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Abstract 

Industrial automation is expanding and evolving rapidly, with a huge 

technological boost from Artificial Intelligence (AI), especially Deep Learning (DL). The 

accelerating development of AI technologies has revolutionized information processing 

and decision-making processes, which are the main pillars of automation methods. 

Industrial automation encompasses a wide range of different methods that can be applied 

to a manufacturing process to execute production steps without human intervention. 

When these methods are applied in real life, it is crucial that such systems detect in time 

if they are facing an input that is not supposed to be handled because it is faulty, damaged, 

wrong, or unknown. One of the most widespread methods to solve this problem is image-

based anomaly detection, through which these anomalous cases can be identified. 

This research is focused on an industrial company's factory automation process. 

It aims to integrate a deep learning-based anomaly detection control step into this 

workflow. This leads to one of the specialities and challenges of the topic, which is that 

the implementation has to be adapted to the demands of a real-life scenario. The necessary 

images for training the models were provided by the company, thereby fully adapting the 

input to a real factory environment. An extensive literature review was conducted on the 

most common and high-performing anomaly detection techniques, exploring the 

capabilities of each method. Based on this, three directions were identified, for which 

different methods have been studied and implemented, such as solutions based on 

autoencoders or clustering. Both qualitative and quantitative methods were used to 

evaluate the performance of these methods and their suitability for the given use case. 

Their accuracy and reliability were further improved through various optimizations and 

improvements. Besides the construction of well-performing models, the analysis of the 

results with adequate accuracy was an emphasized part of the research. General 

conclusions were drawn on the necessary considerations to be taken into account in real-

world applications. I have identified the limits of the methods' abilities and the possible 

preconditions for their successful use. Furthermore, industrial automation raises several 

concerns that fall within the scope of human-centred artificial intelligence, including 

legal, ethical, and safety aspects, which will be further discussed. 
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Kivonat 

Az ipari automatizálás terjedésére és fejlesztésére óriási hatással van a 

mesterséges intelligencia (MI), azon belül is a mély tanulás. Ezen technológiák jelenleg 

is tartó, robbanásszerű fejlődése forradalmasította az információfeldolgozási és 

döntéshozatali folyamatokat, amelyek alappilléreit alkotják az automatizációs 

eljárásoknak. Az ipari automatizáció számos különböző módszert foglal magába, 

amelyek lehetővé teszik, hogy a gyártási folyamat során az egyes lépések emberi 

beavatkozás nélkül végrehajthatóak legyenek. Ezen módszerek valós életben való 

felhasználása során kiemelten fontos, hogy időben észleljük, ha a rendszer olyan 

bemenettel áll szemben, amit nem szabad kezelni, mert hibás, sérült, rossz vagy esetleg 

még nem ismert. Ennek megvalósítására a képeken alapuló anomália detekció egy 

elterjedt módszer, melynek segítségével azonosítani lehet ezeket az eseteket. 

Kutatásom egy nagyipari vállalat gyári automatizációs folyamatához kapcsolódik. 

Célja egy mély tanuláson alapuló anomália detekciós ellenőrzési lépés integrálása ebbe 

az eljárásba. Ebből adódik a téma egyik sajátossága és egyben kihívása, hogy a 

megvalósítás során a valós életben való alkalmazás igényeihez kell igazodni. A modellek 

tanításához szükséges képeket a vállalat biztosította, teljes mértékben adaptálva ezzel a 

bemenetet egy valós gyári környezethez. Az anomália detekciós technikákról széleskörű 

irodalomkutatás készült, mely során az egyes módszerek sajátosságai elemezve lettek. Ez 

alapján három irányvonal került azonosításra, melyekhez különböző módszerek lettek 

tanulmányozva és implementálva, mint például az autoenkóderen vagy a klaszterezésen 

alapuló megoldások. Kvalitatív és kvantitatív módszerekkel is kiértékelésre került a 

módszerek teljesítménye, valamint, hogy az adott felhasználási célra mennyire felelnek 

meg. Különböző optimalizálások és továbbfejlesztések által tovább növelve lett a 

pontosságuk és a megbízhatóságuk. A jól teljesítő modellek létrehozása mellett 

hangsúlyos része volt a kutatásnak az eredmények megfelelő pontossággal történő 

kielemzése is. Általános érvényű következtetéseket vontam le arról, hogy milyen elveket 

kell figyelembe venni a valós felhasználás során. Meghatároztam, hogy mik a módszerek 

képességeinek határai, valamint milyen esetleges előfeltételei vannak a sikeres 

használatuknak. Mindemellett az ipari automatizáció több olyan kérdést is felvet, amely 

az emberközpontú MI kérdései alá tartoznak, ideértve felhasználásának jogi, etikai és 

biztonsági kérdéseit, melyek további elemzésre kerülnek. 
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1 Introduction 

This chapter presents the motivation and purpose of the research, along with the 

use case in which it will be deployed, contributing to the realization of an industrial 

automation project. 

There is an increasing focus on workflow automation nowadays, including the 

domain of various industrial processes [1]. The seamless operation of machinery stands 

as a pivotal factor for efficiency, precision, and product quality. Moreover, by 

automatization, employees can be freed from procedures that are exhausting, tedious, 

dangerous, or difficult to carry out. These methods represent a major innovation and could 

provide a huge benefit to a company and its employees. Most industrial automation 

realizations require some kind of computer vision tool to map the working area and 

identify what kinds of components are available. These are necessary for the system to 

get information about its surroundings and to be able to determine, what should be the 

next step. Since these are not closed systems in which we can explicitly predict what will 

be in front of the cameras, it is important to have some sort of mechanism that is prepared 

for unusual cases as well. Especially, when it is used in a hazardous environment. For 

example, when the machine is transporting or cutting things, it is essential that it can 

identify if a human is in the way, or if a hand or some clothes are hanging inside the work 

area, which could lead to accidents. In such situations, these machines must not continue 

to operate as normal, but give some kind of signal, as the resolution of the action requires 

human intervention. A powerful solution for identifying these cases is image-based 

anomaly detection. With the rise of deep learning, image processing techniques improved 

tremendously, involving anomaly detection. This research aim is to investigate different 

deep learning-based anomaly detection methods, that can be used in the given industrial 

environment. 

The Unpacking Machine is the name of a machine in the concept phase, which is 

a current industrial initiative aiming to unpack the received boxes on a conveyor belt, 

separate their contents, and sort the leftover packaging materials selectively. It has 

advanced capabilities, it can move, lift, and sort different items, and has a cutting blade 

to cut the boxes open at their localized coordinates. With object detection techniques, it 

can observe what is in front of its camera, locate each product, and then decide what to 
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do next. Figure 1.1. shows a case study about a rudimentary version of the Unpacking 

Machine, while it sorts goods based on its camera view. 

 

1.1. Figure - Images of a rudimentary version of the Unpacking Machine in work. It sorts the 

products based on its camera view, which is illustrated on the upper left side of the images. 

In the given use case, the AI model should recognize goods (e.g., PCBs (Printed 

Circuit Boards), Reels), stacked boxes, plastic packages, and paper packages, due to 

recycling. The object detection technique is suitable for this purpose, but unfortunately 

not enough. In a real environment, the machine also has to be prepared for the edge cases 

when some unexpected input or anomaly is encountered. Object detection is unable to 

identify these because these are previously unknown incidents, and not enough data is 

available of them. The aim of the proposed anomaly detection algorithms is to be 

incorporated into this system to detect these cases. The full automation process is shown 

in Figure 1.2, with the novel anomaly detection-based verification step highlighted with 

a white background.  

 

1.2. Figure - The automatization workflow, updated with the novel anomaly detection step, which is 

highlighted with a white background. It replaces the step shown with a red dashed arrow. 
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As the illustration shows, the automation process runs in a loop and only stops when an 

anomaly is encountered, and an exception-handling process is needed.  

Establishing a suitable dataset is critical for training a deep learning algorithm, 

which requires many images. For this research, the company provided images from one 

of their factories. After carefully planned pre-processing steps, they were used to train 

and test the proposed methods. The investigated techniques can be used as part of any 

other automation project if a sufficient amount of images is available of the environment. 

This use case is only one example of the numerous possibilities where these solutions 

may be appropriate. 

The literature on anomaly detection with deep learning methods is quite broad. 

The main principles of these methods are presented in the second chapter. The basics of 

artificial intelligence, deep learning, and the main components that were used for anomaly 

detection are also introduced. 

In the third chapter, the used dataset and the various pre-processing steps are 

presented. Then the research is pursued in three main directions. First comes an approach 

leveraging the popular, well-established method of autoencoders. Next, another method 

is examined, that seeks to identify outliers through clustering the latent space of an AI-

based object detection model. Finally, comes a modern approach to detect anomalies 

using zero-shot detection, called Segment Any Anomaly+. The different characteristics 

of these methods are described along with the engineering choices made to design them, 

and the modifications made to customize them. The used evaluation methods are also 

detailed here. 

The fourth chapter provides implementation details, together with a description of 

the used libraries. The fifth chapter presents the results of the evaluation of all the models, 

highlighting their advantages, disadvantages and limitations. In the sixth chapter, the 

three methods are compared, and it is determined which one of them would be the most 

suitable to use for the specific application. Finally, in chapter seven, the ethical, legal, and 

safety-critical issues of the proposed methods are discussed. 
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2 Theoretical background 

In this chapter, the theoretical background of anomaly detection, artificial 

intelligence, and the fundamentals of the applied deep learning methods are presented. 

2.1 Anomaly detection 

Anomaly detection has established itself as an important method, with many 

applications and presence in almost all scientific domains. Its significance arises from its 

capability to discover critical incidents that could cause serious damage with time. It can 

be used for fraud detection, identifying cybersecurity threats or terrorist activity, 

forecasting possible machine failures, diagnosing medical disorders, sanitizing data, or 

verifying the proper functioning of workflows. The concept of anomalies and their 

identification is not new, mathematicians have been interested in the statistical approach 

to this problem for quite a long time. As early as the second half of the 19th century, there 

are records of this problem in a paper by the famous mathematician Edgeworth [2]. 

Anomalies are patterns in data that do not conform to a well-defined notion of 

normal behaviour [3]. A simple example of them in two dimensions is visualized in Figure 

2.1. 

 

2.1. Figure - An example of anomalies in two dimensions. The data has two normal regions 𝐍𝟏 and 

𝐍𝟐, points that are sufficiently far from these are considered as anomalies (𝐎𝟏, 𝐎𝟐, 𝐎𝟑). Source: [3]. 

Anomalies can arise in various ways in our life. They can be the consequence of deliberate 

attacks, they can result from unintentional mistakes, or they can just happen by the laws 

of nature. The concept of anomaly also appears in many other areas, with the more general 
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meaning of unexpected, unusual patterns that are different from normal. They are also 

known as outliers, discordant observations, or exceptions. Originally, anomalies’ 

characteristics are easy to confuse with novel ones, as they have also never occurred 

before. The difference between the two is that the new patterns occur repeatedly over time 

and will become incorporated into the existing distribution. 

The discipline that studies these anomalies is called anomaly detection, with the 

aim of separating outlier data points from the regular data. In anomaly detection, the goal 

is the classification of normal and abnormal data, yet it cannot be considered as a simpler 

binary classification problem. Unlike a binary classification, here the distribution of data 

is unbalanced, and anomalies are mainly previously not seen data, so they are not 

available for training and cannot be labelled. In addition, anomalies can vary in 

appearance, shape and colour and they do not have stable statistical characteristics [4], 

that would define them. Anomaly detection can be used on a huge variety of data types, 

including binary files, texts, videos and images. In this research, the focus is on image-

based anomaly detection methods. There are many traditional, so-called “pre-deep 

learning” anomaly detection methods, such as Principal Component Analysis [5], one-

class Support Vector Machine [6], Local Binary Patterns [7], and Gaussian Mixture 

Models [8]. However, deep learning-based methods are more robust on complex, high-

dimensional data, like images, due to their ability to automatically learn and extract 

hierarchical features, whereas traditional methods struggle due to the reliance on 

handcrafted features [9]. In this research, only deep learning-based solutions are 

investigated since the image dataset is quite complex so the traditional methods would 

not be feasible. 

A straightforward approach would be to define a region that is representative of 

normal behaviour and to declare all other observations as anomalies. However, there are 

confounding factors that make it difficult in practice [10], such as:  

• Labelled anomalous data is often not available for training and testing. 

• Normal noisy data can be similar to anomalies, so they are hard to differentiate. 

• Anomalies can occur in a wide variety of forms; they cannot be defined, and it is 

not possible to know their main features. 

• To detect an anomaly, a deep learning-based neural network must learn the 

distribution of every possible form of the normal data very accurately, for which they 

usually require very huge datasets. 
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• It is difficult to define the region of the normal data, that encompasses every 

possible normal behaviour as there is no clear boundary between the normal and 

anomalous samples. If we define an exact threshold for anomalies, it is very common to 

have normal data detected as an anomaly and vice versa. 

• The exact definitions of anomaly vary from application to application. For 

example, in the medical field, a small deviation from the norm (e.g., a fluctuation in body 

temperature) should be considered an anomaly, while a similar deviation in the world of 

the stock market (e.g., a fluctuation in the value of a share) should be considered normal. 

Thus, reusing a technique developed in one area to another is not straightforward. 

These challenges confirm that anomaly detection is not easy to address. Most 

existing techniques only solve a specific formulation of the problem, which is influenced 

by factors such as the nature of the available data, the type of anomalies to be detected, 

and the application domain. 

2.2 Artificial Intelligence and Deep Learning 

Artificial Intelligence (AI) covers a broad area, including Machine Learning 

(ML), a part of which is Deep Learning (DL). Deep learning uses complex structures 

called deep neural networks, which have many layers to process information. They 

usually work with a large amount of data and excel in tasks such as image recognition, 

natural language processing, and data generation. 

The very first neural network model became known as the Perceptron in 1957, 

invented by Frank Rosenblatt [11]. It was inspired by earlier theoretical works, which laid 

the foundation for computation methods modelled after biological neural processes. In 

those earlier years, many ideas and concepts had been proposed about what AI could 

achieve, but most of them could not be realized because of technological limitations, such 

as a lack of computational power, and theoretical challenges. One major limitation of 

single-layer Perceptrons was their inability to solve non-linearly separable problems, like 

the XOR problem. These have led to the neglect of this field, called AI Winter. In the 

following years, AI research experienced cycles of optimism and setbacks, where a 

discovery or research result only kept the interest alive in the subject for a shorter amount 

of time. The development of backpropagation in the 1980s revived interest in multi-

layered neural networks, enabling them to learn more complex patterns. However, 

progress remained constrained by limited computational power and available data. In 
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2012, the real breakthrough came with the emergence of deep learning methods, 

especially convolutional neural networks for image recognition [12]. This has brought 

undeniable successes, that fundamentally changed the public view of machine learning 

methods, triggering a revolution in the sector. To this day AI technologies have proved 

their worth, conquering most fields of science. We can expect more reliable, more 

accurate, and faster solutions, thanks to the continuous development of models, software 

tools, hardware, and the increasing amount of data. 

Artificial Intelligence solutions can be divided into three main categories, 

depending on how the training is performed: supervised, unsupervised, and semi-

supervised learning. Supervised learning is the most frequently used, where models are 

trained on data with predefined labels, which serve as the target class or value. They aim 

to map the relationships between data points and labels during training so that afterwards, 

the model can predict the target for new, unlabelled data. While it is straightforward and 

effective, its main drawback is the cost of labelling large datasets. In unsupervised 

learning the model learns from a dataset without any predefined labels, with the aim of 

discovering patterns, structures, or hidden relationships. The model identifies these on its 

own, which can be valuable for exploratory data analysis or understanding complex 

datasets. However, due to the lack of clear ground truth answers, it can be more 

challenging to evaluate their performance, and they may require more sophisticated 

techniques to ensure meaningful results. Semi-supervised learning is a hybrid approach, 

that leverages both labelled and unlabelled data, as it combines the advantages of 

supervised and unsupervised learning. Usually, the model is initially trained on the 

unlabelled dataset and then further fine-tuned using the labelled data, which helps 

improve its generalization abilities. Hence the performance can significantly improve, 

while the dependency on fully labelled datasets is reduced, offering a more practical 

solution in real-world applications. In recent years the emergence of foundation models 

has introduced a new trend alongside these methods, known as prompt-based learning. 

This approach leverages pre-trained foundation models, which are large-scale models that 

can subsequently be adopted to solve multiple different tasks e.g., GPT-4 [13], Segment 

Anything (SAM) [36]. They finetune these large, existing models for specific tasks using 

prompt engineering, rather than creating new ones from scratch. This method can also be 

referred to as zero-, one-, or few-shot learning, which aims to reduce the need for large 

training sets, using only a few or only one data sample for prediction. 
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Convolutional Neural Networks (CNNs) operate on data, whose representation 

has a grid-like structure in space or time, like images, videos, and audio files. Their most 

popular application is image processing, which includes image recognition, object 

detection, image segmentation, and image generation. They are much more effective on 

these than traditional computer vision methods or the fully connected neural network 

approaches. This is because CNNs take advantage of the translation invariance of images. 

Its convolutional layers contain a kernel, which is moved across the entire image in a 

sliding window approach, extracting the key information. The underlying concept is that 

the pixels that belong together have a high probability of being spatially close to each 

other. The trainable weights correspond only to the size and number of kernels, so it has 

far fewer parameters. It is essential that the same weights are used in all parts of an image 

so that if a feature is considered important by the network in one part of the image, it 

should be equally important elsewhere. Another relevant layer is the pooling layer, which 

reduces the spatial resolution to extract global features. As an example, the architecture 

of a popular CNN model can be seen in Figure 2.2. 

 

2.2. Figure -The architecture of a commonly used CNN, called VGG16. Source:[28].  

CNN's structure has two main parts, which are easily locatable in Figure 2.2. The 

first, consists of many convolution layers separated by activation functions, named ReLU 

(Rectified Linear Unit) and pooling layers, to identify the most important features. ReLU 

is a commonly used non-linear activation function that leaves the positive parts of its 

argument unchanged and replaces the negative parts with 0. The second part consists of 

fully connected layers, which serialize the results. At the end of the model, there is an 

activation function to determine the predicted output. For multi-class classification tasks, 

it is usually a Softmax function, which transforms a vector of K integers into a probability 

distribution with K possible outcomes. It determines the probability of being represented 
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in the image for each possible object. In the few years that followed the success of the 

first CNN network [12], many novel and versatile architectures were created, achieving 

better and better results. One popular benchmark is the ImageNet competition[14], which 

aims to find an algorithm that could correctly classify diverse content images into 1000 

categories. In this work, several different CNNs were used, such as VGG16, ResNET18, 

ResNET50, and DenseNET [15], as part of more complex deep learning-based 

architectures. VGG16 (Visual Geometry Group) is a simple, yet deep CNN known for its 

consistent architecture of 16 layers, using small 3x3 filters to achieve depth and 

representational capacity, but it has high computational costs due to its 140 million 

parameters. ResNet (Residual Network) introduces residual connections to combat the 

vanishing gradient problem, enabling the training of very deep networks efficiently while 

maintaining lower computational complexity compared to earlier models like VGG. 

DenseNet enhances information flow by connecting each layer to all subsequent layers 

via feature concatenation, reducing redundancy but increasing computational demands 

due to its complex layer interconnectivity. 

Transformer networks were introduced in 2017 [16], and represented a 

breakthrough in the field of Artificial Intelligence, especially in natural language 

processing. Their main strength is the so-called attention mechanism, which allows the 

network to efficiently focus on relevant parts of the input data. They also use positional 

encoding, which helps to maintain and manage the sequence of input data. Transformers 

differ significantly from previous models such as recurrent neural networks and CNNs. 

They are built up of layers that can operate in parallel, including encoder and decoder 

modules. This parallelization allows for significant speed-up and simplicity. Its modular 

design enables the easy integration of new functions and components, allowing for further 

development and specialization of the models. In recent years, transformer networks have 

rapidly taken the lead in AI, because of their versatility and their continuous development 

has kept them at the forefront in many fields. These models form the basis of several 

state-of-the-art foundational models. 

Object detection aims to determine the exact location of objects in the images, 

via bounding box coordinates. Two popular implementations are YOLO (You Only Look 

Once [17]) and SSD (Single Shot MultiBox Detector [18]). The choice between them 

depends on the specific use case. In real-time scenarios, usually YOLO is used because 

its detection time is faster, and it has a simpler architecture. In this approach, all objects 
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in the image are detected and classified at once, as hinted by the name of the architecture: 

“You Only Look Once”. This way it significantly reduces the required time to perform 

the task. It works by dividing the image into several grid elements and assigning several 

predefined bounding boxes for each, which are used to make estimates of what objects 

are located there. The network consists of three main parts, named Backbone, Neck, and 

Head. The Backbone is a CNN, which aims to learn and extract key features from the 

input image. The Neck is responsible for aggregating and enhancing these features across 

different scales, it connects the Backbone and Head through three different resolution 

levels, allowing the model to detect objects of various sizes. The Head makes the actual 

predictions. Figure 2.3 shows the architecture of the YOLOv5 model, that was used for 

this research. 

 

2.3. Figure - The architecture of the YOLOv5 object detection model. Source: [19] 

The YOLO model uses a complex loss function, which consists of several 

components: the bounding box localization error, the classification error, and their 

confidence error and it penalizes detections of non-existing objects. The required ratio of 

these parts in the loss function depends on the specific application, so usually extra 

attention should be given to tuning the parameters that control the weights of the different 

losses. 

2.2.1 Dimension reduction techniques 

Dimension reduction aims to reduce the number of features or variables in a 

dataset while preserving as much important information as possible. In high-dimensional 

spaces, points tend to become uniformly distant from each other, making it difficult for 
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distance-based algorithms to find meaningful structures. This causes the "curse of 

dimensionality" [20], which describes challenges, such as increased data sparsity, reduced 

effectiveness of distance metrics, and computational complexity. By reducing the 

dimensionality, these methods simplify the data, making it easier to visualize, interpret, 

and analyse, while also improving the efficiency and performance of machine learning 

models. 

Principal Component Analysis (PCA) [5] is a standard statistical method that aims to 

reduce the dimension of the data, while preserving the most meaningful variables that are 

likely to contain the most relevant information, to re-express the dataset. PCA assumes 

that the task is linear and tries to solve it as a linear problem. This way the whole problem 

is simplified to finding a suitable change of basis. This linear approach allows for a 

simpler, yet informative representation of the data structures, that often underlie it. It is 

particularly useful in cases where the dataset is redundant, contains a large amount of 

noise, or has simply too many dimensions, that need to be reduced to make it manageable 

and visualizable. The principal components that form the new basis of the data are 

orthogonal to each other. This orthogonality is achieved by choosing the eigenvectors, 

which are perpendicular to each other on a symmetric matrix. PCA is closely related to 

Singular Value Decomposition (SVD), in fact, SVD is a more general method of 

understanding change of basis. It is a matrix decomposition method, which decomposes 

a matrix into two orthogonal (U, V) and one diagonal (∑  ) matrices. It can be used to 

directly compute the eigenvalues in PCA. 

Uniform Manifold Approximation and Projection (UMAP) is a nonlinear 

dimensionality reduction technique [21], which is particularly effective for visualizing 

high-dimensional data. It models data as a geometric manifold and seeks to preserve both 

the global structure and local relationships between points when projecting them into a 

lower dimension. It achieves this by building a weighted graph representation of the 

data’s nearest neighbours in high-dimensional space and optimizing its layout in the 

lower-dimensional space. It is computationally efficient, scalable to large datasets and 

often yields more meaningful embeddings than other methods like t-SNE (t-distributed 

Stochastic Neighbour Embedding) or PCA. 

Dimensionality reduction is one popular task of autoencoders, but their utility 

extends beyond this, encompassing a variety of forms such as sparse autoencoders, 

denoising autoencoders, and more [22]. The primary objective is centred around learning 
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meaningful representations of the data. An autoencoder with a single layer along with a 

linear activation function is nearly equivalent to PCA. However, the potential power of 

autoencoders is much larger, as it enables both linear and nonlinear transformations [23]. 

Its purpose is to learn the identity function: during the training process, it compresses the 

data into a small latent space and then reconstructs the original input. This way, it can 

discover a more efficient and compact representation of the data. It has two main parts, 

called Encoder and Decoder. 

2.2.2 Clustering methods 

The purpose of clustering is to divide data into categories so that similar data are 

grouped into one and different data into another cluster. It aims to find natural patterns or 

structures within a dataset. It helps uncover hidden patterns, simplify data complexity, 

and can provide insights for decision-making by revealing how data points relate to one 

another. There are three main approaches, Partition-Based Clustering, Hierarchical 

Clustering, and Density-Based Clustering. In this research, K-means was used for 

categorizing the dataset by product types and DBSCAN and HDBSCAN for anomaly 

detection purposes. 

One of the most popular partition-based clustering algorithms is called K-Means 

[24]. It aims to divide M points in N dimensions into K clusters so that inside each cluster 

the square of the sum of the distances between the data points is minimized. The number 

of clusters is defined by the K parameter. The K-means algorithm assigns each data to the 

cluster, which centroid is the closest to it and tries to find the best centroids by alternating 

between two steps. First, it assigns data points to the clusters, based on fixed centroids, 

then it chooses new centroids based on the current assignment of data points to clusters. 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a 

powerful density-based clustering algorithm [25]. Unlike traditional clustering methods, 

it does not require the number of clusters to be defined and can identify clusters of 

arbitrary shapes while effectively handling outliers. It clusters the data by identifying 

dense regions of points, expanding clusters from core points within a specified distance 

(ε) while marking sparsely populated points as outliers. This behaviour can be tuned with 

parameters, for example, the maximum distance between two samples, to be considered 

in the same cluster, and the number of samples in a neighbourhood for a point to be 

considered as a core point can be specified. By focusing on density rather than distance, 
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DBSCAN is particularly effective for datasets with irregularly shaped clusters, making it 

useful for applications like anomaly detection. Furthermore, the algorithm inherently 

identifies outliers as part of its clustering process, without requiring a separate method. 

Hierarchical DBSCAN (HDBSCAN) [26] extends DBSCAN by converting it into a 

hierarchical clustering algorithm, through the construction of a dendrogram, which 

represents the arrangement of clusters formed at different data density levels. In this 

hierarchy, each point is connected to its nearest neighbour of higher density, creating a 

tree of points that gradually merges into denser clusters as one moves up the hierarchy. 

Then it uses a technique called Condensed Tree to extract a flat clustering by selecting 

the most stable clusters from this dendrogram across different density levels. It allows 

variable-density clusters without needing to manually set the ε parameters, making it a 

more flexible and robust version of DBSCAN. It is particularly effective for imbalanced 

datasets with varying density, noise, or irregular shapes, as it can identify clusters of 

different densities. 

2.3 Deep learning methods for visual anomaly detection 

Visual anomaly detection can be divided into two different categories: Image-

level and Pixel-level anomaly detection [4]. The first focuses on separating the images, 

which are considered as anomalies from the normal ones. The second approach is more 

sophisticated, it locates the abnormal regions inside the images, identifying which pixels 

can be considered anomalous. Another categorization is defined based on the used deep 

learning technique: supervised, semi-supervised, and unsupervised deep anomaly 

detection [23]. Supervised anomaly detection uses labels for both normal and anomalous 

data. It involves training a multi-class classifier on the labeled data, to distinguish 

anomalies. Their performance is usually suboptimal, because of the class imbalance and 

the high in-class variability, and they cannot be used for unknown or new types of 

anomalies. Thus, these methods are usually not applicable, because of the lack of 

availability of labelled training samples. On the other hand, Semi-supervised methods, 

which leverage existing labels of the normal, positive inputs are widely adopted. They 

can be realized using a deep learning-based vision model, which is trained on labelled 

data, without anomalies. It should learn a discriminative boundary around the normal 

instances, and the ones, which do not belong to the majority are considered as outliers. 

Then an unsupervised technique, such as clustering, can be applied to distinguish between 

normal and anomalous images. It assumes, that data points with the same label, are close 
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to each other both in input space and learned feature space. The use of labelled data can 

cause performance improvement over unsupervised techniques. The disadvantage of this 

method is that the hierarchical features extracted within hidden layers may not be 

representative enough to distinguish every kind of anomalous instance. Unsupervised 

methods are only based on the intrinsic properties of the data instances to detect outliers. 

They operate under the assumption that normal data instances are much more common 

than abnormal ones, so with sufficient training samples these models should produce 

lower reconstruction errors for them. If this assumption is incorrect, it can lead to a high 

rate of false positive predictions. It is cost-efficient because labelling is not required. On 

the other hand, it can be challenging to learn commonalities within data in a high-

dimensional space. Thus, they are also sensitive to noise and need much tuning to achieve 

accurate results. The output of vison-based anomaly detection models is usually a single 

value, called anomaly score. It quantifies the level of outlierness for each data. The data 

instances may be ranked according to these scores, and a domain-specific threshold must 

be selected, which determines the value above which an individual sample is considered 

an anomaly. 
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3 Proposed methods 

In this chapter, the main parts of the workflow, where the novel anomaly detection 

method will be integrated are presented, along with the steps and considerations of data 

preparation, and the details of the different methods. 

3.1 Integration with an existing system 

The proposed technique is going to be integrated into an existing industrial 

automatization system. The first building block of this is the Unpacking Machine, which 

has various remarkable capabilities and is equipped with several arms, allowing it to 

unwrap, cut, and lift items. It is crucial, for this machine to know what is in front of it 

before it can perform such a precise operation. To address this challenge, a team has been 

working on building and optimizing an object detection model that will provide its image 

recognition capabilities. This will probably be a YOLO model, but any other method 

would be suitable, which can determine with high accuracy where a particular product is 

located, via rotated bounding box coordinates. In a simulated environment where all the 

prepared boxes contain exactly what and how we expect it, this might be enough to 

complete the task. But in a real-life industrial scenario, the risk also must be assumed that 

the received products may include defective, damaged, or differently packaged items (i.e., 

not allowed package configuration of the supplier), that should be handled somehow 

differently. Relying only on the YOLO, these items would be categorized into one of the 

predefined classes and the machine would try to handle them in the same way as any other 

item from that class. This could lead to mishandled, damaged, or ruined products and 

even cause the whole system to shut down. To prevent such errors, the proposed anomaly 

detection step will be integrated into the workflow after the YOLO’s detection, but before 

the machine starts the movement. This will provide a safety enhancement to prevent 

accidents by detecting faulty products. Given this, it can be assumed, that the output 

information of the YOLO (the types and locations of the products) is available and can 

be used as prior knowledge for anomaly detection. The target objects for unpacking are 

always inside a box, so the anomaly detection step should also focus exclusively on the 

inside of the boxes. This is achieved by cropping the parts of the original image containing 

the open boxes and using only those as input for anomaly detection. The anomaly 
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detection is only needed if the box is open and not empty. These additional steps before 

the anomaly detection in the workflow are visualized in Figure 3.1. 

 

3.1. Figure - The detailed steps before and after the anomaly detection in the final workflow. 

3.2 Dataset 

The methods are designed to be suitable for use in any manufacturing process. 

However, to develop a deep learning-based solution, images of a specific location are 

needed. For this purpose, an image dataset was collected in one of the company’s 

factories. This contains a series of images about the process of manual box placement, 

opening, and unpacking. The two main products that can be found in the boxes are reels 

and PCBs. In addition to these, there are various kinds of paper or plastic packaging 

materials, bubble wraps, strips, and labels on the boxes. These high-resolution pictures 

show a large surface area. In the final process, an object detection model will define the 

location of the open boxes, and they will be cropped. Therefore, this dataset should also 

contain only the parts of open boxes. 

3.2.1 Data pre-processing 

The images were captured at fixed, dense intervals, without taking into account 

movements on the surface. Therefore, many identical images were retrieved, that needed 

to be eliminated. Structural Similarity Index Measure (SSIM [27]) was used to identify 

the images that were too similar to each other. The next step was to locate the open boxes, 
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but the object detection model that would be integrated into the workflow was not 

available at the time of this research. Therefore, another model is needed, to predict these 

coordinates. A subset of the data was manually labelled before, with multiple different 

types of labels including 7000 open box labels. A YOLOv5 model was trained on these 

with transfer learning, to locate the open boxes’ rotated bounding box coordinates. Since 

now false positive detections are of more concern than possible missed ones, the 

confidence limit was set higher, than the default. In addition, low-confidence results are 

mostly found in low-quality, blurred images, so omitting them also improves the quality 

of the dataset. After these coordinates were obtained, the original images were rotated to 

make their borders parallel to the sides of the boxes. If the bounding box coordinates were 

out of the image, those parts were replaced with black pixels. Since neural networks 

generally expect fixed-sized inputs, the images were padded with black pixels, to make 

them as high as they are wide. Then each box on every image was cropped. An SSIM 

filter was used once more since it is still possible that there are identical boxes if the 

differences were only in the trimmed part. Separate functions were implemented for each 

of these steps, which were connected to fully automate the data preparation steps. The 

detailed steps of the data pre-processing pipeline are visualized in Figure 3.2. 

 

3.2. Figure – The steps of the data pre-processing pipeline. 
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3.2.2 Dataset categorizations 

The proportion of different types of products was uneven and the characteristics 

of the resulting images were also very different, which makes anomaly detection more 

difficult. Moreover, examining different types of products together makes it impossible 

to find those cases which count as anomalies for some products but not for others. For 

example, a tearing or creasing is considered normal on a paper package, but anomalous 

on a box. So, it was necessary to group the images from the dataset according to the type 

of products. For this categorization, the images were the input of a pre-trained VGG16 

network, without its classification head for feature extraction (new dimension: 4096). 

Next PCA was applied, for additional dimension reduction to 600 components. Finally, 

these features were clustered using K-means, with 100 clusters. These categorization 

steps are visualized in Figure 3.3. 

 

3.3. Figure - The steps of the automatized part of the data categorization. VGG16 image source: 

[28]. 

This way the algorithm managed to efficiently separate images with different 

features. The images that the detector incorrectly detected as open boxes were also 

separated, these were deleted. Also, many images that happened to be blurry, or had 

people's hands or heads hanging in them, were also put into separate clusters. Figure 3.4 

shows examples of images in each group. This process helped the categorization, but 

manual methods were unfortunately still needed. If such a simple clustering algorithm 
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could sort out the anomalous cases from the others, the whole task would be 

accomplished. Instead, it put normal and anomalous images of the same item into one 

cluster, so they had to be sorted manually. 

  

3.4. Figure - Examples of the images from different clusters from the K-means results, and their 

categorization. 

Whether an image should be considered an anomaly is an objective, difficult, and 

domain-specific decision. After careful consideration, only the ones that seemed 

completely normal were kept as training images. The ones containing any irregularities 

were sorted into different folders based on the type of deviation. For evaluation reasons, 

two more datasets were created, which should always be considered anomalous, with high 

confidence. First, images from the ImageNet dataset were chosen, that do not belong to 

the dataset and contain animals and objects. In the other, the images were selected from 

the original dataset, but they deliberately did not include the target products. The applied 

DL-based methods were sensitive to the cleanliness of the data, so any remaining blurry, 

noisy, out-of-focus images were manually eliminated. 

3.2.3 Train-test split 

There can be significant similarities between the images, as they were captured 

sequentially. For example, in the case of unpacking, the images that come after each other 

show one less product, but the rest of the image is the same, as shown in Figure 3.5. 

 

3.5. Figure – An example of the similarity in an image sequence. 
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If some of these images were put in the training set and others in the testing set, it could 

cause significant data leakage, which could distort the results. To avoid this, the split of 

the test and train data was not random. The images taken on the same day were 

aggregated, ensuring that they were assigned to the same set. I trained the models with 

cross-validation, since unfortunately there were not so many days, and the distribution of 

products can be highly varied from day to day. For cross-validation, the dataset needed 

to be divided into more parts, and each of them was used as a testing set while the DL 

model was trained with the others. For this, the days with different numbers of images 

had to be divided into separate folds, in such a way that the number of images in them 

was the same as far as possible. This task corresponds to the Partition problem, which is 

NP-hard. It was solved with a greedy approximate algorithm, where the days were sorted 

in descending order based on the number of contained images and the next days’ images 

were put in the smallest fold. 

3.2.4 Data augmentations 

Augmentation is a frequently used technique to make the models more robust and 

improve their performance. It is the process of performing different transformations on 

the data in each epoch. This way the network does not see the same image twice, just a 

slightly altered version of it. This reduces the chance of overfitting, increases the 

generalization ability, and makes the network less sensitive to noise. The amount and type 

of the possible transformations depends on the specific application, it is important to only 

perform transformations that can occur in real situations. The used augmentation 

techniques made the model insensitive to rotation with 90 degrees, and small changes in 

colour and contrast. 

3.2.5 Prepared dataset 

A separate dataset was prepared for each of the products, that were included in the 

images. The exact sizes of the different datasets (without any anomalies) are illustrated 

in Figure 3.6. This separation of the product types was advantageous because each has 

different properties and types of anomalies associated with them, so it was possible to 

observe which ones are more easily found. 
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3.6. Figure - Distribution of the datasets without any anomaly. 

It is important to note that the anomalies were identified according to the outliers, that 

were present in the dataset. In the final production process, there should be anomalies, 

other than these which are not yet encountered. Also, the current images were taken 

during manual packing, so for example, in-hanging hands is currently an anomaly, but it 

may not be an issue in the final system as people would not be around the machine. The 

distribution of the anomaly types in the five created datasets is visualized in Figure 3.7. 

and their characteristics are detailed below. 

 

3.7. Figure - The distribution of the different anomaly types across the different datasets 

The datasets: 

• Reels: Contains a top view of reels. The types of anomalies are hands (hands or 

arms of the workers), fingers (only the fingers of the workers), hidden parts (A paper or 

plastic package material is on the top of it), red packaging, vacuum packaging, and other 

packaging. 

428

1201

744

529

856

0

150

300

450

600

750

900

1050

1200

1350

Reels PCBs Pizza box Side reels Stacked boxes

0

20

40

60

80

100

120

140

Reels PCBs Pizza box Side reels Stacked boxes

hands fingers paper package packed

knife hidden parts red package vacuumed package

empty front reel black



28 

• Side Reels: Contains several different types of wrapped and unwrapped reels from 

a side view. The groups of anomalies are hands, fingers, paper package (the box contains 

unnecessary paper package material on the top), black (the reels are black), and front reel 

(one reel is pulled out and its front side can be seen on top of the others). 

• Pizza boxes: Contains the top view of a thin closed box, which looks like a pizza 

box. The groups of the anomaly images are hands, fingers, paper packages, and knives (a 

small red box cutter knife is found on top of the boxes). 

• Stacked boxes: Contains side-by-side, thin closed boxes from a side view. The 

anomaly groups are hands, fingers, paper packages and knives. 

• PCBs: This dataset contains the top view of packed PCBs with different types of 

packaging materials under and next to them. The groups of anomaly images are hands, 

fingers, hidden parts, missing PCB (only the package, the PCB has been removed), 

packed (unnecessary packaging material wrapped around it), and knives. 

One of the implemented methods, called Segment Any Anomaly+ is a 

segmentation approach, which requires segmentation masks. Fortunately, they are only 

needed for the evaluation of anomalous cases, as this method does not need training data. 

An example of the created anomaly masks can be seen in Figure 3.8. 

 

3.8. Figure - Examples of the segmentation masks for the anomalous cases. 

3.3 Anomaly detection with autoencoders 

A deep autoencoder approach is a popular choice for unsupervised image anomaly 

detection problems [23]. The motivation for using it to detect anomalies is that when we 

train an autoencoder on normal data instances, it captures their most representative 

properties as it learns to reconstruct them. This way they should produce a larger 

reconstruction error for the anomalous instances, as they struggle to accurately 

reconstruct them. They work best when plenty of data is available and there is a 

significant difference between the normal and anomalous ones. Their performance 

significantly depends on the construction of a large, clean and representative dataset. 
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An early yet influential application of autoencoders for anomaly detection on 

tabular data [29], showed that the reconstruction error could effectively distinguish 

between normal and abnormal data. Building on this foundational work, several variants 

of autoencoders further advanced the field with varying architectures, parameters, and 

optimization techniques across different domains. In the field of image-based anomaly 

detection studies with the combination of autoencoders and CNNs achieved remarkable 

results (e.g. [30] on medical images). Beyond their general application, specific 

implementations in different industrial settings demonstrate their versatility and 

effectiveness. There is no single, universally accepted architecture, different approaches 

can work better for each dataset, anomaly characteristic and application domain. The 

relevance of this research is to find the best solution with the best parameters for the given 

use case. For example, they use generative approaches with Variational autoencoder in 

[30] and GAN-based adversarial autoencoder approach in [31]. However, in the given 

case generative solutions might be too time-consuming. Some methods suggest 

increasing the difficulties of image reconstruction by adding some noise or 

transformations to the input image and then training it to reconstruct the original input 

(e.g. [32]). Unlike simple augmentation, where the goal is to create a more diverse dataset, 

as the model learns to reconstruct the augmented image. This method can effectively 

increase the reconstruction difference between normal and abnormal images and is known 

as a de-noising autoencoder [22]. This research followed this approach, and different 

kinds of transformations were performed on the images, each with a different probability. 

The used functions were Gauss Noise, Gaussian Blur, Elastic Transform, Sharpening, 

Motion Blur, Coarse Dropout, Random Gravel, Pixel Dropout, Optical, and Grid 

Distortion. Some examples of their results can be seen in Figure 3.9. 

  

3.9. Figure - Examples of the noises added to the input images. 
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The encoder was implemented as a commonly used CNN (e.g., ResNet50, 

ResNet18, DenseNet), and the decoder was its transpose. It means that each layer 

performed the inverse operation as the original CNN. It is a common practice to design 

autoencoders to be symmetric, as here, but this is not strictly necessary. The steps of the 

defined de-noising autoencoder-based method are illustrated in Figure 3.10. This can be 

integrated into the complete process, in place of the purple-coloured anomaly detection 

block in Figure 3.1., as it has the same inputs and outputs. 

 

3.10. Figure – The flow diagram of the complete autoencoder-based anomaly detection workflow. 

The loss function aims to compute the reconstruction error for every pixel of the 

original image, which the autoencoder tries to minimise. For this purpose, MSE or SSIM-

based functions were used. A similar metric was used to evaluate the performance. For 

this, the SSIM-based techniques proved to be better, as the MSE or MAE-based methods 

were very sensitive to noise in the image, which was not a problem while training, but 

could degrade the evaluation. The reconstructed images of the first batch along with their 

heatmaps computed with the different metrics, were saved to visually inspect the process. 

An example of this can be seen in the results in Chapter 5, Figure 5.5. 

Several different versions of the SSIM function were created to refine the final 

decision. The different methods were compared and the best-performing one was 

assigned to each product type. MS-SSIM calculated the Multi-scale SSIM score [3.6.1]. 
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Patched SSIM was created to help the model detecting smaller anomalies. The idea is to 

calculate the error on only a smaller part of the image, doing this over the whole image 

several times in a sliding window approach, and then taking the value of the largest error 

as the result. Thresholded SSIM was intended to make the model less sensitive to noise. 

First, a median Gauss filter was used on the original and reconstructed image to eliminate 

the isolated high-intensity pixels. Then the differences that scored under 0.1 were zeroed 

out because they are probably not anomalies and the ones that were above 0.9 were set to 

1 because they probably are. As the images are coloured, there was another option on 

how to aggregate the result of the different channels, for example, they could be summed 

or averaged. 

All parameters can be specified in a YAML file, and each run’s result is saved in 

a separate folder. Cross-validation and augmentation were used for training and a special 

method was implemented for the train-test split [3.2.3.]. The different types of anomalies 

were evaluated with the models from each fold, and their results were averaged. The 

validation images were different in each fold, these values were aggregated, this way a 

prediction was obtained for each image. Based on the validation images a threshold on 

the anomaly scores was calculated, from which the images were considered as an 

anomaly. 

3.4 Anomaly detection with clustering 

The use of deep hybrid models is a common technique for semi-supervised 

anomaly detection [23]. They use deep neural networks as feature extractors, and the 

learned latent features are inputs of traditional anomaly detection algorithms like 

clustering to detect outliers. The dimensionality of the input is reduced within the layers 

of the neural network which ensures scalability for high dimensional data. For the AI 

model usually, CNN or autoencoder-based models are used, as in [33] and [34]. 

For the given use case a novel architecture is proposed, which uses the YOLOv5 

object detection model, which is part of the original workflow. Its steps are visualized in 

Figure 3.11. This can also be integrated into the complete process, in place of the purple-

coloured anomaly detection block in 3.1. 
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3.11. Figure - The whole architecture of the proposed clustering-based anomaly detection method. 

3.4.1 Feature extractor 

The object detection model, which is part of the original workflow process can be 

used as a feature extractor. It is worth choosing this, as it doesn't cost any extra time. Also, 

the successful object detection demonstrates that the model successfully discovers the 

main characteristics of each product. Since this model was not yet available, another 

YOLOv5 model was trained to detect the products and was used in this research. The 

YOLO can learn location and rotation invariant features instead of pixel intensities in the 

original images, which information can be much better used by clustering. This model 

was truncated after an earlier layer, to extract a higher dimensional, complex 

representation. There were more possible places for this truncation: 

• Before the Neck (Dim.: 20x20x1024 = 409 600): The backbone of the network is 

a CCN, called CSPDarknet53. It should capture only high-level feature maps, which has 

not gone through any object-detection-specific layer. These features could be useful for 

general clustering, although important information may be lost, that is specifically 

provided by object detection, such as the location and number of products. 

• Before the Head (Dim.: 20x20x1024 = 409 600): At this location the features are 

more processed. It may provide more object-detection-specific patterns, but could lose 

important features, which are significant for anomaly detection, but not for object 

detection. 
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• All outputs before the Neck or the Head: (Dim.: 20x20x1024 + 512x40x40 + 

256x80x80 = 2 867 200): Here not only the output with the highest scaling would be 

considered, but all three outputs of the neck or head, aggregating their results. This could 

be effective because it captures multi-scale information from different resolutions. The 

downside is that the aggregation can cause larger dimensionality and can contain more 

noise and redundant information. For aggregation, the easiest approach is to concatenate 

the vectors, but it significantly increases the size. The addition of the vectors is an 

alternative option, which has the drawback of losing information. 

• All outputs in the middle of the Neck (Dimension: (20x20x512) + (556x40x40) 

+ (256x40x40) = 1 024 000): Inside the layers of the neck, there is a part, where it also 

can be truncated at each resolution. This is the thinnest part of the network, so it contains 

more compact information but still aggregates information from all scales. It could 

balance the result of dimension complexity and scale aggregation. 

3.4.2 Scaling methods 

The features extracted from the network should be scaled, to ensure that each 

feature contributes equally, especially in distance-based algorithms. Experiments were 

made with MinMax, Standard, and Robust scaling. It is important to choose a solution, 

that does not suppress any outlying features, as these may indicate anomalies. The best 

choice seems to be Robust scaling, because it maintains a good balance by scaling the 

data based on the majority of the data points, without letting the anomalies influence the 

scaling too much. 

3.4.3 Dimension reduction 

It is crucial to reduce the dimensions of the representation, because clustering 

usually only works well with small dimensional data, due to the “Curse of 

dimensionality” [20]. The most common linear dimension reduction approach is PCA, 

and its only parameter is the number of the final dimensions. For high dimensional data, 

like images, the non-linear algorithms often perform better. From these UMAP was used, 

because it is fast and tends to produce the best results. It has many configurable 

parameters, with which the balance between global and local structure in the data, the 

metrics of the distance between the data points, and how tightly the points are allowed to 

pack together can be controlled. When it combines the different local data points, it uses 

a union, but for anomaly detection, taking the intersection may be better, because it could 
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ensure that outliers remain disconnected. However, it could also break up the resulting 

simplicial sets into disconnected components. For a better solution, there is a parameter 

that controls the interpolation between the two. Using UMAP before a density-based 

algorithm can be effective in practice, but it is also controversial because UMAP does not 

completely preserve density and can create false tears in clusters [35]. 

In this particular problem, neither PCA nor UMAP worked well enough. The 

clustering algorithms that were applied after them, failed to cluster the features properly, 

suggesting that the process lost essential information. However, a hybrid solution, that 

used both approaches provided an efficient and successful solution. First PCA reduced 

dimensionality while preserving the global linear structure, removing noise, and 

simplifying the data, then UMAP further reduced dimensions while capturing both local 

and global nonlinear relationships. They created a low-dimensional, denoised, and well-

structured representation. 

3.4.4 Clustering 

For anomaly detection, the best approach is to use density-based clustering. 

Unfortunately, DBSCAN failed to correctly identify the clusters, because it was overly 

sensitive to the parameters and could not handle varying sizes of distortions. HDBSCAN 

performed much better, due to its capability to search clusters across different density 

levels. It was less sensitive to parameters, more configurable, and gave more stable 

results. 

3.4.5 Filtering 

As a last step the images, which the clustering algorithm considered as anomaly 

must be examined. Detectable false positive cases should be filtered out. Moreover, if the 

clustering is performed, with the known anomalous images included, they might be 

identified as a different cluster, instead of anomalies. These clusters must be checked and 

marked because if the algorithm predicts a new point in this cluster, it is also an anomaly. 

3.4.6 Prediction 

It would be too slow to re-cluster all points with this complex architecture, for 

every new data point. Especially, because this time will be much more with a bigger 

dataset. Therefore, at prediction, the existing clusters do not change. The processing steps 

are only performed for the new data, and it is decided, which pre-defined cluster it would 
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have been assigned to. These new images do not change the clusters, even if the result 

would have been different if they had been in the training set. 

3.5 Anomaly detection with Segment Any Anomaly+ 

The biggest limitation of previous anomaly detection methods is that they require 

a large dataset and cannot be used for example at the start of a new industrial process, 

until enough data has been collected. In a real-world scenario, there could be many 

different products, so it is not cost-effective to collect a large training set for each. Thus, 

afterwards, their performance is still strongly influenced by the quality of the dataset. 

However, in zero-shot techniques, like the Segment Any Anomaly+ (SAA+) [36] model, 

this problem is avoided as there is no need for training data. SAA+ is a recent and novel 

model for anomaly segmentation in images. This method achieved significant results in 

the zero-shot anomaly detection field and outperformed previous models on several 

benchmark datasets. However, there are no publicly available records yet of its 

performance and usability on more complex, real-life datasets, like the one used in this 

research. 

It works by leveraging pre-trained foundation models to identify the anomalies, 

without requiring explicit training, by retrieving prior knowledge stored in these models 

via prompting. The authors first constructed the Segment Any Anomaly (SAA) model, 

by cascading a prompt-guided object detection model, named Grounding DINO [37], and 

a segmentation foundation model, named Segment Anything [38]. These serve as 

Anomaly Region Generator to identify the possible anomalous parts of the images and 

Anomaly Region Refiner, to create the segmentation masks, respectively. For these naive 

language prompts were utilized, like “defect” or “anomaly”. This solution tended to cause 

many false detections because the word “anomaly” could mean very different things in 

different contexts, making it difficult for linguistic models to interpret the word, the 

authors called this language ambiguity. 

The SAA+ was an improved version of this, in which they integrated domain 

expert knowledge and target image context. The domain expert knowledge describes the 

characteristics of the relevant anomaly types for the given product. The target image 

context includes creating a visual saliency map from the input image, which helps the 

model focus on key areas, that may show anomalies. By highlighting these important 

regions, the model can better detect subtle or hidden anomalies. The maximum number 
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of anomalies (K) can also be defined, and with confidence ranking-related prompts, 

the top K results are kept. Besides language prompts, which detail the characteristics of 

the most possible anomalies, property prompts are used to address foundation models' 

lack of awareness of specific properties, such as “count” and “area”. They are constructed 

in the form of rules, instead of language and the detections that do not meet these criteria, 

can be filtered out. (e.g. the maximum size of the anomalies can be specified, and the 

bigger ones, can be easily omitted.) 

The appropriate language and property prompts were constructed for every 

dataset. The main features of the anomalies were defined, as well as the maximum area 

and maximum number of anomalies. The outputs of the SAA+ were the obtained 

segmentation masks. The value of the mask with the highest confidence was assigned to 

the whole image as the anomaly score. Based on the available normal images a threshold 

could be defined, above which the images are considered as anomalies. The architecture 

of the SAA+-based approach is illustrated in Figure 3.12. This can also be integrated into 

the complete process, in place of the purple-coloured anomaly detection block in 3.1. 

 

3.12. Figure – The Segment Any Anomaly + (highlighted with dashed contour, source: [36]) and the 

proposed necessary steps for its integration into the industrial workflow. 
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3.6 Evaluation metrics 

There are several different approaches to evaluating anomaly detection, from both 

subjective and objective perspectives. In this chapter the most significant ones are 

detailed. The evaluation of the methods was conducted based on these metrics, which 

results are presented in Chapter 5. 

3.6.1 Subjective metrics 

Many different metrics can be used to obtain the anomaly scores, that measure the 

outlierness of each image in the dataset: 

• Mean Average Error (MAE) and Mean Squared Error (MSE) are the most 

used cost functions for regression problems. They work with a simple principle, are fast 

to compute and are well-suited to a wide range of problems. MAE computes the mean of 

the absolute value of the difference between the expected (𝒀𝒊) and the predicted 

(𝒀̂𝒊) result. 

𝑴𝑨𝑬 =  
𝟏

𝒏
∑|𝒀𝒊 −  𝒀̂𝒊|

𝒏

𝒊 = 𝟏

 

• MSE computes the mean of the square of the difference between the expected (𝒀𝒊) 

and the predicted (𝒀̂𝒊).result. 

𝑴𝑺𝑬 =  
𝟏

𝒏
∑(𝒀𝒊 −  𝒀̂𝒊)

𝟐

𝒏

𝒊 = 𝟏

 

• Structural Similarity Index Measurement (SSIM) [27] is an image quality 

assessment metric used to determine the ratio of similarity between two images. It is not 

intuitive to measure the quality distortion of an image, because it is difficult to 

mathematically define what are the most significant changes for a human eye. Traditional 

methods, such as MSE and MAE are simple to calculate and have clear physical meaning, 

but they do not always reflect structural or visually noticeable differences between 

images. SSIM, on the other hand, assesses the quality of images by considering the 

specificities of human visual perception and based on the assumption that it is most 

sensitive to structural information change. First, it compares the average brightness of the 

images: 

𝑙(𝑥, 𝑦) =  
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2 +𝐶1
, where 𝜇𝑥 and 𝜇𝑦are the average brightness of images x and y. 
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Then measures contrast based on the standard deviation of the images: 

𝑐(𝑥, 𝑦) =  
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
, where 𝜎𝑥 and 𝜎𝑦are the standard deviation of images x and y. 

The structure is measured by the covariance between the normalized pixels of each image: 

 𝑠(𝑥, 𝑦) =  
𝜎𝑥,𝑦+ 𝐶3

𝜎𝑥𝜎𝑦+𝐶3
, where 𝜎𝑥,𝑦 is the covariance between the two images. 

𝐶1, 𝐶2 and  𝐶3 are small additional values for computational stability. The final SSIM 

score is calculated by combining these three components: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)𝛼 × 𝑐(𝑥, 𝑦)𝛽 × 𝑠(𝑥, 𝑦)𝛾, where 𝛼, 𝛽  and 𝛾 correspond to 

the weight of each component, they are usually set to 1. 

In the end, SSIM derives an index, where 1 indicates full similarity and 0 indicates full 

dissimilarity. With this approach, SSIM offers a more accurate assessment of image 

quality. 

• Multi-scale SSIM (MS-SSIM) extends SSIM by evaluating across multiple 

scales or resolutions [39]. This is done by applying SSIM at different image scales, 

capturing both local and global structural information. It allows the algorithm to account 

for image details at different levels of granularity. It captures more complex distortions, 

which makes it more robust for images with varying sizes of deviations. 

After an appropriate anomaly score is obtained for all images, the metrics to 

measure the performance of anomaly detection are in practice the same as the metrics 

used for binary classifiers, since the goal is to separate normal and anomalous images. 

Thus, the most used are precision, recall, and F1-measure. A confusion matrix can be 

created to visualize the distribution of true positive (TP), false positive (FP), true negative 

(TN) and false negative (FN) detections. Precision measures the accuracy of true 

predictions among the positive predictions. Recall measures the ability of the model to 

identify all relevant instances (anomalies). The F1 score is the harmonic mean of 

precision and recall, providing a balance between the two when the class distribution is 

uneven. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
,  𝐹1 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

• For the evaluation of the segmentation masks in SAA+, several metrics were 

used at both instance (i_ prefix) and pixel (p_ prefix) levels [36]. Instance level measures 

the proportion of correctly predicted anomalous instances, while pixel level measures the 

proportion of correctly classified pixels. The i_ROC and p_ROC (Receiver Operating 
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Characteristic) metrics measure the model’s ability to detect anomalies, while i_AP and 

p_AP measure the Average Precision scores and i_F1 and p_F1 provide the F1-scores. 

3.6.2 Objective metrics 

• By visual inspection it can be seen whether the images with high anomaly scores 

are anomalous, or whether they have any salient features that cause the network to 

consider them as anomalies. To facilitate this, the heatmap of the differences between 

the original and target image can be generated. This method reveals which pixels of the 

image caused the model difficulty to recover, i.e., detected as possible anomalies. 
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4 Implementations 

In this chapter details about the used hardware, software and libraries are 

provided. The implementation of the different methods is available in a public GitHub 

repository1.  

4.1 PyTorch 

In this research, Python was used as the main language, as it is the most popular 

language for deep learning nowadays. PyTorch and Keras are two commonly used 

libraries, that are specifically designed to effectively solve deep learning problems. From 

these, PyTorch was used. This library [40] has the advantage of being more flexible and 

customizable. It offers dynamic computation graphs, enabling users to build and modify 

models on the fly, making experimentation and debugging easier. PyTorch provides a 

comprehensive set of tensor operations with GPU acceleration support, simplifying tensor 

manipulation. It provides a variety of pre-defined modules, models, and layers. 

4.2 Scikit -learn 

Scikit-learn is a Python library, which contains simple and efficient tools for 

predictive data analysis [41]. It offers pre-defined, optimized solutions for a wide range 

of machine learning algorithms. It is open-source, accessible, and reusable to everybody. 

It’s easy to use and import. The library is based on Numpy, SciPy, and Matpotlib. It was 

used for simpler machine learning operations, like clustering and dimension reduction. 

4.3 Albumentations 

Albumentations is a Python-based computer vision library that aims to boost the 

performance of deep learning-based vision methods [42]. It’s a popular, open-source 

library, that is widely used in industry and deep learning research. It provides techniques 

for fast and flexible image augmentations by efficiently implementing a rich variety of 

image transform operations that are optimized for performance. It supports any computer 

vision tasks and works well with data from different domains: photos, medical images, 

satellite images, manufacturing, and industrial applications. It can be integrated into 

 
1 https://github.com/TBeatrix/Anomaly-Detection-For-Industrial-Automatization.git 
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various deep-learning frameworks such as PyTorch and Keras. This was used for 

augmentation techniques and for adding different kinds of noises to the images. 

4.4 Weights & Biases 

Weights & Biases (WandB) is an outstanding tool for tracking, managing, version 

controlling and visualizing machine learning training experiments. It is simple and 

intuitive to use, easy to integrate into an existing environment and offers a wide range of 

extra features. It logs the results, creates easy-to-view charts, and stores all the parameters 

and results in a spreadsheet. The different trainings can be easily grouped or ordered 

according to any criteria. 

4.5 Label Studio 

Label Studio is an open-source tool for annotating data like text, images, and 

audio. It’s customizable for various tasks, helping create labelled datasets for many 

machine learning projects. The labels and segmentation masks were obtained with this 

tool. 

4.6 Docker 

Docker is an open-source platform that allows developers to automate the 

deployment, scaling, and management of applications inside lightweight, portable 

containers that include everything needed to run the software, such as code, libraries, and 

system dependencies. The experiments were run within a Docker container on a server. 

4.7 GPU 

Since the training of an anomaly detection model is very time- and computation-

consuming, the Graphics Processing Unit (GPU) played an important role in the 

successful completion of the training. Two 40GB NVIDIA A100 GPUs were used. The 

autoencoder-based method was trained the longest, as it used cross-validation. The 

training of five folds took about 20 GPU hours. 

https://pytorch.org/
https://keras.io/
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5 Results 

In this chapter, the performance of the three different methods to detect anomalies 

is presented. Each of them has different advantages and weaknesses, which are discussed 

in detail. The results have been numerically evaluated and are also visualized with 

diagrams. 

5.1 Autoencoder approach 

Different autoencoder models have been trained for each product type. The exact 

hyperparameters and transformations are detailed in Appendix A. All models were trained 

on clean, normal images with randomly initialized weights. The vanilla autoencoder 

compresses the images into a low-dimensional space and restores them with minimal 

errors, which is the original aim of autoencoders. However, in anomaly detection, the aim 

is not the perfect restoration of the whole image, but to learn and restore the characteristics 

of a particular product, and only that. This model failed to do that, as it even restored 

objects that represent something completely different, as can be seen in Figure 5.1. 

Therefore, this method is not suitable for anomaly detection since the reconstruction error 

does not increase significantly for anomalous cases. 

 

5.1. Figure - The Vanilla autoencoder method well-reconstructed images of the product (first), even 

if it contained anomalies (second), as well as images completely unrelated to the product (third, 

fourth). 

The purpose of the de-noising autoencoder was to make the model's task more 

difficult, forcing it to focus more on the given products. It became an additional task to 
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remove the noise mixed with the images and to fill in any missing details. This way it 

learned the main characteristics of the items and if something looked different than usual, 

it tried to recreate the original product in its place, as seen in Figure 5.2. 

 

5.2. Figure – The de-noising autoencoder well-reconstructed images of the product (first), but not 

its anomalous parts (second), and nor the ones, completely unrelated to the product (third, fourth). 

In this case, as intended, the reconstruction of the anomalous parts appears to be much 

worse. Thus, it is appropriate for anomaly detection. The drawback was that the 

restoration of normal images could also become blurrier. To find the best-performing 

model, several optimization was performed with different types of noises and 

transformations. The final ones are detailed in Appendix A. It can be concluded that for 

simpler-looking products (e.g. pizza boxes), less noise led to the best results, while for 

more complex configurations (e.g. side reels), more noise was needed. 

The model’s evaluation was complicated by the fact that insufficient data were 

available from each product for a good performance. This drawback was especially clear 

when setting a threshold, above which the images are classified as anomalous. Ideally, 

this would completely separate the two types, but since the notion of anomaly can also be 

questionable, there should inevitably be some overlap between the two. A separate test 

set was not created, as there were already few images available, and reducing them would 

have hurt the quality of the training, thus currently the exact numerical evaluation is less 

meaningful. The threshold was set at the value, where 75% of the validation set is 

correctly classified. This would be weak in practice, as it is assumed that every fourth 

detection would be a false positive. However, this is a reasonable expectation, due to the 

small dataset, which is not sufficiently representative for all data types. By examining 

these false positive detections, they mainly contain images that are poorly represented or 
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have some special (but not anomalous) characteristics, like too many labels, a different 

colour, dissimilar shape, or simply were captured from an unusual angle, such as the ones 

in Figure 5.3. 

          

          

5.3. Figure - Examples for false positive detections, with unique characteristics. (1. is from stacked 

boxes, 2. is from side reels, 3. and 4. are from pizza boxes and 5. and 6 are from reels.) 

This does not mean that the method was incorrect at these detections, since product types, 

that occur too few times are correctly considered as anomalies by the algorithm. Even if 

they are not domain-specific anomalies. This problem could be reduced and even a much 

higher threshold could be established as soon as more images are collected. Despite this, 

the results demonstrate that the method is capable of finding anomalies and will be worth 

using. The results are visualized in Figures 5.4 and 5.5, separately for each product and 

for each anomaly type, that was observed for them. The top yellow bar in each diagram 

belongs to the validation set of the normal data. The threshold is visualized with a dashed 

red line. Figure 5.4 shows the anomaly groups, that contain completely different images 

from the task, these were almost perfectly separated. Figure 5.5 shows all the other 

anomaly types. 

 

5.4. Figure - Boxplots of the performance of the de-noising autoencoders on the different datasets 

(columns) with the anomaly types, that contained different images than the given product (rows). 

The threshold is visualized with a dashed red line. 
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5.5. Figure - Boxplots of the performance of the de-noising autoencoders on the different datasets 

(columns) with different anomaly types (rows). The threshold is visualized with a dashed red line. 

The exact evaluation of the accuracy of the detected anomalies by the model, for 

different threshold values (75, 80, 90, 95) is shown in Table 1.  

1. Table - The accuracies of the detected anomalies for each product and anomaly type in 

percentages, at different thresholds, which shows the accuracy of the correctly identified images in 

the validation set: 75 (blue), 80 (green), 90 (yellow), and 95 (orange). 

 Reels (%) PCBs (%) Side reel (%) Pizza box (%) Stacked box (%) 

validation 

images 
75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95 

animals and 

things 
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

other factory 

images 
100 100 96 85 96 96 92 88 100 96 88 69 96 100 96 96 96 96 85 69 

hands 67 64 31 14 50 33 13 3 97 56 40 23 60 97 74 41 83 71 42 25 

paper 

package 
- - - - - - - - 68 50 36 32 100 92 77 62 94 88 75 44 

red knife - - - - - - - - - - - - 100 100 100 80 91 84 56 31 

fingers 59 47 18 6 47 40 17 7 56 50 28 17 

black - - - - - - - - 100 100 89 44 

front reel - - - - - - - - 100 100 94 69 

packed 100 100 88 62 100 100 100 92 

empty box - - - - 100 100 88 65 

hidden parts 73 73 45 9 26 19 13 10 

red packed 100 100 100 80 

vacuum 

packed 
100 100 88 62 

As can be seen, this method worked best for the Pizza and Stacked boxes. This is 

because their features are more simply captured by the autoencoder, as these items have 

much simpler characteristics, without a lot of edges or fine details. Among the different 
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types of anomalies, the larger ones (red and vacuumed package, packed, front reel) scored 

higher, due to the fact that larger anomalies imply larger deviations in reconstruction. 

However, it is not true that the smaller the anomaly is, the harder it is to detect. For 

example, knives were small, but because of their striking red colour, they had high 

anomaly scores. Hands are more detectable than fingers, but they became harder to spot 

when the worker wore a white glove that blended into the background. In general, the 

autoencoder managed to detect better those anomalies, which had bigger differences from 

the normal data, in size or colour. Based on the differences between the original and 

reconstructed images, heatmaps can be created, to obtain information about the location 

of the anomalies. Figure 5.6 shows examples of these, based on different metrics. 

 

5.6. Figure – Heatmaps, based on different metrics. They well reflect the differences between them. 

Preconditions: 

• To effectively use this approach a huge amount of data is needed. 

• The images should be diverse, high-quality, and have a clear resolution. 

• The anomaly types should be clearly distinguishable from the normal. 

• The construction of the dataset requires a lot of pre-processing steps. 

Advantages: 

• Do not need labels. 

• Fast prediction. 

• It is not considered an anomaly if some parts do not always appear in the same 

place and the same number. 

• Even small deviations can be detected. 

• The heatmaps produce pixel-based information about the location of the 

anomalies, which explains the decisions. 

Limitations: 
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• Every product requires a separate model and a sufficiently large dataset. 

• Can not be used right away for new products. 

• It has difficulty detecting anomalies with similar characteristics to the normal. 

• Does not consider an anomaly when two separately already known things appear 

together or parts that differ from the norm only in size or number. 

5.2 Anomaly detection with clustering 

The proposed architecture for clustering involved a lot of hyperparameters, which 

had to be carefully adjusted, as it was very sensitive to them. In the final models, the 

YOLO was truncated before the Neck, only at the biggest resolution, so no concatenated 

method was needed. Both PCA and UMAP were used for dimension reduction, the 

scaling type was MinMax or Robust scale and HDBSCAN was the clustering algorithm. 

The exact parameters of the best models are detailed in Appendix B. 

This method was not able to detect small anomalies such as hands or knives. This 

is because there are normal images that share too many similarities with the anomalous 

ones and clustering tends to classify based on the greater similarities (e.g. the style of the 

reel) and neglects the minor differences. Examples of this are shown in Figure 5.7. This 

was also complicated by the fact, that the used dataset contained complex images, which 

have varying appearances even within the same product. In other words, in the case of 

small anomalies, the variance within the normal data was larger and more significant for 

clustering, than the variance between anomalous and normal images. This is due to the 

way clustering works. This does not cause a problem for autoencoders, where the model 

distinguishes based on the differences, rather than similarities. 

   

5.7. Figure – Anomalous images of reels, and normal images, which were highly similar to them. 

However, the model successfully detected images with larger anomalies. The datasets 

that contained bigger anomalies were Reels (the red, vacuumed, and other packages), Side 

reels (front and black reels), and PCBs (empty and packed), so only these were used with 

this method. Currently, the most essential aspect of the use case is to identify these bigger 

outliers. Minor ones cause fewer problems, as most of them will not even occur later, 
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when the workflow is automated, such as hands or knives. But there might be new types 

of smaller anomalies, in new situations. For these, one of the other solutions should be 

used. The best performance was achieved when both anomalous and normal images were 

used for clustering. This way the anomalies made it easier for the clustering algorithm to 

recognise what should be separated and it was also easier to determine which parameters 

needed to be tuned. Moreover, the obtained results were more stable and robust. This way 

there were anomalous images not detected as anomalies by the algorithm but assigned to 

a separate cluster when enough instances of an anomaly type occurred in the dataset to 

form its own cluster. This could only happen with known anomalies. After the training of 

these methods, these specific clusters can be identified and marked. When a new data is 

assigned to these clusters, they should be considered as anomalies. Thus, information 

about the anomaly type of this new data is also obtained (based on the cluster, it was 

assigned to), which is important for the explanation of the detections. New kinds of 

anomalies should be selected as anomalous by the algorithm, as they do not fit into any 

predefined cluster. The method was evaluated based on the original clustering partitioning 

on the full dataset. No separate test dataset and prediction were used, as there were only 

a few instances of the larger types of anomalies, and they were highly similar to each 

other. Hence, it was not possible to construct a proper and suitable test dataset, not even 

for cross-validation. However, if the clustering analysed this way separates the anomalies 

properly, similar behaviour can be expected during prediction. The clustering was 

performed in more dimensions, but for visualization purposes, a 2-dimensional 

representation of the data was created with UMAP, which is visualized in Figure 5.8. The 

points were coloured based on the assigned cluster, and anomalies were coloured red. 

Side Reels: 
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PCBs: 

 

Reels: 

 

5.8. Figure - 2D UMAP visualizations of the clustering result for the Side reels, PCBs and Reels 

datasets. Each colour corresponds to a different cluster. The anomalous points are coloured red 

and some samples from them are visualized. 

It can be seen from the results, that the bigger anomalies are indeed assigned to separate 

clusters. Moreover, examining the different clusters showed that, the method was capable 

of well separate the different types within a product. This way this method can also be 

used to detect special types of the product, which are not anomalies, if we want to 

distinguish them for some reason. To demonstrate this, Table 2 shows some of the 

elements of the clusters created in the Reel dataset. This clearly shows that the different 

types have been distinguished into separate clusters. Their colour indicates their location 

on the plot. This also shows that the 4th, 5th and 6th clusters, which contain similar 
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elements, are also close to each other in the visualisation. And the 1st, 2nd and 3rd 

clusters, which are more dissimilar, appeared further apart. 

2. Table - The clustering results of the Reels dataset, with visualized instances of each cluster. 

Cluster -1 corresponds to the outliers detected by the model. 

1. 

 

 

2. 

 

3. 

 

 

4. 

 

5. 

 

6. 

 

 

-1 

 

 

 Since all the bigger anomaly types in the dataset formed their own cluster, the 

anomalies that are currently detected by the HDBSCAN clustering algorithm are all false 

positive detections in each dataset, but their numbers are small. These are the images, that 

the algorithm could not assign to any of the other clusters for some reason (e.g. they are 

underrepresented in the dataset). Examples of these can be seen in Table 2 at the -1 cluster. 

Nevertheless, these detections cannot be ignored, because new anomaly types will be 

included here. If perhaps in a later model, despite proper tuning of the parameters, the 

number of these false positive elements grows out of control, it may be worth introducing 
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extra filtering on these items to find out which ones are actually anomalous, for example 

using the autoencoder-based solution. 

 Table 3 shows the numerical results of the clustering as the recall, precision and 

F1 score of the detected anomalies, and the numbers of different positive and negative 

detections. In this method, each image is an anomaly or not, depending on which cluster 

it is assigned to. No confidence values or anomaly values are associated with the images. 

3. Table - The Recall of the detected anomalies, and the number of True Positive (TP), False 

Negative (FN), False Positive (FP), and False Negative (FN) detections. The second element of the 

addition at the FPs corresponds to the number of anomalies detected by the clustering. 

 TP TN FP FN 
Recall of 

anomalies 

Precision of 

anomalies 

F1 score of 

the anomalies 

Reels 24 491 1 + 27 2 92,3% 46% 61,4% 

Side 

reels 
46 593 6 + 3 2 95,8% 83% 91,5% 

PCBs 37 1282 5 + 13 7 92,5% 67% 77,7% 

Anomalies were found with a high degree of accuracy for all data sets. The future 

increase of the dataset will also have a positive impact on this approach, since more types 

of normal data will occur, thereby improving the performance of clustering and false 

positive detections will be reduced by increasing the number of currently 

underrepresented types. 

Preconditions: 

• To use this approach a large amount of good resolutioner, clean data is needed. 

• The data should be of only one product, and it should not contain too diverse 

images. 

• The anomaly types should be large and distinguishable from the normal ones. 

Advantages: 

• It can be easily integrated into workflows, with a trained object detection model. 

• It can detect those cases, in which the object detection model is assigned to a given 

product but has some major deviation that suggests they might need to be handled 

differently. 

• It finds large anomalies fast and with high accuracy. 
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• The cases when two separately already known things appear together, and items, 

that only differ from the normal in size or number could be detected as anomalies. 

Limitations: 

• Do not work well for smaller anomalies or new products. 

• Require a re-clustering and a new parameter tuning, after many new images are 

obtained. 

• Every object type requires a separate model and a sufficiently large dataset. 

5.3 Anomaly detection with Segment-Any-Anomaly+ 

To run Segment Any Anomaly+, the implementation was used from the original 

article [43]. For each product, a separate model was used, with its own prompt. As this 

method does not require training, its successful use entirely depends on the construction 

of the prompts. These should summarise the most significant features of the already 

known or expected domain-specific anomalies for every product. Hence, its limitation is 

that it mainly focuses on the known anomalies. However, with the continuous monitoring 

of the workflow, the list of possible anomalies can be expanded, so the system can be 

prepared for the most possible errors. The characteristics of the normal data can only be 

described with one term. This may be enough for general objects from benchmark 

datasets (e. g. tile, wood, screw, hazelnut), but not for complex or special products, which 

the large language models, may not be capable of properly recognising. For example, 

after the word "reel" it may not recognise the exact object in this dataset and the more 

abstract categories (e.g. PCB in a tinfoil package, stacked boxes) were even harder to 

describe with a single term. Consequently, the model occasionally gave false positive 

detections for the normal products, that it did not recognise. This could be resolved by 

upgrading the model to include one or two normal images as input. Currently, the authors 

of the SAA+ model are working on an enhancement to achieve this, using few-shot 

techniques. By using this technique, the model could get implicit information about the 

characteristics of the normal product. 

The detected anomaly masks were highly dependent on the defined size of the 

anomalies, if too large value was determined, it did not detect smaller anomalies well. 

Therefore, the anomalies in the datasets were separated based on their size into two 

groups, and a different model was used on them. One aimed to find the smaller anomalies 

and the other for the bigger ones. Their evaluation is also done separately because they 
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achieved different results on the normal data, which influences the value of the threshold. 

In general, this method was less successful for larger anomalies, because when the defined 

size could be larger than the size of the whole product, the model gave too much false 

positive detection as it considered the entire product as an anomaly (because it did not 

recognise it well). The defined prompt for the small reels was: (the rest are detailed in 

Appendix C): 

Manual prompts:'reels_small': [ 
['package material on top. ', 'reel disc'], ['hands.', 'reel disc'], 
['narrow rubber band around it.', 'reel disc'], ['fingers. ', 'reel disc'], 
['paper package on top.', 'reel disc'], ['gloves. ', 'reel disc'], 
['skin. arm.', 'reel disc']], 
Property_prompts = {'reels': 'the image of reels have 1 dissimilar 
reel_disc, with a maximum of 3 anomalies. The anomaly would not exceed 0.3 
object area.'} 

In many cases, the model was successful in detecting the desired anomalies and 

the detected anomaly masks were almost perfect. Examples of correct detections are 

visualized in Figure 5.9. The strength of the anomaly score is indicated by the colour, 

with red being the strongest, then yellow, green, and blue as the weakest. 

       

       

       

5.9. Figure - Examples of the obtained segmentation masks from SAA+. 

The evaluation results of the created segmentation masks, based on the evaluation 

methods implemented in SAA+, can be seen in Table 4. The accuracy of these results is 

not too high, as the results are greatly affected by the fact that the ground truth masks 

were obtained by hand and are not accurate at a pixel level. Furthermore, these metrics 

also take into account anomaly detections that have low confidence, which are later 

filtered out, when the final anomalous images are obtained. Thus, the real scores would 
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be even higher, but these metrics were perfect to measure the performance of different 

tests and to select the best prompt for each product. 

4. Table - - Numerical results of the SAA+ model on the five different datasets. 

 I_ROC P_ROC I_AP P_AP I_F1 P_F1 

Reels (small) 90.43 72.60 77.78 37.70 71.76 46.69 

Side reels (small) 88.33 71.44 61.93 26.91 56.54 80.0 

Stacked boxes 81.12 74.02 41.48 7.07 46.61 16.17 

Pizza boxes 88.18 79.63 61.01 28.99 58.59 38.83 

PCBs (small) 91.48 85.16 65.03 39.78 62.96 45.41 

The anomaly scores of the whole images were the value of the highest-scored 

anomaly mask. The results of these scores are presented in Figure 5.10., in the same ways 

as the autoencoder’s. The threshold is higher here because this method does not require a 

training dataset, so later increasing it, will not yield better results. Therefore, a threshold 

(95%) was required, that is already acceptable for real-world use. The thresholds were 

defined based on the percentage of true positive results on the available images, without 

anomalies (called validation set). 

 

5.10. Figure - Boxplots of the performance of the SAA+ on the five datasets (columns) with different 

anomaly types (rows). On the top for the smaller anomalies. The anomaly threshold (red dashed 

line) is set to correctly classify 95% of normal data. 



55 

The exact evaluation of the accuracy of the detected anomalies by the model, for 

different threshold values (75, 80, 90, 95) is shown in Table 5.  

5. Table – The accuracies of the detected anomalies for each product and anomaly type in 

percentages, at different thresholds 75 (blue), 80 (green), 90 (yellow) and 95 (orange), based on the 

correctly identified images in the validation set. 

 Reels (%) PCBs (%) Side reel (%) Pizza box (%) Stacked box (%) 

validation 

images 
75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95 

hands 100 100 94 92 83 83 80 56 83 66 60 49 95 90 82 69 88 75 62 25 

paper 

package 
- - - - - - - - 59 36 23 5 62 61 38 38 62 62 50 19 

red knife - - - - - - - - - - - - 100 100 100 100 94 94 84 66 

fingers 100 100 94 82 90 90 83 77 83 78 56 44 

black - - - - - - - - 100 89 89 67 

front reel - - - - - - - - 97 97 97 91 

packed 33 22 11 11 62 54 54 47 

empty box - - - - 88 85 50 38 

hidden parts 36 36 0 0 23 17 7 0 

red packed 50 40 30 20 

vacuum 

packed 
12 12 0 0 

It can be seen from Table 5, that this model achieved very diverse results on different 

products and anomaly types. Overall, it can be concluded that it gave exceptionally high 

results in cases where both the anomaly type and the product type could be well defined 

using prompts (e.g. fingers and hands for reels, front reels for side reels, or red knife for 

the pizza boxes). In cases where the model did not understand correctly the characteristics 

of the anomaly or product in question, very poor results were obtained. (e.g. vacuum 

package for reels, paper package for pizza box, and stacked box). For the remaining 

groups, the results were intermediate, suggesting that there were several variants within 

the anomaly types, some of which were correctly detected, but others were not. All in all, 

the model is useful for detecting some pre-defined anomalies, but it is not sufficient on 

its own to find all anomalies. 

Preconditions: 

• The anomaly types must be well describable and explainable. 

Advantages: 

• Do not need training images. Easy to apply for new products. 
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• Domain knowledge can be incorporated. The attributes of the anomalies can be 

precisely defined, making them more easily detectable. 

• For some known anomaly types, the results are better than the other methods. 

• The pixel-based segmentation masks of the anomalies can also be obtained. 

Limitations: 

• Function worse for unexpected anomalies, that were not added as domain 

knowledge. 

• Sensitive for the parameters, i.e., the size of the anomaly. 

• Cannot detect the absence of something. 

• The model has trouble figuring out what the original products look like, in the 

case of complex items, which may not be known by the foundation models. 

• The model cannot be told exactly what the normal data looks like, its 

characteristics are only determined by the prompt. (Using few-shot learning would 

be a solution for this, however, this is not yet implemented in SAA+.) 

• It is slower than the previous approaches, as many foundation models are used. 
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6 Discussion 

All three approaches performed well for some anomaly cases. Based on the 

previous results, in Table 5 the most appropriate method is defined for each anomaly type. 

These are not final decisions, because the results of the different solutions are not yet fully 

comparable, as the autoencoder and clustering results will improve later, due to the 

collection of a larger dataset. However, general conclusions and trends can already be 

drawn from the current results and the table has been filled based on these. The SAA+ 

solution should be used where current results show high accuracy. The clustering-based 

solution has provided a good solution wherever it was used. For those types where SAA+ 

did not provide a good solution and clustering cannot be used, the autoencoder-based 

solution should be used. 

5. Table – The most suitable methods for the different kinds of anomalies, in the different datasets. 

 Reels PCB Side reels Pizza box Stacked box 

hands SAA+ SAA+ 
SAA+  / 

autoencoder 
SAA+ autoencoder 

paper 

package 
- - autoencoder autoencoder autoencoder 

red knife - - - 
SAA+ / 

autoencoder 

SAA+ / 

autoencoder 

fingers SAA+ SAA+ autoencoder 

black - - clustering 

front reel - - 
clustering / 

SAA+ 

packed 
autoencoder / 

clustering 

autoencoder / 

clustering 

empty box - clustering 

hidden parts autoencoder autoencoder 

red packed 
autoencoder / 

clustering 

vacuum 

packed 
clustering 

All three methods worked based on quite different approaches and therefore, had 

different advantages and limitations, which were detailed after each one. Among them, if 

the best solution must be chosen, the autoencoder solution has the highest potential, as it 

has been able to detect the most types of anomalies. Also, by increasing the dataset, it can 

be made much more accurate than the published results. The clustering approach is 

appropriate as long as there is no need to find smaller, more subtle anomalies. For new 
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industrial processes and products without a proper dataset only the Segment Any 

Anomaly+ model can be used. 

However, the use case is not limited to the selection of only one method. Since 

each model works in different ways and hence excels in different aspects, it could be 

valuable to combine their strengths to make more reliable, robust, and accurate 

predictions for each anomaly type and reduce variance and bias. This can also increase 

the detection time, so it should be used with caution. For their combination, there are 

many possible solutions, such as ensemble models, stacking, and hybrid modelling. A 

simple ensemble-based approach could be to perform predictions with all methods for all 

the images, and one should be only considered anomalous if one of the methods has a 

high anomaly score or at least two of them predict a medium score. As more complex 

approaches, meta-models or simpler ML-based models could be optimized to select the 

best decision, based on the three models. The first step towards this will be to collect a 

much bigger dataset for better autoencoder and clustering results. 

The research of finding suitable anomaly detection methods for the given use case 

has concluded successfully, with methods, which can be integrated into the industrial 

process. 
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7 Human-Centred Considerations 

Nowadays, when it comes to artificial intelligence-based applications, there is a 

growing focus on human-centric approaches, especially in real-world settings, with direct 

human interaction. When it comes to using these solutions in a factory environment, they 

provide plenty of additional challenges, beyond the development of the appropriate AI 

models. These issues are addressed in this chapter, along four major dimensions: ethical, 

safety, security, and legal aspects. These considerations not only help in the operation of 

AI-based systems but also ensure a smooth, socially responsible transition for their use 

that is aligned with social values. 

7.1 Ethics 

In every application, the AI-based decisions should be transparent, to build trust 

among workers and enable them to better understand the system. The autoencoder and 

SAA+ methods give information about the exact pixels that indicate anomalies, thereby 

explaining the decisions. The clustering approach also provides some level of 

explainability, as we can analyse the resulting clusters. 

The automatization of a workplace can have a large social impact, as the 

workplace will be transformed, and the employees will need retraining programs as 

different types of human support will be needed. They need to be provided with adequate 

information about the changes and it must be ensured, that they are not negatively affected 

by the transition. The AI-based algorithms should be free from bias, which can occur due 

to mishandled training data or flawed design. Bias in anomaly detection could lead to 

unequal attention to different parts of the production process. The method could become 

discriminative against specific brands or products, which could give a misleading 

impression of them. For example, if fewer products were received from a given supplier, 

when the dataset was collected, as a result, the model might give false positive detections 

more frequently for their items in production. This can mistakenly trigger negative 

feelings towards the supplier or cause possible conflicts, which can implicitly affect the 

employees working there. 
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7.2 Safety 

When an anomaly detection system is deployed in a real environment, it should 

be reliable and minimize inaccurate detections as they could lead to accidents. In case of 

an anomaly, there should be straightforward rules for a safe intervention and possible 

system shutdowns. To ensure maximum safety, the Unpacking Machine will operate in a 

closed, human-inaccessible environment, as sharp, narrow, or moving parts may make its 

interior unsuitable for human work. The problematic products will be transferred to a safe 

external location where the employees can handle them, or if it is necessary, the machine 

can be accessed, but only after a complete shutdown. 

7.3 Legal 

AI-based applications must comply with the industry-specific regulations, the 

GDPR for the protection of private images (especially those, that include potentially 

recognisable parts of people, which are also carefully excluded from this thesis), and the 

AI Act [44], to align with the human-centred considerations. The used AI solutions in this 

research were open source, which was further improved and combined with the novel 

dataset. 

7.4 Security 

From the perspective of security, it is a strong protection, that the solutions use 

only the company's data from a trusted source and do not use any online datasets or pre-

trained weights for the trainings. Except the SAA+-based solution, which is based on 

foundation models. A potential vulnerability could be, if suppliers are packaging products 

in some special way, for example, to deliberately increase the number of incorrect 

anomaly detections, thereby slowing down the unpacking process. However, by using the 

combination of the three proposed models, and making a joint decision, this could be 

effectively mitigated, because it is much more difficult to confuse more different models 

with one adversarial input. These potential cases can also be identified by the regular 

analysis of false positive detections. 
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8 Future work 

In future works, an approach could be used, which focuses on the individual 

products instead of the whole open boxes. The removal of the box and the unnecessary 

adjacent items can help the model to focus more on the specific items. The methods had 

trouble with the small white labels on the products, as their location and appearance 

varied, so they could be rightly considered as an abnormality. As a workaround, with the 

help of object detection, these labels could also be identified, and their areas could be 

masked out during evaluation to not affect the results. This could decrease the number of 

false positive detections. Furthermore, as discussed before, it would be beneficial to 

explore the possibilities of using the three models together. 
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9 Summary 

Industrial automation is becoming a more and more popular method nowadays, 

driven by the continuous development of various AI solutions. For their appropriate use 

in a real environment, these complex systems must be prepared for any potential problem. 

Anomaly detection can provide a solution for identifying these unexpected cases so that 

they can be diagnosed and resolved in real-time. Consequently, this research explored 

deep learning-based anomaly detection techniques to be integrated into the automation 

processes of a company's existing workflow. It was identified between which steps of the 

process it should be incorporated, and what should be its preconditions, inputs, and 

outputs. Three different approaches were proposed, all with comprehensive evaluation. 

The limitation of the autoencoder and clustering-based approaches was that they require 

a very large dataset. The de-noising autoencoder-based, unsupervised method provided 

the most appropriate solution, which could detect a very large variety of anomalies. The 

second was a semi-supervised, clustering-based solution, which was able to detect the 

major anomalies with high probability but struggled to find the smaller ones. The third 

approach leveraged a novel model, called Segment Any Anomaly+. This model does not 

require a training set, so it can be used for completely new processes immediately. It was 

not able to detect all anomalies, instead, it mainly focused on known anomalies, that can 

be described well in an appropriate prompt. All approaches were capable of providing 

great results, but each stood out in different aspects with different advantages and 

limitations. It would be beneficial to use them together, as they could complement each 

other to provide a more robust and reliable solution. These developed solutions are under 

patent registration, and they will make a major contribution to the company’s 

automatization system. 
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Appendix 

Appendix A:  

- Hyperparameters of the autoencoder methods (for all products): 

Hyperparameters  

learning rate 0.001 

batch size 32 

num of epochs 500 

num of folds 5 

Encoder model ResNET50 

criterion SSIM 

optimizer Adam 

image size 256x256 

Eval method MS-SSIM 

- The added noises and transformations: 

PCBs and Reels: 

- CoarseDropout(p=0.7, num_holes_range=(2, 6), hole_height_range=(30, 30), 

hole_width_range=(30, 30)) 

- OneOf([ GaussNoise(p=0.5, var_limit=(10.0, 100.0), per_channel=False, mean=0.0, 

noise_scale_factor=1.0), 

GlassBlur(p=0.3, sigma=0.0005, max_delta=1, iterations=1, mode='fast'), 

  RandomGravel(p=0.3, gravel_roi=(0.0, 0.0, 1.0, 1.0), number_of_patches=4),]  p=0.7), 

- PixelDropout(p=0.5, dropout_prob=0.01, per_channel=False, drop_value=None, 

mask_drop_value=None) 

- OneOf([  MotionBlur(p=0.2, blur_limit=(3, 3), allow_shifted=True), 

Sharpen(p=0.5, alpha=(0.2, 0.5), lightness=(0.5, 1.0)),  Blur(p=0.2, blur_limit=(3, 3)),], p=0.4) 

- OneOf([  OpticalDistortion(p=0.3, distort_limit=(-0.05, 0.05), shift_limit=(-0.05, 0.05), 

interpolation=1),  

GridDistortion(p=0.1, num_steps=5, distort_limit=(-0.3, 0.3), interpolation=1], p=0.3) 

Pizza boxes: 

- CoarseDropout(p=0.7, num_holes_range=(2, 6), hole_height_range=(30, 30), 

hole_width_range=(30, 30)) 

- OneOf([ GaussNoise(p=0.5, var_limit=(10.0, 100.0), per_channel=False, mean=0.0, 

noise_scale_factor=1.0), 

GlassBlur(p=0.3, sigma=0.0005, max_delta=1, iterations=1, mode='fast'), 

RandomGravel(p=0.3, gravel_roi=(0.0, 0.0, 1.0, 1.0), number_of_patches=4),], p=0.7) 

- PixelDropout(p=0.5, dropout_prob=0.01, per_channel=False, drop_value=None, 

mask_drop_value=None) 
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Side Reels and Stacked boxes: 

- CoarseDropout(p=0.7, num_holes_range=(2, 6), hole_height_range=(30, 30), 

hole_width_range=(30, 30)) 

- OneOf([  GaussNoise(p=0.5, var_limit=(10.0, 100.0), per_channel=False, mean=0.0, 

noise_scale_factor=1.0), GlassBlur(p=0.3, sigma=0.0005, max_delta=1, iterations=1, mode='fast'), 

RandomGravel(p=0.3, gravel_roi=(0.0, 0.0, 1.0, 1.0), number_of_patches=4),], p=0.7) 

- PixelDropout(p=0.5, dropout_prob=0.01, per_channel=False, drop_value=None, 

mask_drop_value=None) 

 

Appendix B: Parameters of the clustering method 

 Reels Side Reels PCBs 

YOLO layers before the Neck before the Neck before the Neck 

Dim red type PCA & UMAP PCA & UMAP PCA & UMAP 

umap params:    

- metrics correlation correlation correlation 

- set_opt_mix_ratio 1.0 0.9 0.5 

- n_components 30 30 30 

- n_neighbors 50 50 30 

- min_dist 0.2 0.1 0.0 

clastering_method HDBSCAN HDBSCAN HDBSCAN 

HDBSCAN params:    

- min_cluster_size 10 8 10 

- cluster_selection_epsilon 0.1 0.1 0.08 

- min_samples 3 3 5 

- alpha 1.0 1.0 1.0 

- metrics l2 l2 l2 

- cluster_selection_method eom eom eom 

scaling_type MinMax MinMax robust 

image_size 640 640 640 

 

Appendix C: Prompts for Segment Any Anomaly+ 

manual_prompts = { 
  'stacked': [ 
    ['Crumpled paper package on top. ', 'stacked boxes'], 
    ['package material on top.', 'stacked boxes'], 
    ['paper sheet on top.', 'stacked boxes'], ['arm.', 'stacked boxes'], 
    ['red knife.', 'box cutter.', 'stacked boxes'], ['hands.', 'stacked boxes'], 
    ['anything other than boxes next to each other.', 'stacked boxes'], 
    ['fingers. ', 'stacked boxes'], ['opened box.', 'stacked boxes'] 
  ], 
 
  'side_reels_small': [    
    ['paper package on top. plastic package on top.', ' stacked reels'], 
    ['red knife', 'red box cutter.', 'stacked reels'],  
    ['black reels.', 'stacked reels'], 
    ['circular object. a reel disc lays on top.', 'stacked reels'], 
    ['hands. ', 'stacked reels'], ['fingers.', 'stacked reels'], 
    ['glove. ', 'stacked reels'], ['skin. arm.', 'stacked reels'],    
  ], 
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  'side_reels_big': [ 
    ['paper package on top.', ' stacked reels'], ['black reels.', 'stacked reels'], 
    ['circular. ', 'stacked reels'], ['a reel disc lays on top.', 'stacked reels'], 
    [' plastic package on top.', 'stacked reels'],      
  ], 
 
  'reels_small': [ 
    ['package material on top. ', 'reel disc'], 
    ['paper package on top.', 'reel disc'], ['skin. arm.', 'reel disc'] 
    ['narrow rubber band around it.', 'reel disc'], ['hands.', 'reel disc'], 
    ['fingers. ', 'reel disc'], ['gloves. ', 'reel disc'] 
  ], 
 
  'reels_big': [ 
    ['paper package on top.', 'reel disc'], ['red package.', 'reel disc'], 
    ['not circular.', 'reel disc'], ['vacuumed packed. ', 'reel disc'], 
    ['in a metalized foil package. ', 'reel disc'], 
  ], 
 
  'pizza_boxes': [ 
    ['plastic package on top.', 'pizza box shaped box'], 
    ['paper sheet on top.', 'pizza box shaped box'], 
    ['red knife. ', 'pizza box shaped box'], ['hands.', 'pizza box shaped box'], 
    ['fingers. ', 'pizza box shaped box'], ['gloves. ', 'pizza box shaped box'], 
    ['skin. arm.', 'pizza box shaped box'], 
    ['paper package next to. ', 'pizza box shaped box'] 
  ], 
 
  'PCBs_small': [ 
    ['fingers.', 'metalized foil bag'], ['hands.', 'metalized foil bag'], 
    ['gloves ', 'metalized foil bag'], [' skin. arm.', 'metalized foil bag'] 
  ], 
 
  'PCBs_big': [ 
    ['polystyrene material on top', 'item in a metalized foil bag'], 
    ['paper package on top. ', 'item in a metalized foil bag'], 
    ['plastic package on top .', 'item in a metalized foil bag'], 
    ['empty box. the foil bag is missing', 'item in a metalized foil bag'] 
  ], 
} 
 
property_prompts = { 
    'stacked': 'the image of boxes have 1 dissimilar stacked_boxes, with a maximum of 
3 anomaly. The anomaly would not exceed 0.6 object area. ', 
    'side_reels_small': 'the image of reels have 1 dissimilar stacked_reels, with a 
maximum of 2 anomaly. The anomaly would not exceed 0.35 object area. ', 
    'side_reels_big': 'the image of reels have 1 dissimilar stacked_reels, with a 
maximum of 2 anomaly. The anomaly would not exceed 0.8 object area. ', 
    'reels_big':  'the image of reels have 1 dissimilar reel, with a maximum of 2 
anomaly. The anomaly would not exceed 1.0 object area. ', 
    'pizza_boxes':'the image of box have 1 dissimilar box, with a maximum of 2 anomaly. 
The anomaly would not exceed 0.5 object area. ', 
    'PCBs_small': 'the image of PCB have 1 dissimilar metalized_foil_bag, with a maximum 
of 3 anomaly. The anomaly would not exceed 0.4 object area. ', 
    'PCBs_big': 'the image of PCB have 1 dissimilar item_in_a_metalized_foil_bag, with 
a maximum of 2 anomaly. The anomaly would not exceed 1.0 object area. ', 
    'empty_box': 'the image of box have 1 dissimilar box, with a maximum of 3 anomaly. 
The anomaly would not exceed 0.4 object area. ',    
} 
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Self-assessment for Human-Centred Artificial Intelligence 

(AI) Master's 
 
All relevant HCAI aspects are detailed in Chapter 7, according to the ethical, safety, security and 

legal considerations. 

Activity  Y/N  Documents to be provided as appendix  

Does this activity involve the 

development, deployment and/or use of 

Artificial Intelligence-based systems?  

 Y Yes, the research involves the development and deployment of 

Artificial Intelligence-based systems. It focuses on deep learning-based 
image anomaly detection methods, that can be integrated into an 
existing industrial automatization process. 

Could the AI based system/technique 

potentially stigmatise or discriminate 

against people (e.g. based on sex, race, 
ethnic or social origin, age, genetic 
features, disability, sexual orientation, 

language, religion or belief, 
membership to a political group, or 
membership to a national minority)?  

 Y In general, such cases cannot happen, as the research is entirely 
focused on industrial use and the classification decision is only made 
for products, not people. 
However, as detailed in Chapter 7, it can have a small explicit impact 
on the employees of a given supplier, if the model is discriminatory 

towards a supplier's products, and thus the supplier is perceived 
negatively, so it is important to use the same number of images from 
all suppliers. 

Does the AI system/technique interact, 

replace or influence human decision-

making processes (e.g. issues affecting 
human life, health, well-being or human 

rights, or economic, social or political 
decisions)?  

 Y Yes, the industrial process in which the anomaly detection will be 
integrated, is related to industrial employees. This requires, everyone to 
be well-informed about the exact operation of the machine and the 
rules for its use. The methods can also give explanations for their 

decisions. In addition, to ensure maximum protection of employees, the 
Unpacking Machine will work in an area isolated from people and will 
only be accessible after the machine has been completely shut down. 
This AI-based solution will not replace or influence human decision-
making processes. 

Does the AI system/technique have the 

potential to lead to negative social (e.g. 

on democracy, media, labour market, 
freedoms, educational choices, mass 
surveillance) and/or environmental 

impacts either through intended 

applications or plausible alternative 

uses?  

 Y Yes, because the AI-based model will be part of an automatization 
process in a company’s factory. Currently, employees are doing 

manually the tasks that the AI-based solution will replace. This will 
have a high social impact. For the transition of the workplace, 
employees must be provided with appropriate information about the 
changes and they need retraining programs. Overall, it will have a 
positive impact by allowing workers to do a different, easier and less 
monotonous job. But the changeover must be done in a way that they 
are well informed and do not suffer negative consequences.  

Does this activity involve the use of AI 

in a weapon system?  
 N  No, the research is entirely focused on industrial automatization. 

If 
YES  

Is it possible to establish which 

specific function/functions are 

automated/autonomous in the 

weapon system?  

  
 

If the weapon system has AI-

enabled functions, could these 

functions render the weapon 

system indiscriminate?  

  
 

Does the design include the 

possibility of an autonomous 

mode for selfprotection? If yes, 

can the system reliably 

distinguish between targets 

(threats) and non-targets?  

  
 

Does the AI to be developed/used in the 

project raise any other ethical issues 

not covered by the questions above 
(e.g., subliminal, covert or deceptive AI, 
AI that is used to stimulate addictive 

behaviours, lifelike humanoid robots, 
etc.)?  

 N No, all relevant aspects had been covered. 

 


