results

The confusion matrix(fig6) demonstrates the K-NN algo-
rithm’s strong classification performance, with most predic-
tions correctly aligned along the diagonal, such as 7780
for Class 5 and 3863 for Class 6. However, minor mis-
classifications are observed, like some instances of Class 3
being predicted as Class 4 or Class 7. These results indicate
high overall accuracy, with slight areas for improvement in
distinguishing closely related classes.The ROC curve(fig7)
for the K-NN algorithm illustrates the performance across
multiple classes in terms of their True Positive Rate (TPR)
and False Positive Rate (FPR). Most classes, such as Classes
0, 2, 3, and 6, achieve an AUC of 1.00, indicating perfect
classification capability. Classes 5 and 7 also perform well
with AUC values of 0.99 and 0.96, respectively, reflecting
high accuracy. However, Class 8 stands out with an AUC
of 0.49, suggesting significant challenges in distinguishing
this class. Overall, the K-NN model demonstrates excellent
classification performance for most classes, but there is room
for improvement in handling specific cases like Class 8.
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E. Performance Metrics Definitions

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Where:
• TP stands for True Positives,

• TN stands for True Negatives,

• FP stands for False Positives,

• FN stands for False Negatives.

Similarly, precision and F1 score can be defined as follows:

Precision =
TP

TP + FP
(3)

F1 Score = 2× Precision × Recall
Precision + Recall

(4)

Where:
• Precision measures the proportion of true positive predic-

tions out of all positive predictions made.
• Recall measures the proportion of true positive predic-

tions out of all actual positive instances in the data.

F. Comparison of Performance Metrics Across Algorithms

The bar plots in fig8,fig9,fig10 compare the performance of
three machine learning algorithms—K-NN, Random Forest,
and SVM—using the F1-score, precision, and recall metrics.
For all metrics, the weighted averages outperform macro aver-
ages, reflecting the algorithms’ ability to perform well across
all classes, even in imbalanced datasets. Among the algo-
rithms, Random Forest consistently achieves the highest scores
across all metrics, indicating its robustness and reliability for
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classification tasks. SVM and K-NN also demonstrate strong
performance, with slight variations in macro and weighted
averages. These results highlight Random Forest’s superior
capability in maintaining a balance between precision, recall,
and F1-score, making it the most effective model for the
dataset.

Fig. 8: Comparison with precision

Fig. 9: Comparison with recall

Fig. 10: Comparison with f1-score

G. Learning Curve Analysis for SVM, K-NN, and Random
Forest Models

The learning curves for the SVM(fig11), K-NN(fig12), and
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K. Key Insights

• Random Forest outperforms both SVM and K-NN in
terms of generalization, as evidenced by the minimal gap
between training and testing accuracies.

• SVM exhibits strong generalization capabilities, with
consistent performance improvements as the dataset size
increases.

• K-NN shows slight overfitting but remains effective, ben-
efiting from larger datasets for improved generalization.

• These results highlight Random Forest as the most robust
model, followed by SVM, while K-NN requires more data
to bridge the training-testing accuracy gap.

L. Performance Evaluation of Machine Learning Algorithms

Three machine learning [27] algorithms :Random For-
est,KNN and SVM are evaluated ,and the results demonstrate
their remarkable dependability and performance in the task
at hand. With accuracy,precision,recall,and F1-score all at
99.9877%,Random Forest produced impressive results,proving
its dependability and low categorization errors.With all met-
rics,accuracy,precision,recall,and f1 score at 99.9754% ,KNN
also demonstrated remarkable performance.Its robustness and
accuracy in classifying cases are highlighted by this constancy.
With an accuracy of 99.9630% and precision ,recall ,and
F1 scores that closely matched at 99.9630%,SVM produced
impressive reesults although somewhat lagging behind the
other two.SVM is a reliable option for applications needing
high precision and consistency because of three results,which
validate its efficacy and balance.

TABLE II: Performance metrics of classification models.

Model Accuracy Precision Recall F1 Score

Random Forest 0.999877 0.999877 0.999877 0.999877

K-Nearest Neighbors 0.999754 0.999754 0.999754 0.999754

SVM 0.999630 0.999631 0.999630 0.999630

VII. STATISTICAL SIGNIFICANCE ANALYSIS OF
CLASSIFIER PERFORMANCE

To statistically validate the performance differences among the
classifiers, we conducted the Wilcoxon signed-rank test on the

5-fold cross-validation results. As shown in Table III, the p-
values for all pairwise comparisons between Random Forest,
SVM, and KNN exceeded the 0.05 threshold, indicating that
none of the observed differences were statistically significant.
This suggests that the variations in accuracy are consistent
across folds and not due to random chance. While Random
Forest achieved slightly higher average scores, the results
confirm that all models perform competitively on this dataset,
reflecting its balanced structure and the robustness of the
feature engineering pipeline.

TABLE III: Wilcoxon Signed-Rank Test for Classifier Perfor-
mance Comparison

Algorithms p-value Significance (p ¡ 0.05)

Random Forest vs SVM 0.1250 No

Random Forest vs KNN 0.0625 No

SVM vs KNN 0.1250 No

VIII. DISCUSSION OF THE RESULTS

This study examines the performance of three machine learn-
ing algorithms—Random Forest, K-Nearest Neighbors (KNN),
and Support Vector Machine (SVM)—on a specific classifica-
tion task. The results highlight the outstanding effectiveness
of these algorithms, as evidenced by their high-performance
metrics, confirming their reliability and suitability for the task.
The Random Forest algorithm achieved an accuracy of
99.9877%, with precision, recall, and F1 score all matching
at 99.9877%. This indicates an exceptional level of reliability,
with the algorithm showing minimal classification errors. The
consistent high scores across all metrics reflect the algorithm’s
capacity to accurately identify both positive and negative
cases, making it particularly effective for scenarios where
precise classification is critical.
Similarly, the K-Nearest Neighbors algorithm exhibited strong
performance, with an accuracy, precision, recall, and F1 score
of 99.9754%. Although slightly lower than Random Forest,
these metrics still highlight KNN’s robustness as a classifier.
The consistency in its performance metrics suggests that KNN
is highly reliable and capable of accurately classifying in-
stances, making it a viable alternative in cases where simplicity
and interpretability are favored.
The Support Vector Machine algorithm, while performing
marginally below the other two, still demonstrated impressive
results. With an accuracy of 99.9630%, precision of 99.9631%,
recall of 99.9630%, and F1 score of 99.9630%, SVM shows
a strong balance between precision and recall. These met-
rics highlight its effectiveness and reliability, suggesting that
SVM is well-suited for tasks that demand high accuracy
and consistent performance.While the reported performance
metrics are extremely high, care was taken to mitigate over-
fitting.Additionally, while the dataset used in this study is
relatively balanced in terms of labeled categories, some subtle
internal imbalances could still influence model sensitivity to
rare attack types. Further work could explore resampling

Fig. 8: Comparison with precision

Fig. 9: Comparison with recall

Fig. 10: Comparison with f1-score

Fig. 12: k-NN Learning Curves

Fig. 11: SVM Learning Curves

Fig. 13: RF Learning Curves
8

classification tasks. SVM and K-NN also demonstrate strong
performance, with slight variations in macro and weighted
averages. These results highlight Random Forest’s superior
capability in maintaining a balance between precision, recall,
and F1-score, making it the most effective model for the
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• The training accuracy gradually improves and stabilizes
around 97.6%, demonstrating that the SVM model effec-
tively fits the training data.

• The testing accuracy closely follows the training accu-
racy, with a slight gap indicating good generalization and
minimal overfitting.

• The consistent improvement in both curves as more data
is added highlights the SVM model’s ability to generalize
well across different dataset sizes.
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• Random Forest demonstrates robustness and high relia-
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cases, making it particularly effective for scenarios where
precise classification is critical.
Similarly, the K-Nearest Neighbors algorithm exhibited strong
performance, with an accuracy, precision, recall, and F1 score
of 99.9754%. Although slightly lower than Random Forest,
these metrics still highlight KNN’s robustness as a classifier.
The consistency in its performance metrics suggests that KNN
is highly reliable and capable of accurately classifying in-
stances, making it a viable alternative in cases where simplicity
and interpretability are favored.
The Support Vector Machine algorithm, while performing
marginally below the other two, still demonstrated impressive
results. With an accuracy of 99.9630%, precision of 99.9631%,
recall of 99.9630%, and F1 score of 99.9630%, SVM shows
a strong balance between precision and recall. These met-
rics highlight its effectiveness and reliability, suggesting that
SVM is well-suited for tasks that demand high accuracy
and consistent performance.While the reported performance
metrics are extremely high, care was taken to mitigate over-
fitting.Additionally, while the dataset used in this study is
relatively balanced in terms of labeled categories, some subtle
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Fig. 8: Comparison with precision

Fig. 9: Comparison with recall

Fig. 10: Comparison with f1-score
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Fig. 12: k-NN Learning Curves
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techniques or class-weighted training to better address these
effects in critical classification scenarios. Learning curves were
analyzed for each classifier, and the gaps between training
and validation accuracy remained minimal, suggesting that the
models generalized well to unseen data. Additionally, the use
of 5-fold cross-validation helped ensure the robustness of the
results.Future versions of this work may include statistical tests
such as paired t-tests or Wilcoxon signed-rank tests to assess
the significance of observed differences between classifiers,
especially when performance metrics are very close.While
the models demonstrated strong performance on the offline
dataset, we acknowledge that real-world deployments involve
continuous and dynamic data streams. Our current evaluation
is limited to static scenarios, which may not fully capture
temporal drift or evolving attack behaviors. Furthermore, the
dataset, although balanced at a class level, may still con-
tain subtle distributional imbalances that affect the learning
process. We plan to extend this work by incorporating real-
time data handling and deeper analysis of class distribu-
tion effects, particularly in detecting rare or stealthy attack
patterns.Although our study relies on well-known machine
learning algorithms such as Random Forest, SVM, and KNN,
the novelty lies in the integration of these models with
protocol-level and service-specific attributes rarely leveraged
in existing IDS literature. By using a structured multi-class
dataset tailored for IoT intrusion scenarios, we offer a new
perspective that goes beyond traditional flow-based detection.
This combination enhances both interpretability and detection
precision in IoT environments, particularly in edge-constrained
WSNs.
In conclusion, the Random Forest method performs exception-
ally well overall, however it differs slightly from the other two
algorithms in terms of accuracy and consistency. Nonetheless,
depending on the particular needs of the assignment, KNN
and SVM can also offer strong and reliable classification,
making them appropriate alternatives. These algorithms’ ex-
cellent performance highlights their potential for practical
implementation in real-world categorization issues, laying a
solid basis for additional study and application.

IX. CONCLUSION

In conclusion, this study proposes a comprehensive approach
to developing an advanced intrusion detection system (IDS)
leveraging machine learning algorithms. By employing sys-
tematic data preprocessing, strategic feature selection, and
rigorous model evaluation, the methodology demonstrates re-
markable effectiveness in detecting and classifying network
intrusions. The preprocessing phase ensures the dataset is
prepared for model training by addressing issues such as
missing values, normalization, and encoding, laying a strong
foundation for accuracy and efficiency. Feature selection
further optimizes the dataset by identifying the most rele-
vant attributes, reducing dimensionality, and enhancing model
performance.Multiple machine learning algorithms, including
Random Forest, K-Nearest Neighbors (KNN), and Support
Vector Machine (SVM), were evaluated for their intrusion de-
tection capabilities. The results highlight their high reliability

and robustness, with Random Forest achieving an exceptional
accuracy of 99.9877%. KNN and SVM also delivered strong
performances, with accuracies of 99.9754% and 99.9630%, re-
spectively, demonstrating their potential as reliable alternatives
based on specific needs.The thorough evaluation using metrics
such as accuracy, precision, recall, F1-score, and ROC-AUC,
combined with cross-validation techniques, ensures the robust-
ness and generalizability of the models. This comprehensive
assessment not only highlights the strengths and weaknesses
of each model but also provides valuable insights into their
capabilities in detecting various attack categories.While the
reported performance metrics are extremely high, care was
taken to mitigate overfitting. Learning curves were analyzed
for each classifier, and the gaps between training and valida-
tion accuracy remained minimal, suggesting that the models
generalized well to unseen data. Additionally, the use of
5-fold cross-validation helped ensure the robustness of the
results.Moreover, future iterations of this framework could
incorporate hybrid models that combine decision-tree-based
learners with deep learning layers to capture both hierarchical
structure and temporal dependencies, thus enhancing detection
robustness in evolving IoT environments.Future versions of
this work may include statistical tests such as paired t-
tests or Wilcoxon signed-rank tests to assess the significance
of observed differences between classifiers, especially when
performance metrics are very close.This work highlights the
overlooked value of protocol-level features for achieving inter-
pretable and precise intrusion detection.These results confirm
that protocol-level features enable efficient and interpretable
IDS. Future work will explore hybrid models to enhance real-
time adaptability. Overall, the proposed method enhances the
detection capabilities of IDS by leveraging advanced machine
learning techniques. The high performance of the evaluated
algorithms indicates their potential for practical deployment
in real-world network security applications. This study lays a
solid foundation for future research and development in the
field of intrusion detection, contributing to the broader goal
of improving cybersecurity measures and protecting against
evolving cyber threats.
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techniques or class-weighted training to better address these
effects in critical classification scenarios. Learning curves were
analyzed for each classifier, and the gaps between training
and validation accuracy remained minimal, suggesting that the
models generalized well to unseen data. Additionally, the use
of 5-fold cross-validation helped ensure the robustness of the
results.Future versions of this work may include statistical tests
such as paired t-tests or Wilcoxon signed-rank tests to assess
the significance of observed differences between classifiers,
especially when performance metrics are very close.While
the models demonstrated strong performance on the offline
dataset, we acknowledge that real-world deployments involve
continuous and dynamic data streams. Our current evaluation
is limited to static scenarios, which may not fully capture
temporal drift or evolving attack behaviors. Furthermore, the
dataset, although balanced at a class level, may still con-
tain subtle distributional imbalances that affect the learning
process. We plan to extend this work by incorporating real-
time data handling and deeper analysis of class distribu-
tion effects, particularly in detecting rare or stealthy attack
patterns.Although our study relies on well-known machine
learning algorithms such as Random Forest, SVM, and KNN,
the novelty lies in the integration of these models with
protocol-level and service-specific attributes rarely leveraged
in existing IDS literature. By using a structured multi-class
dataset tailored for IoT intrusion scenarios, we offer a new
perspective that goes beyond traditional flow-based detection.
This combination enhances both interpretability and detection
precision in IoT environments, particularly in edge-constrained
WSNs.
In conclusion, the Random Forest method performs exception-
ally well overall, however it differs slightly from the other two
algorithms in terms of accuracy and consistency. Nonetheless,
depending on the particular needs of the assignment, KNN
and SVM can also offer strong and reliable classification,
making them appropriate alternatives. These algorithms’ ex-
cellent performance highlights their potential for practical
implementation in real-world categorization issues, laying a
solid basis for additional study and application.

IX. CONCLUSION

In conclusion, this study proposes a comprehensive approach
to developing an advanced intrusion detection system (IDS)
leveraging machine learning algorithms. By employing sys-
tematic data preprocessing, strategic feature selection, and
rigorous model evaluation, the methodology demonstrates re-
markable effectiveness in detecting and classifying network
intrusions. The preprocessing phase ensures the dataset is
prepared for model training by addressing issues such as
missing values, normalization, and encoding, laying a strong
foundation for accuracy and efficiency. Feature selection
further optimizes the dataset by identifying the most rele-
vant attributes, reducing dimensionality, and enhancing model
performance.Multiple machine learning algorithms, including
Random Forest, K-Nearest Neighbors (KNN), and Support
Vector Machine (SVM), were evaluated for their intrusion de-
tection capabilities. The results highlight their high reliability

and robustness, with Random Forest achieving an exceptional
accuracy of 99.9877%. KNN and SVM also delivered strong
performances, with accuracies of 99.9754% and 99.9630%, re-
spectively, demonstrating their potential as reliable alternatives
based on specific needs.The thorough evaluation using metrics
such as accuracy, precision, recall, F1-score, and ROC-AUC,
combined with cross-validation techniques, ensures the robust-
ness and generalizability of the models. This comprehensive
assessment not only highlights the strengths and weaknesses
of each model but also provides valuable insights into their
capabilities in detecting various attack categories.While the
reported performance metrics are extremely high, care was
taken to mitigate overfitting. Learning curves were analyzed
for each classifier, and the gaps between training and valida-
tion accuracy remained minimal, suggesting that the models
generalized well to unseen data. Additionally, the use of
5-fold cross-validation helped ensure the robustness of the
results.Moreover, future iterations of this framework could
incorporate hybrid models that combine decision-tree-based
learners with deep learning layers to capture both hierarchical
structure and temporal dependencies, thus enhancing detection
robustness in evolving IoT environments.Future versions of
this work may include statistical tests such as paired t-
tests or Wilcoxon signed-rank tests to assess the significance
of observed differences between classifiers, especially when
performance metrics are very close.This work highlights the
overlooked value of protocol-level features for achieving inter-
pretable and precise intrusion detection.These results confirm
that protocol-level features enable efficient and interpretable
IDS. Future work will explore hybrid models to enhance real-
time adaptability. Overall, the proposed method enhances the
detection capabilities of IDS by leveraging advanced machine
learning techniques. The high performance of the evaluated
algorithms indicates their potential for practical deployment
in real-world network security applications. This study lays a
solid foundation for future research and development in the
field of intrusion detection, contributing to the broader goal
of improving cybersecurity measures and protecting against
evolving cyber threats.
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