

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Artificial Intelligence

Beatrix Tugyi

ANOMALY DETECTION FOR

UNPACKING MACHINE USING

DEEP LEARNING STRATEGIES

SUPERVISORS

Bálint Gyires-Tóth, Phd

Dániel Unyi

Tamás Fischl, Phd

Ellák Somfai, Dsc

BUDAPEST, 2024

2

Contents

Abstract ... 5

Kivonat .. 6

1 Introduction .. 7

2 Theoretical background ... 10

2.1 Anomaly detection ... 10

2.2 Artificial Intelligence and Deep Learning .. 12

2.2.1 Dimension reduction techniques .. 16

2.2.2 Clustering methods ... 18

2.3 Deep learning methods for visual anomaly detection.. 19

3 Proposed methods ... 21

3.1 Integration with an existing system .. 21

3.2 Dataset... 22

3.2.1 Data pre-processing .. 22

3.2.2 Dataset categorizations .. 24

3.2.3 Train-test split ... 25

3.2.4 Data augmentations ... 26

3.2.5 Prepared dataset .. 26

3.3 Anomaly detection with autoencoders .. 28

3.4 Anomaly detection with clustering ... 31

3.4.1 Feature extractor ... 32

3.4.2 Scaling methods .. 33

3.4.3 Dimension reduction ... 33

3.4.4 Clustering ... 34

3.4.5 Filtering .. 34

3.4.6 Prediction.. 34

3.5 Anomaly detection with Segment Any Anomaly+ ... 35

3.6 Evaluation metrics ... 37

3.6.1 Subjective metrics ... 37

3.6.2 Objective metrics .. 39

4 Implementations ... 40

4.1 PyTorch ... 40

3

4.2 Scikit -learn ... 40

4.3 Albumentations.. 40

4.4 Weights & Biases .. 41

4.5 Label Studio .. 41

4.6 Docker ... 41

4.7 GPU .. 41

5 Results ... 42

5.1 Autoencoder approach ... 42

5.2 Anomaly detection with clustering ... 47

5.3 Anomaly detection with Segment-Any-Anomaly+ ... 52

6 Discussion ... 57

7 Human-Centred Considerations .. 59

7.1 Ethics .. 59

7.2 Safety .. 60

7.3 Legal ... 60

7.4 Security ... 60

8 Future work .. 61

9 Summary... 62

References .. 63

STUDENT DECLARATION

I, Beatrix Tugyi, the undersigned, hereby declare that the present MSc thesis work has

been prepared by myself and without any unauthorized help or assistance. Only the

specified sources (references, tools, etc.) were used. All parts taken from other sources

word by word, or after rephrasing but with identical meaning, were unambiguously

identified with explicit reference to the sources utilized.

I authorize the Faculty of Electrical Engineering and Informatics of the Budapest

University of Technology and Economics to publish the principal data of the thesis work

(author's name, title, abstracts in English and in a second language, year of preparation,

supervisor's name, etc.) in a searchable, public, electronic and online database and to

publish the full text of the thesis work on the internal network of the university (this may

include access by authenticated outside users). I declare that the submitted hardcopy of

the thesis work and its electronic version are identical.

Full text of thesis works classified upon the decision of the Dean will be published after

a period of three years.

Budapest, 6 December 2024

 ...…………………………………………….

 Beatrix Tugyi

5

Abstract

Industrial automation is expanding and evolving rapidly, with a huge

technological boost from Artificial Intelligence (AI), especially Deep Learning (DL). The

accelerating development of AI technologies has revolutionized information processing

and decision-making processes, which are the main pillars of automation methods.

Industrial automation encompasses a wide range of different methods that can be applied

to a manufacturing process to execute production steps without human intervention.

When these methods are applied in real life, it is crucial that such systems detect in time

if they are facing an input that is not supposed to be handled because it is faulty, damaged,

wrong, or unknown. One of the most widespread methods to solve this problem is image-

based anomaly detection, through which these anomalous cases can be identified.

This research is focused on an industrial company's factory automation process.

It aims to integrate a deep learning-based anomaly detection control step into this

workflow. This leads to one of the specialities and challenges of the topic, which is that

the implementation has to be adapted to the demands of a real-life scenario. The necessary

images for training the models were provided by the company, thereby fully adapting the

input to a real factory environment. An extensive literature review was conducted on the

most common and high-performing anomaly detection techniques, exploring the

capabilities of each method. Based on this, three directions were identified, for which

different methods have been studied and implemented, such as solutions based on

autoencoders or clustering. Both qualitative and quantitative methods were used to

evaluate the performance of these methods and their suitability for the given use case.

Their accuracy and reliability were further improved through various optimizations and

improvements. Besides the construction of well-performing models, the analysis of the

results with adequate accuracy was an emphasized part of the research. General

conclusions were drawn on the necessary considerations to be taken into account in real-

world applications. I have identified the limits of the methods' abilities and the possible

preconditions for their successful use. Furthermore, industrial automation raises several

concerns that fall within the scope of human-centred artificial intelligence, including

legal, ethical, and safety aspects, which will be further discussed.

6

Kivonat

Az ipari automatizálás terjedésére és fejlesztésére óriási hatással van a

mesterséges intelligencia (MI), azon belül is a mély tanulás. Ezen technológiák jelenleg

is tartó, robbanásszerű fejlődése forradalmasította az információfeldolgozási és

döntéshozatali folyamatokat, amelyek alappilléreit alkotják az automatizációs

eljárásoknak. Az ipari automatizáció számos különböző módszert foglal magába,

amelyek lehetővé teszik, hogy a gyártási folyamat során az egyes lépések emberi

beavatkozás nélkül végrehajthatóak legyenek. Ezen módszerek valós életben való

felhasználása során kiemelten fontos, hogy időben észleljük, ha a rendszer olyan

bemenettel áll szemben, amit nem szabad kezelni, mert hibás, sérült, rossz vagy esetleg

még nem ismert. Ennek megvalósítására a képeken alapuló anomália detekció egy

elterjedt módszer, melynek segítségével azonosítani lehet ezeket az eseteket.

Kutatásom egy nagyipari vállalat gyári automatizációs folyamatához kapcsolódik.

Célja egy mély tanuláson alapuló anomália detekciós ellenőrzési lépés integrálása ebbe

az eljárásba. Ebből adódik a téma egyik sajátossága és egyben kihívása, hogy a

megvalósítás során a valós életben való alkalmazás igényeihez kell igazodni. A modellek

tanításához szükséges képeket a vállalat biztosította, teljes mértékben adaptálva ezzel a

bemenetet egy valós gyári környezethez. Az anomália detekciós technikákról széleskörű

irodalomkutatás készült, mely során az egyes módszerek sajátosságai elemezve lettek. Ez

alapján három irányvonal került azonosításra, melyekhez különböző módszerek lettek

tanulmányozva és implementálva, mint például az autoenkóderen vagy a klaszterezésen

alapuló megoldások. Kvalitatív és kvantitatív módszerekkel is kiértékelésre került a

módszerek teljesítménye, valamint, hogy az adott felhasználási célra mennyire felelnek

meg. Különböző optimalizálások és továbbfejlesztések által tovább növelve lett a

pontosságuk és a megbízhatóságuk. A jól teljesítő modellek létrehozása mellett

hangsúlyos része volt a kutatásnak az eredmények megfelelő pontossággal történő

kielemzése is. Általános érvényű következtetéseket vontam le arról, hogy milyen elveket

kell figyelembe venni a valós felhasználás során. Meghatároztam, hogy mik a módszerek

képességeinek határai, valamint milyen esetleges előfeltételei vannak a sikeres

használatuknak. Mindemellett az ipari automatizáció több olyan kérdést is felvet, amely

az emberközpontú MI kérdései alá tartoznak, ideértve felhasználásának jogi, etikai és

biztonsági kérdéseit, melyek további elemzésre kerülnek.

7

1 Introduction

This chapter presents the motivation and purpose of the research, along with the

use case in which it will be deployed, contributing to the realization of an industrial

automation project.

There is an increasing focus on workflow automation nowadays, including the

domain of various industrial processes [1]. The seamless operation of machinery stands

as a pivotal factor for efficiency, precision, and product quality. Moreover, by

automatization, employees can be freed from procedures that are exhausting, tedious,

dangerous, or difficult to carry out. These methods represent a major innovation and could

provide a huge benefit to a company and its employees. Most industrial automation

realizations require some kind of computer vision tool to map the working area and

identify what kinds of components are available. These are necessary for the system to

get information about its surroundings and to be able to determine, what should be the

next step. Since these are not closed systems in which we can explicitly predict what will

be in front of the cameras, it is important to have some sort of mechanism that is prepared

for unusual cases as well. Especially, when it is used in a hazardous environment. For

example, when the machine is transporting or cutting things, it is essential that it can

identify if a human is in the way, or if a hand or some clothes are hanging inside the work

area, which could lead to accidents. In such situations, these machines must not continue

to operate as normal, but give some kind of signal, as the resolution of the action requires

human intervention. A powerful solution for identifying these cases is image-based

anomaly detection. With the rise of deep learning, image processing techniques improved

tremendously, involving anomaly detection. This research aim is to investigate different

deep learning-based anomaly detection methods, that can be used in the given industrial

environment.

The Unpacking Machine is the name of a machine in the concept phase, which is

a current industrial initiative aiming to unpack the received boxes on a conveyor belt,

separate their contents, and sort the leftover packaging materials selectively. It has

advanced capabilities, it can move, lift, and sort different items, and has a cutting blade

to cut the boxes open at their localized coordinates. With object detection techniques, it

can observe what is in front of its camera, locate each product, and then decide what to

8

do next. Figure 1.1. shows a case study about a rudimentary version of the Unpacking

Machine, while it sorts goods based on its camera view.

1.1. Figure - Images of a rudimentary version of the Unpacking Machine in work. It sorts the

products based on its camera view, which is illustrated on the upper left side of the images.

In the given use case, the AI model should recognize goods (e.g., PCBs (Printed

Circuit Boards), Reels), stacked boxes, plastic packages, and paper packages, due to

recycling. The object detection technique is suitable for this purpose, but unfortunately

not enough. In a real environment, the machine also has to be prepared for the edge cases

when some unexpected input or anomaly is encountered. Object detection is unable to

identify these because these are previously unknown incidents, and not enough data is

available of them. The aim of the proposed anomaly detection algorithms is to be

incorporated into this system to detect these cases. The full automation process is shown

in Figure 1.2, with the novel anomaly detection-based verification step highlighted with

a white background.

1.2. Figure - The automatization workflow, updated with the novel anomaly detection step, which is

highlighted with a white background. It replaces the step shown with a red dashed arrow.

9

As the illustration shows, the automation process runs in a loop and only stops when an

anomaly is encountered, and an exception-handling process is needed.

Establishing a suitable dataset is critical for training a deep learning algorithm,

which requires many images. For this research, the company provided images from one

of their factories. After carefully planned pre-processing steps, they were used to train

and test the proposed methods. The investigated techniques can be used as part of any

other automation project if a sufficient amount of images is available of the environment.

This use case is only one example of the numerous possibilities where these solutions

may be appropriate.

The literature on anomaly detection with deep learning methods is quite broad.

The main principles of these methods are presented in the second chapter. The basics of

artificial intelligence, deep learning, and the main components that were used for anomaly

detection are also introduced.

In the third chapter, the used dataset and the various pre-processing steps are

presented. Then the research is pursued in three main directions. First comes an approach

leveraging the popular, well-established method of autoencoders. Next, another method

is examined, that seeks to identify outliers through clustering the latent space of an AI-

based object detection model. Finally, comes a modern approach to detect anomalies

using zero-shot detection, called Segment Any Anomaly+. The different characteristics

of these methods are described along with the engineering choices made to design them,

and the modifications made to customize them. The used evaluation methods are also

detailed here.

The fourth chapter provides implementation details, together with a description of

the used libraries. The fifth chapter presents the results of the evaluation of all the models,

highlighting their advantages, disadvantages and limitations. In the sixth chapter, the

three methods are compared, and it is determined which one of them would be the most

suitable to use for the specific application. Finally, in chapter seven, the ethical, legal, and

safety-critical issues of the proposed methods are discussed.

10

2 Theoretical background

In this chapter, the theoretical background of anomaly detection, artificial

intelligence, and the fundamentals of the applied deep learning methods are presented.

2.1 Anomaly detection

Anomaly detection has established itself as an important method, with many

applications and presence in almost all scientific domains. Its significance arises from its

capability to discover critical incidents that could cause serious damage with time. It can

be used for fraud detection, identifying cybersecurity threats or terrorist activity,

forecasting possible machine failures, diagnosing medical disorders, sanitizing data, or

verifying the proper functioning of workflows. The concept of anomalies and their

identification is not new, mathematicians have been interested in the statistical approach

to this problem for quite a long time. As early as the second half of the 19th century, there

are records of this problem in a paper by the famous mathematician Edgeworth [2].

Anomalies are patterns in data that do not conform to a well-defined notion of

normal behaviour [3]. A simple example of them in two dimensions is visualized in Figure

2.1.

2.1. Figure - An example of anomalies in two dimensions. The data has two normal regions 𝐍𝟏 and

𝐍𝟐, points that are sufficiently far from these are considered as anomalies (𝐎𝟏, 𝐎𝟐, 𝐎𝟑). Source: [3].

Anomalies can arise in various ways in our life. They can be the consequence of deliberate

attacks, they can result from unintentional mistakes, or they can just happen by the laws

of nature. The concept of anomaly also appears in many other areas, with the more general

11

meaning of unexpected, unusual patterns that are different from normal. They are also

known as outliers, discordant observations, or exceptions. Originally, anomalies’

characteristics are easy to confuse with novel ones, as they have also never occurred

before. The difference between the two is that the new patterns occur repeatedly over time

and will become incorporated into the existing distribution.

The discipline that studies these anomalies is called anomaly detection, with the

aim of separating outlier data points from the regular data. In anomaly detection, the goal

is the classification of normal and abnormal data, yet it cannot be considered as a simpler

binary classification problem. Unlike a binary classification, here the distribution of data

is unbalanced, and anomalies are mainly previously not seen data, so they are not

available for training and cannot be labelled. In addition, anomalies can vary in

appearance, shape and colour and they do not have stable statistical characteristics [4],

that would define them. Anomaly detection can be used on a huge variety of data types,

including binary files, texts, videos and images. In this research, the focus is on image-

based anomaly detection methods. There are many traditional, so-called “pre-deep

learning” anomaly detection methods, such as Principal Component Analysis [5], one-

class Support Vector Machine [6], Local Binary Patterns [7], and Gaussian Mixture

Models [8]. However, deep learning-based methods are more robust on complex, high-

dimensional data, like images, due to their ability to automatically learn and extract

hierarchical features, whereas traditional methods struggle due to the reliance on

handcrafted features [9]. In this research, only deep learning-based solutions are

investigated since the image dataset is quite complex so the traditional methods would

not be feasible.

A straightforward approach would be to define a region that is representative of

normal behaviour and to declare all other observations as anomalies. However, there are

confounding factors that make it difficult in practice [10], such as:

• Labelled anomalous data is often not available for training and testing.

• Normal noisy data can be similar to anomalies, so they are hard to differentiate.

• Anomalies can occur in a wide variety of forms; they cannot be defined, and it is

not possible to know their main features.

• To detect an anomaly, a deep learning-based neural network must learn the

distribution of every possible form of the normal data very accurately, for which they

usually require very huge datasets.

12

• It is difficult to define the region of the normal data, that encompasses every

possible normal behaviour as there is no clear boundary between the normal and

anomalous samples. If we define an exact threshold for anomalies, it is very common to

have normal data detected as an anomaly and vice versa.

• The exact definitions of anomaly vary from application to application. For

example, in the medical field, a small deviation from the norm (e.g., a fluctuation in body

temperature) should be considered an anomaly, while a similar deviation in the world of

the stock market (e.g., a fluctuation in the value of a share) should be considered normal.

Thus, reusing a technique developed in one area to another is not straightforward.

These challenges confirm that anomaly detection is not easy to address. Most

existing techniques only solve a specific formulation of the problem, which is influenced

by factors such as the nature of the available data, the type of anomalies to be detected,

and the application domain.

2.2 Artificial Intelligence and Deep Learning

Artificial Intelligence (AI) covers a broad area, including Machine Learning

(ML), a part of which is Deep Learning (DL). Deep learning uses complex structures

called deep neural networks, which have many layers to process information. They

usually work with a large amount of data and excel in tasks such as image recognition,

natural language processing, and data generation.

The very first neural network model became known as the Perceptron in 1957,

invented by Frank Rosenblatt [11]. It was inspired by earlier theoretical works, which laid

the foundation for computation methods modelled after biological neural processes. In

those earlier years, many ideas and concepts had been proposed about what AI could

achieve, but most of them could not be realized because of technological limitations, such

as a lack of computational power, and theoretical challenges. One major limitation of

single-layer Perceptrons was their inability to solve non-linearly separable problems, like

the XOR problem. These have led to the neglect of this field, called AI Winter. In the

following years, AI research experienced cycles of optimism and setbacks, where a

discovery or research result only kept the interest alive in the subject for a shorter amount

of time. The development of backpropagation in the 1980s revived interest in multi-

layered neural networks, enabling them to learn more complex patterns. However,

progress remained constrained by limited computational power and available data. In

13

2012, the real breakthrough came with the emergence of deep learning methods,

especially convolutional neural networks for image recognition [12]. This has brought

undeniable successes, that fundamentally changed the public view of machine learning

methods, triggering a revolution in the sector. To this day AI technologies have proved

their worth, conquering most fields of science. We can expect more reliable, more

accurate, and faster solutions, thanks to the continuous development of models, software

tools, hardware, and the increasing amount of data.

Artificial Intelligence solutions can be divided into three main categories,

depending on how the training is performed: supervised, unsupervised, and semi-

supervised learning. Supervised learning is the most frequently used, where models are

trained on data with predefined labels, which serve as the target class or value. They aim

to map the relationships between data points and labels during training so that afterwards,

the model can predict the target for new, unlabelled data. While it is straightforward and

effective, its main drawback is the cost of labelling large datasets. In unsupervised

learning the model learns from a dataset without any predefined labels, with the aim of

discovering patterns, structures, or hidden relationships. The model identifies these on its

own, which can be valuable for exploratory data analysis or understanding complex

datasets. However, due to the lack of clear ground truth answers, it can be more

challenging to evaluate their performance, and they may require more sophisticated

techniques to ensure meaningful results. Semi-supervised learning is a hybrid approach,

that leverages both labelled and unlabelled data, as it combines the advantages of

supervised and unsupervised learning. Usually, the model is initially trained on the

unlabelled dataset and then further fine-tuned using the labelled data, which helps

improve its generalization abilities. Hence the performance can significantly improve,

while the dependency on fully labelled datasets is reduced, offering a more practical

solution in real-world applications. In recent years the emergence of foundation models

has introduced a new trend alongside these methods, known as prompt-based learning.

This approach leverages pre-trained foundation models, which are large-scale models that

can subsequently be adopted to solve multiple different tasks e.g., GPT-4 [13], Segment

Anything (SAM) [36]. They finetune these large, existing models for specific tasks using

prompt engineering, rather than creating new ones from scratch. This method can also be

referred to as zero-, one-, or few-shot learning, which aims to reduce the need for large

training sets, using only a few or only one data sample for prediction.

14

Convolutional Neural Networks (CNNs) operate on data, whose representation

has a grid-like structure in space or time, like images, videos, and audio files. Their most

popular application is image processing, which includes image recognition, object

detection, image segmentation, and image generation. They are much more effective on

these than traditional computer vision methods or the fully connected neural network

approaches. This is because CNNs take advantage of the translation invariance of images.

Its convolutional layers contain a kernel, which is moved across the entire image in a

sliding window approach, extracting the key information. The underlying concept is that

the pixels that belong together have a high probability of being spatially close to each

other. The trainable weights correspond only to the size and number of kernels, so it has

far fewer parameters. It is essential that the same weights are used in all parts of an image

so that if a feature is considered important by the network in one part of the image, it

should be equally important elsewhere. Another relevant layer is the pooling layer, which

reduces the spatial resolution to extract global features. As an example, the architecture

of a popular CNN model can be seen in Figure 2.2.

2.2. Figure -The architecture of a commonly used CNN, called VGG16. Source:[28].

CNN's structure has two main parts, which are easily locatable in Figure 2.2. The

first, consists of many convolution layers separated by activation functions, named ReLU

(Rectified Linear Unit) and pooling layers, to identify the most important features. ReLU

is a commonly used non-linear activation function that leaves the positive parts of its

argument unchanged and replaces the negative parts with 0. The second part consists of

fully connected layers, which serialize the results. At the end of the model, there is an

activation function to determine the predicted output. For multi-class classification tasks,

it is usually a Softmax function, which transforms a vector of K integers into a probability

distribution with K possible outcomes. It determines the probability of being represented

15

in the image for each possible object. In the few years that followed the success of the

first CNN network [12], many novel and versatile architectures were created, achieving

better and better results. One popular benchmark is the ImageNet competition[14], which

aims to find an algorithm that could correctly classify diverse content images into 1000

categories. In this work, several different CNNs were used, such as VGG16, ResNET18,

ResNET50, and DenseNET [15], as part of more complex deep learning-based

architectures. VGG16 (Visual Geometry Group) is a simple, yet deep CNN known for its

consistent architecture of 16 layers, using small 3x3 filters to achieve depth and

representational capacity, but it has high computational costs due to its 140 million

parameters. ResNet (Residual Network) introduces residual connections to combat the

vanishing gradient problem, enabling the training of very deep networks efficiently while

maintaining lower computational complexity compared to earlier models like VGG.

DenseNet enhances information flow by connecting each layer to all subsequent layers

via feature concatenation, reducing redundancy but increasing computational demands

due to its complex layer interconnectivity.

Transformer networks were introduced in 2017 [16], and represented a

breakthrough in the field of Artificial Intelligence, especially in natural language

processing. Their main strength is the so-called attention mechanism, which allows the

network to efficiently focus on relevant parts of the input data. They also use positional

encoding, which helps to maintain and manage the sequence of input data. Transformers

differ significantly from previous models such as recurrent neural networks and CNNs.

They are built up of layers that can operate in parallel, including encoder and decoder

modules. This parallelization allows for significant speed-up and simplicity. Its modular

design enables the easy integration of new functions and components, allowing for further

development and specialization of the models. In recent years, transformer networks have

rapidly taken the lead in AI, because of their versatility and their continuous development

has kept them at the forefront in many fields. These models form the basis of several

state-of-the-art foundational models.

Object detection aims to determine the exact location of objects in the images,

via bounding box coordinates. Two popular implementations are YOLO (You Only Look

Once [17]) and SSD (Single Shot MultiBox Detector [18]). The choice between them

depends on the specific use case. In real-time scenarios, usually YOLO is used because

its detection time is faster, and it has a simpler architecture. In this approach, all objects

16

in the image are detected and classified at once, as hinted by the name of the architecture:

“You Only Look Once”. This way it significantly reduces the required time to perform

the task. It works by dividing the image into several grid elements and assigning several

predefined bounding boxes for each, which are used to make estimates of what objects

are located there. The network consists of three main parts, named Backbone, Neck, and

Head. The Backbone is a CNN, which aims to learn and extract key features from the

input image. The Neck is responsible for aggregating and enhancing these features across

different scales, it connects the Backbone and Head through three different resolution

levels, allowing the model to detect objects of various sizes. The Head makes the actual

predictions. Figure 2.3 shows the architecture of the YOLOv5 model, that was used for

this research.

2.3. Figure - The architecture of the YOLOv5 object detection model. Source: [19]

The YOLO model uses a complex loss function, which consists of several

components: the bounding box localization error, the classification error, and their

confidence error and it penalizes detections of non-existing objects. The required ratio of

these parts in the loss function depends on the specific application, so usually extra

attention should be given to tuning the parameters that control the weights of the different

losses.

2.2.1 Dimension reduction techniques

Dimension reduction aims to reduce the number of features or variables in a

dataset while preserving as much important information as possible. In high-dimensional

spaces, points tend to become uniformly distant from each other, making it difficult for

17

distance-based algorithms to find meaningful structures. This causes the "curse of

dimensionality" [20], which describes challenges, such as increased data sparsity, reduced

effectiveness of distance metrics, and computational complexity. By reducing the

dimensionality, these methods simplify the data, making it easier to visualize, interpret,

and analyse, while also improving the efficiency and performance of machine learning

models.

Principal Component Analysis (PCA) [5] is a standard statistical method that aims to

reduce the dimension of the data, while preserving the most meaningful variables that are

likely to contain the most relevant information, to re-express the dataset. PCA assumes

that the task is linear and tries to solve it as a linear problem. This way the whole problem

is simplified to finding a suitable change of basis. This linear approach allows for a

simpler, yet informative representation of the data structures, that often underlie it. It is

particularly useful in cases where the dataset is redundant, contains a large amount of

noise, or has simply too many dimensions, that need to be reduced to make it manageable

and visualizable. The principal components that form the new basis of the data are

orthogonal to each other. This orthogonality is achieved by choosing the eigenvectors,

which are perpendicular to each other on a symmetric matrix. PCA is closely related to

Singular Value Decomposition (SVD), in fact, SVD is a more general method of

understanding change of basis. It is a matrix decomposition method, which decomposes

a matrix into two orthogonal (U, V) and one diagonal (∑) matrices. It can be used to

directly compute the eigenvalues in PCA.

Uniform Manifold Approximation and Projection (UMAP) is a nonlinear

dimensionality reduction technique [21], which is particularly effective for visualizing

high-dimensional data. It models data as a geometric manifold and seeks to preserve both

the global structure and local relationships between points when projecting them into a

lower dimension. It achieves this by building a weighted graph representation of the

data’s nearest neighbours in high-dimensional space and optimizing its layout in the

lower-dimensional space. It is computationally efficient, scalable to large datasets and

often yields more meaningful embeddings than other methods like t-SNE (t-distributed

Stochastic Neighbour Embedding) or PCA.

Dimensionality reduction is one popular task of autoencoders, but their utility

extends beyond this, encompassing a variety of forms such as sparse autoencoders,

denoising autoencoders, and more [22]. The primary objective is centred around learning

18

meaningful representations of the data. An autoencoder with a single layer along with a

linear activation function is nearly equivalent to PCA. However, the potential power of

autoencoders is much larger, as it enables both linear and nonlinear transformations [23].

Its purpose is to learn the identity function: during the training process, it compresses the

data into a small latent space and then reconstructs the original input. This way, it can

discover a more efficient and compact representation of the data. It has two main parts,

called Encoder and Decoder.

2.2.2 Clustering methods

The purpose of clustering is to divide data into categories so that similar data are

grouped into one and different data into another cluster. It aims to find natural patterns or

structures within a dataset. It helps uncover hidden patterns, simplify data complexity,

and can provide insights for decision-making by revealing how data points relate to one

another. There are three main approaches, Partition-Based Clustering, Hierarchical

Clustering, and Density-Based Clustering. In this research, K-means was used for

categorizing the dataset by product types and DBSCAN and HDBSCAN for anomaly

detection purposes.

One of the most popular partition-based clustering algorithms is called K-Means

[24]. It aims to divide M points in N dimensions into K clusters so that inside each cluster

the square of the sum of the distances between the data points is minimized. The number

of clusters is defined by the K parameter. The K-means algorithm assigns each data to the

cluster, which centroid is the closest to it and tries to find the best centroids by alternating

between two steps. First, it assigns data points to the clusters, based on fixed centroids,

then it chooses new centroids based on the current assignment of data points to clusters.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a

powerful density-based clustering algorithm [25]. Unlike traditional clustering methods,

it does not require the number of clusters to be defined and can identify clusters of

arbitrary shapes while effectively handling outliers. It clusters the data by identifying

dense regions of points, expanding clusters from core points within a specified distance

(ε) while marking sparsely populated points as outliers. This behaviour can be tuned with

parameters, for example, the maximum distance between two samples, to be considered

in the same cluster, and the number of samples in a neighbourhood for a point to be

considered as a core point can be specified. By focusing on density rather than distance,

19

DBSCAN is particularly effective for datasets with irregularly shaped clusters, making it

useful for applications like anomaly detection. Furthermore, the algorithm inherently

identifies outliers as part of its clustering process, without requiring a separate method.

Hierarchical DBSCAN (HDBSCAN) [26] extends DBSCAN by converting it into a

hierarchical clustering algorithm, through the construction of a dendrogram, which

represents the arrangement of clusters formed at different data density levels. In this

hierarchy, each point is connected to its nearest neighbour of higher density, creating a

tree of points that gradually merges into denser clusters as one moves up the hierarchy.

Then it uses a technique called Condensed Tree to extract a flat clustering by selecting

the most stable clusters from this dendrogram across different density levels. It allows

variable-density clusters without needing to manually set the ε parameters, making it a

more flexible and robust version of DBSCAN. It is particularly effective for imbalanced

datasets with varying density, noise, or irregular shapes, as it can identify clusters of

different densities.

2.3 Deep learning methods for visual anomaly detection

Visual anomaly detection can be divided into two different categories: Image-

level and Pixel-level anomaly detection [4]. The first focuses on separating the images,

which are considered as anomalies from the normal ones. The second approach is more

sophisticated, it locates the abnormal regions inside the images, identifying which pixels

can be considered anomalous. Another categorization is defined based on the used deep

learning technique: supervised, semi-supervised, and unsupervised deep anomaly

detection [23]. Supervised anomaly detection uses labels for both normal and anomalous

data. It involves training a multi-class classifier on the labeled data, to distinguish

anomalies. Their performance is usually suboptimal, because of the class imbalance and

the high in-class variability, and they cannot be used for unknown or new types of

anomalies. Thus, these methods are usually not applicable, because of the lack of

availability of labelled training samples. On the other hand, Semi-supervised methods,

which leverage existing labels of the normal, positive inputs are widely adopted. They

can be realized using a deep learning-based vision model, which is trained on labelled

data, without anomalies. It should learn a discriminative boundary around the normal

instances, and the ones, which do not belong to the majority are considered as outliers.

Then an unsupervised technique, such as clustering, can be applied to distinguish between

normal and anomalous images. It assumes, that data points with the same label, are close

20

to each other both in input space and learned feature space. The use of labelled data can

cause performance improvement over unsupervised techniques. The disadvantage of this

method is that the hierarchical features extracted within hidden layers may not be

representative enough to distinguish every kind of anomalous instance. Unsupervised

methods are only based on the intrinsic properties of the data instances to detect outliers.

They operate under the assumption that normal data instances are much more common

than abnormal ones, so with sufficient training samples these models should produce

lower reconstruction errors for them. If this assumption is incorrect, it can lead to a high

rate of false positive predictions. It is cost-efficient because labelling is not required. On

the other hand, it can be challenging to learn commonalities within data in a high-

dimensional space. Thus, they are also sensitive to noise and need much tuning to achieve

accurate results. The output of vison-based anomaly detection models is usually a single

value, called anomaly score. It quantifies the level of outlierness for each data. The data

instances may be ranked according to these scores, and a domain-specific threshold must

be selected, which determines the value above which an individual sample is considered

an anomaly.

21

3 Proposed methods

In this chapter, the main parts of the workflow, where the novel anomaly detection

method will be integrated are presented, along with the steps and considerations of data

preparation, and the details of the different methods.

3.1 Integration with an existing system

The proposed technique is going to be integrated into an existing industrial

automatization system. The first building block of this is the Unpacking Machine, which

has various remarkable capabilities and is equipped with several arms, allowing it to

unwrap, cut, and lift items. It is crucial, for this machine to know what is in front of it

before it can perform such a precise operation. To address this challenge, a team has been

working on building and optimizing an object detection model that will provide its image

recognition capabilities. This will probably be a YOLO model, but any other method

would be suitable, which can determine with high accuracy where a particular product is

located, via rotated bounding box coordinates. In a simulated environment where all the

prepared boxes contain exactly what and how we expect it, this might be enough to

complete the task. But in a real-life industrial scenario, the risk also must be assumed that

the received products may include defective, damaged, or differently packaged items (i.e.,

not allowed package configuration of the supplier), that should be handled somehow

differently. Relying only on the YOLO, these items would be categorized into one of the

predefined classes and the machine would try to handle them in the same way as any other

item from that class. This could lead to mishandled, damaged, or ruined products and

even cause the whole system to shut down. To prevent such errors, the proposed anomaly

detection step will be integrated into the workflow after the YOLO’s detection, but before

the machine starts the movement. This will provide a safety enhancement to prevent

accidents by detecting faulty products. Given this, it can be assumed, that the output

information of the YOLO (the types and locations of the products) is available and can

be used as prior knowledge for anomaly detection. The target objects for unpacking are

always inside a box, so the anomaly detection step should also focus exclusively on the

inside of the boxes. This is achieved by cropping the parts of the original image containing

the open boxes and using only those as input for anomaly detection. The anomaly

22

detection is only needed if the box is open and not empty. These additional steps before

the anomaly detection in the workflow are visualized in Figure 3.1.

3.1. Figure - The detailed steps before and after the anomaly detection in the final workflow.

3.2 Dataset

The methods are designed to be suitable for use in any manufacturing process.

However, to develop a deep learning-based solution, images of a specific location are

needed. For this purpose, an image dataset was collected in one of the company’s

factories. This contains a series of images about the process of manual box placement,

opening, and unpacking. The two main products that can be found in the boxes are reels

and PCBs. In addition to these, there are various kinds of paper or plastic packaging

materials, bubble wraps, strips, and labels on the boxes. These high-resolution pictures

show a large surface area. In the final process, an object detection model will define the

location of the open boxes, and they will be cropped. Therefore, this dataset should also

contain only the parts of open boxes.

3.2.1 Data pre-processing

The images were captured at fixed, dense intervals, without taking into account

movements on the surface. Therefore, many identical images were retrieved, that needed

to be eliminated. Structural Similarity Index Measure (SSIM [27]) was used to identify

the images that were too similar to each other. The next step was to locate the open boxes,

23

but the object detection model that would be integrated into the workflow was not

available at the time of this research. Therefore, another model is needed, to predict these

coordinates. A subset of the data was manually labelled before, with multiple different

types of labels including 7000 open box labels. A YOLOv5 model was trained on these

with transfer learning, to locate the open boxes’ rotated bounding box coordinates. Since

now false positive detections are of more concern than possible missed ones, the

confidence limit was set higher, than the default. In addition, low-confidence results are

mostly found in low-quality, blurred images, so omitting them also improves the quality

of the dataset. After these coordinates were obtained, the original images were rotated to

make their borders parallel to the sides of the boxes. If the bounding box coordinates were

out of the image, those parts were replaced with black pixels. Since neural networks

generally expect fixed-sized inputs, the images were padded with black pixels, to make

them as high as they are wide. Then each box on every image was cropped. An SSIM

filter was used once more since it is still possible that there are identical boxes if the

differences were only in the trimmed part. Separate functions were implemented for each

of these steps, which were connected to fully automate the data preparation steps. The

detailed steps of the data pre-processing pipeline are visualized in Figure 3.2.

3.2. Figure – The steps of the data pre-processing pipeline.

24

3.2.2 Dataset categorizations

The proportion of different types of products was uneven and the characteristics

of the resulting images were also very different, which makes anomaly detection more

difficult. Moreover, examining different types of products together makes it impossible

to find those cases which count as anomalies for some products but not for others. For

example, a tearing or creasing is considered normal on a paper package, but anomalous

on a box. So, it was necessary to group the images from the dataset according to the type

of products. For this categorization, the images were the input of a pre-trained VGG16

network, without its classification head for feature extraction (new dimension: 4096).

Next PCA was applied, for additional dimension reduction to 600 components. Finally,

these features were clustered using K-means, with 100 clusters. These categorization

steps are visualized in Figure 3.3.

3.3. Figure - The steps of the automatized part of the data categorization. VGG16 image source:

[28].

This way the algorithm managed to efficiently separate images with different

features. The images that the detector incorrectly detected as open boxes were also

separated, these were deleted. Also, many images that happened to be blurry, or had

people's hands or heads hanging in them, were also put into separate clusters. Figure 3.4

shows examples of images in each group. This process helped the categorization, but

manual methods were unfortunately still needed. If such a simple clustering algorithm

25

could sort out the anomalous cases from the others, the whole task would be

accomplished. Instead, it put normal and anomalous images of the same item into one

cluster, so they had to be sorted manually.

3.4. Figure - Examples of the images from different clusters from the K-means results, and their

categorization.

Whether an image should be considered an anomaly is an objective, difficult, and

domain-specific decision. After careful consideration, only the ones that seemed

completely normal were kept as training images. The ones containing any irregularities

were sorted into different folders based on the type of deviation. For evaluation reasons,

two more datasets were created, which should always be considered anomalous, with high

confidence. First, images from the ImageNet dataset were chosen, that do not belong to

the dataset and contain animals and objects. In the other, the images were selected from

the original dataset, but they deliberately did not include the target products. The applied

DL-based methods were sensitive to the cleanliness of the data, so any remaining blurry,

noisy, out-of-focus images were manually eliminated.

3.2.3 Train-test split

There can be significant similarities between the images, as they were captured

sequentially. For example, in the case of unpacking, the images that come after each other

show one less product, but the rest of the image is the same, as shown in Figure 3.5.

3.5. Figure – An example of the similarity in an image sequence.

26

If some of these images were put in the training set and others in the testing set, it could

cause significant data leakage, which could distort the results. To avoid this, the split of

the test and train data was not random. The images taken on the same day were

aggregated, ensuring that they were assigned to the same set. I trained the models with

cross-validation, since unfortunately there were not so many days, and the distribution of

products can be highly varied from day to day. For cross-validation, the dataset needed

to be divided into more parts, and each of them was used as a testing set while the DL

model was trained with the others. For this, the days with different numbers of images

had to be divided into separate folds, in such a way that the number of images in them

was the same as far as possible. This task corresponds to the Partition problem, which is

NP-hard. It was solved with a greedy approximate algorithm, where the days were sorted

in descending order based on the number of contained images and the next days’ images

were put in the smallest fold.

3.2.4 Data augmentations

Augmentation is a frequently used technique to make the models more robust and

improve their performance. It is the process of performing different transformations on

the data in each epoch. This way the network does not see the same image twice, just a

slightly altered version of it. This reduces the chance of overfitting, increases the

generalization ability, and makes the network less sensitive to noise. The amount and type

of the possible transformations depends on the specific application, it is important to only

perform transformations that can occur in real situations. The used augmentation

techniques made the model insensitive to rotation with 90 degrees, and small changes in

colour and contrast.

3.2.5 Prepared dataset

A separate dataset was prepared for each of the products, that were included in the

images. The exact sizes of the different datasets (without any anomalies) are illustrated

in Figure 3.6. This separation of the product types was advantageous because each has

different properties and types of anomalies associated with them, so it was possible to

observe which ones are more easily found.

27

3.6. Figure - Distribution of the datasets without any anomaly.

It is important to note that the anomalies were identified according to the outliers, that

were present in the dataset. In the final production process, there should be anomalies,

other than these which are not yet encountered. Also, the current images were taken

during manual packing, so for example, in-hanging hands is currently an anomaly, but it

may not be an issue in the final system as people would not be around the machine. The

distribution of the anomaly types in the five created datasets is visualized in Figure 3.7.

and their characteristics are detailed below.

3.7. Figure - The distribution of the different anomaly types across the different datasets

The datasets:

• Reels: Contains a top view of reels. The types of anomalies are hands (hands or

arms of the workers), fingers (only the fingers of the workers), hidden parts (A paper or

plastic package material is on the top of it), red packaging, vacuum packaging, and other

packaging.

428

1201

744

529

856

0

150

300

450

600

750

900

1050

1200

1350

Reels PCBs Pizza box Side reels Stacked boxes

0

20

40

60

80

100

120

140

Reels PCBs Pizza box Side reels Stacked boxes

hands fingers paper package packed

knife hidden parts red package vacuumed package

empty front reel black

28

• Side Reels: Contains several different types of wrapped and unwrapped reels from

a side view. The groups of anomalies are hands, fingers, paper package (the box contains

unnecessary paper package material on the top), black (the reels are black), and front reel

(one reel is pulled out and its front side can be seen on top of the others).

• Pizza boxes: Contains the top view of a thin closed box, which looks like a pizza

box. The groups of the anomaly images are hands, fingers, paper packages, and knives (a

small red box cutter knife is found on top of the boxes).

• Stacked boxes: Contains side-by-side, thin closed boxes from a side view. The

anomaly groups are hands, fingers, paper packages and knives.

• PCBs: This dataset contains the top view of packed PCBs with different types of

packaging materials under and next to them. The groups of anomaly images are hands,

fingers, hidden parts, missing PCB (only the package, the PCB has been removed),

packed (unnecessary packaging material wrapped around it), and knives.

One of the implemented methods, called Segment Any Anomaly+ is a

segmentation approach, which requires segmentation masks. Fortunately, they are only

needed for the evaluation of anomalous cases, as this method does not need training data.

An example of the created anomaly masks can be seen in Figure 3.8.

3.8. Figure - Examples of the segmentation masks for the anomalous cases.

3.3 Anomaly detection with autoencoders

A deep autoencoder approach is a popular choice for unsupervised image anomaly

detection problems [23]. The motivation for using it to detect anomalies is that when we

train an autoencoder on normal data instances, it captures their most representative

properties as it learns to reconstruct them. This way they should produce a larger

reconstruction error for the anomalous instances, as they struggle to accurately

reconstruct them. They work best when plenty of data is available and there is a

significant difference between the normal and anomalous ones. Their performance

significantly depends on the construction of a large, clean and representative dataset.

29

An early yet influential application of autoencoders for anomaly detection on

tabular data [29], showed that the reconstruction error could effectively distinguish

between normal and abnormal data. Building on this foundational work, several variants

of autoencoders further advanced the field with varying architectures, parameters, and

optimization techniques across different domains. In the field of image-based anomaly

detection studies with the combination of autoencoders and CNNs achieved remarkable

results (e.g. [30] on medical images). Beyond their general application, specific

implementations in different industrial settings demonstrate their versatility and

effectiveness. There is no single, universally accepted architecture, different approaches

can work better for each dataset, anomaly characteristic and application domain. The

relevance of this research is to find the best solution with the best parameters for the given

use case. For example, they use generative approaches with Variational autoencoder in

[30] and GAN-based adversarial autoencoder approach in [31]. However, in the given

case generative solutions might be too time-consuming. Some methods suggest

increasing the difficulties of image reconstruction by adding some noise or

transformations to the input image and then training it to reconstruct the original input

(e.g. [32]). Unlike simple augmentation, where the goal is to create a more diverse dataset,

as the model learns to reconstruct the augmented image. This method can effectively

increase the reconstruction difference between normal and abnormal images and is known

as a de-noising autoencoder [22]. This research followed this approach, and different

kinds of transformations were performed on the images, each with a different probability.

The used functions were Gauss Noise, Gaussian Blur, Elastic Transform, Sharpening,

Motion Blur, Coarse Dropout, Random Gravel, Pixel Dropout, Optical, and Grid

Distortion. Some examples of their results can be seen in Figure 3.9.

3.9. Figure - Examples of the noises added to the input images.

30

The encoder was implemented as a commonly used CNN (e.g., ResNet50,

ResNet18, DenseNet), and the decoder was its transpose. It means that each layer

performed the inverse operation as the original CNN. It is a common practice to design

autoencoders to be symmetric, as here, but this is not strictly necessary. The steps of the

defined de-noising autoencoder-based method are illustrated in Figure 3.10. This can be

integrated into the complete process, in place of the purple-coloured anomaly detection

block in Figure 3.1., as it has the same inputs and outputs.

3.10. Figure – The flow diagram of the complete autoencoder-based anomaly detection workflow.

The loss function aims to compute the reconstruction error for every pixel of the

original image, which the autoencoder tries to minimise. For this purpose, MSE or SSIM-

based functions were used. A similar metric was used to evaluate the performance. For

this, the SSIM-based techniques proved to be better, as the MSE or MAE-based methods

were very sensitive to noise in the image, which was not a problem while training, but

could degrade the evaluation. The reconstructed images of the first batch along with their

heatmaps computed with the different metrics, were saved to visually inspect the process.

An example of this can be seen in the results in Chapter 5, Figure 5.5.

Several different versions of the SSIM function were created to refine the final

decision. The different methods were compared and the best-performing one was

assigned to each product type. MS-SSIM calculated the Multi-scale SSIM score [3.6.1].

31

Patched SSIM was created to help the model detecting smaller anomalies. The idea is to

calculate the error on only a smaller part of the image, doing this over the whole image

several times in a sliding window approach, and then taking the value of the largest error

as the result. Thresholded SSIM was intended to make the model less sensitive to noise.

First, a median Gauss filter was used on the original and reconstructed image to eliminate

the isolated high-intensity pixels. Then the differences that scored under 0.1 were zeroed

out because they are probably not anomalies and the ones that were above 0.9 were set to

1 because they probably are. As the images are coloured, there was another option on

how to aggregate the result of the different channels, for example, they could be summed

or averaged.

All parameters can be specified in a YAML file, and each run’s result is saved in

a separate folder. Cross-validation and augmentation were used for training and a special

method was implemented for the train-test split [3.2.3.]. The different types of anomalies

were evaluated with the models from each fold, and their results were averaged. The

validation images were different in each fold, these values were aggregated, this way a

prediction was obtained for each image. Based on the validation images a threshold on

the anomaly scores was calculated, from which the images were considered as an

anomaly.

3.4 Anomaly detection with clustering

The use of deep hybrid models is a common technique for semi-supervised

anomaly detection [23]. They use deep neural networks as feature extractors, and the

learned latent features are inputs of traditional anomaly detection algorithms like

clustering to detect outliers. The dimensionality of the input is reduced within the layers

of the neural network which ensures scalability for high dimensional data. For the AI

model usually, CNN or autoencoder-based models are used, as in [33] and [34].

For the given use case a novel architecture is proposed, which uses the YOLOv5

object detection model, which is part of the original workflow. Its steps are visualized in

Figure 3.11. This can also be integrated into the complete process, in place of the purple-

coloured anomaly detection block in 3.1.

32

3.11. Figure - The whole architecture of the proposed clustering-based anomaly detection method.

3.4.1 Feature extractor

The object detection model, which is part of the original workflow process can be

used as a feature extractor. It is worth choosing this, as it doesn't cost any extra time. Also,

the successful object detection demonstrates that the model successfully discovers the

main characteristics of each product. Since this model was not yet available, another

YOLOv5 model was trained to detect the products and was used in this research. The

YOLO can learn location and rotation invariant features instead of pixel intensities in the

original images, which information can be much better used by clustering. This model

was truncated after an earlier layer, to extract a higher dimensional, complex

representation. There were more possible places for this truncation:

• Before the Neck (Dim.: 20x20x1024 = 409 600): The backbone of the network is

a CCN, called CSPDarknet53. It should capture only high-level feature maps, which has

not gone through any object-detection-specific layer. These features could be useful for

general clustering, although important information may be lost, that is specifically

provided by object detection, such as the location and number of products.

• Before the Head (Dim.: 20x20x1024 = 409 600): At this location the features are

more processed. It may provide more object-detection-specific patterns, but could lose

important features, which are significant for anomaly detection, but not for object

detection.

33

• All outputs before the Neck or the Head: (Dim.: 20x20x1024 + 512x40x40 +

256x80x80 = 2 867 200): Here not only the output with the highest scaling would be

considered, but all three outputs of the neck or head, aggregating their results. This could

be effective because it captures multi-scale information from different resolutions. The

downside is that the aggregation can cause larger dimensionality and can contain more

noise and redundant information. For aggregation, the easiest approach is to concatenate

the vectors, but it significantly increases the size. The addition of the vectors is an

alternative option, which has the drawback of losing information.

• All outputs in the middle of the Neck (Dimension: (20x20x512) + (556x40x40)

+ (256x40x40) = 1 024 000): Inside the layers of the neck, there is a part, where it also

can be truncated at each resolution. This is the thinnest part of the network, so it contains

more compact information but still aggregates information from all scales. It could

balance the result of dimension complexity and scale aggregation.

3.4.2 Scaling methods

The features extracted from the network should be scaled, to ensure that each

feature contributes equally, especially in distance-based algorithms. Experiments were

made with MinMax, Standard, and Robust scaling. It is important to choose a solution,

that does not suppress any outlying features, as these may indicate anomalies. The best

choice seems to be Robust scaling, because it maintains a good balance by scaling the

data based on the majority of the data points, without letting the anomalies influence the

scaling too much.

3.4.3 Dimension reduction

It is crucial to reduce the dimensions of the representation, because clustering

usually only works well with small dimensional data, due to the “Curse of

dimensionality” [20]. The most common linear dimension reduction approach is PCA,

and its only parameter is the number of the final dimensions. For high dimensional data,

like images, the non-linear algorithms often perform better. From these UMAP was used,

because it is fast and tends to produce the best results. It has many configurable

parameters, with which the balance between global and local structure in the data, the

metrics of the distance between the data points, and how tightly the points are allowed to

pack together can be controlled. When it combines the different local data points, it uses

a union, but for anomaly detection, taking the intersection may be better, because it could

34

ensure that outliers remain disconnected. However, it could also break up the resulting

simplicial sets into disconnected components. For a better solution, there is a parameter

that controls the interpolation between the two. Using UMAP before a density-based

algorithm can be effective in practice, but it is also controversial because UMAP does not

completely preserve density and can create false tears in clusters [35].

In this particular problem, neither PCA nor UMAP worked well enough. The

clustering algorithms that were applied after them, failed to cluster the features properly,

suggesting that the process lost essential information. However, a hybrid solution, that

used both approaches provided an efficient and successful solution. First PCA reduced

dimensionality while preserving the global linear structure, removing noise, and

simplifying the data, then UMAP further reduced dimensions while capturing both local

and global nonlinear relationships. They created a low-dimensional, denoised, and well-

structured representation.

3.4.4 Clustering

For anomaly detection, the best approach is to use density-based clustering.

Unfortunately, DBSCAN failed to correctly identify the clusters, because it was overly

sensitive to the parameters and could not handle varying sizes of distortions. HDBSCAN

performed much better, due to its capability to search clusters across different density

levels. It was less sensitive to parameters, more configurable, and gave more stable

results.

3.4.5 Filtering

As a last step the images, which the clustering algorithm considered as anomaly

must be examined. Detectable false positive cases should be filtered out. Moreover, if the

clustering is performed, with the known anomalous images included, they might be

identified as a different cluster, instead of anomalies. These clusters must be checked and

marked because if the algorithm predicts a new point in this cluster, it is also an anomaly.

3.4.6 Prediction

It would be too slow to re-cluster all points with this complex architecture, for

every new data point. Especially, because this time will be much more with a bigger

dataset. Therefore, at prediction, the existing clusters do not change. The processing steps

are only performed for the new data, and it is decided, which pre-defined cluster it would

35

have been assigned to. These new images do not change the clusters, even if the result

would have been different if they had been in the training set.

3.5 Anomaly detection with Segment Any Anomaly+

The biggest limitation of previous anomaly detection methods is that they require

a large dataset and cannot be used for example at the start of a new industrial process,

until enough data has been collected. In a real-world scenario, there could be many

different products, so it is not cost-effective to collect a large training set for each. Thus,

afterwards, their performance is still strongly influenced by the quality of the dataset.

However, in zero-shot techniques, like the Segment Any Anomaly+ (SAA+) [36] model,

this problem is avoided as there is no need for training data. SAA+ is a recent and novel

model for anomaly segmentation in images. This method achieved significant results in

the zero-shot anomaly detection field and outperformed previous models on several

benchmark datasets. However, there are no publicly available records yet of its

performance and usability on more complex, real-life datasets, like the one used in this

research.

It works by leveraging pre-trained foundation models to identify the anomalies,

without requiring explicit training, by retrieving prior knowledge stored in these models

via prompting. The authors first constructed the Segment Any Anomaly (SAA) model,

by cascading a prompt-guided object detection model, named Grounding DINO [37], and

a segmentation foundation model, named Segment Anything [38]. These serve as

Anomaly Region Generator to identify the possible anomalous parts of the images and

Anomaly Region Refiner, to create the segmentation masks, respectively. For these naive

language prompts were utilized, like “defect” or “anomaly”. This solution tended to cause

many false detections because the word “anomaly” could mean very different things in

different contexts, making it difficult for linguistic models to interpret the word, the

authors called this language ambiguity.

The SAA+ was an improved version of this, in which they integrated domain

expert knowledge and target image context. The domain expert knowledge describes the

characteristics of the relevant anomaly types for the given product. The target image

context includes creating a visual saliency map from the input image, which helps the

model focus on key areas, that may show anomalies. By highlighting these important

regions, the model can better detect subtle or hidden anomalies. The maximum number

36

of anomalies (K) can also be defined, and with confidence ranking-related prompts,

the top K results are kept. Besides language prompts, which detail the characteristics of

the most possible anomalies, property prompts are used to address foundation models'

lack of awareness of specific properties, such as “count” and “area”. They are constructed

in the form of rules, instead of language and the detections that do not meet these criteria,

can be filtered out. (e.g. the maximum size of the anomalies can be specified, and the

bigger ones, can be easily omitted.)

The appropriate language and property prompts were constructed for every

dataset. The main features of the anomalies were defined, as well as the maximum area

and maximum number of anomalies. The outputs of the SAA+ were the obtained

segmentation masks. The value of the mask with the highest confidence was assigned to

the whole image as the anomaly score. Based on the available normal images a threshold

could be defined, above which the images are considered as anomalies. The architecture

of the SAA+-based approach is illustrated in Figure 3.12. This can also be integrated into

the complete process, in place of the purple-coloured anomaly detection block in 3.1.

3.12. Figure – The Segment Any Anomaly + (highlighted with dashed contour, source: [36]) and the

proposed necessary steps for its integration into the industrial workflow.

37

3.6 Evaluation metrics

There are several different approaches to evaluating anomaly detection, from both

subjective and objective perspectives. In this chapter the most significant ones are

detailed. The evaluation of the methods was conducted based on these metrics, which

results are presented in Chapter 5.

3.6.1 Subjective metrics

Many different metrics can be used to obtain the anomaly scores, that measure the

outlierness of each image in the dataset:

• Mean Average Error (MAE) and Mean Squared Error (MSE) are the most

used cost functions for regression problems. They work with a simple principle, are fast

to compute and are well-suited to a wide range of problems. MAE computes the mean of

the absolute value of the difference between the expected (𝒀𝒊) and the predicted

(𝒀̂𝒊) result.

𝑴𝑨𝑬 =
𝟏

𝒏
∑|𝒀𝒊 − 𝒀̂𝒊|

𝒏

𝒊 = 𝟏

• MSE computes the mean of the square of the difference between the expected (𝒀𝒊)

and the predicted (𝒀̂𝒊).result.

𝑴𝑺𝑬 =
𝟏

𝒏
∑(𝒀𝒊 − 𝒀̂𝒊)

𝟐

𝒏

𝒊 = 𝟏

• Structural Similarity Index Measurement (SSIM) [27] is an image quality

assessment metric used to determine the ratio of similarity between two images. It is not

intuitive to measure the quality distortion of an image, because it is difficult to

mathematically define what are the most significant changes for a human eye. Traditional

methods, such as MSE and MAE are simple to calculate and have clear physical meaning,

but they do not always reflect structural or visually noticeable differences between

images. SSIM, on the other hand, assesses the quality of images by considering the

specificities of human visual perception and based on the assumption that it is most

sensitive to structural information change. First, it compares the average brightness of the

images:

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2 +𝐶1
, where 𝜇𝑥 and 𝜇𝑦are the average brightness of images x and y.

38

Then measures contrast based on the standard deviation of the images:

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
, where 𝜎𝑥 and 𝜎𝑦are the standard deviation of images x and y.

The structure is measured by the covariance between the normalized pixels of each image:

 𝑠(𝑥, 𝑦) =
𝜎𝑥,𝑦+ 𝐶3

𝜎𝑥𝜎𝑦+𝐶3
, where 𝜎𝑥,𝑦 is the covariance between the two images.

𝐶1, 𝐶2 and 𝐶3 are small additional values for computational stability. The final SSIM

score is calculated by combining these three components:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)𝛼 × 𝑐(𝑥, 𝑦)𝛽 × 𝑠(𝑥, 𝑦)𝛾, where 𝛼, 𝛽 and 𝛾 correspond to

the weight of each component, they are usually set to 1.

In the end, SSIM derives an index, where 1 indicates full similarity and 0 indicates full

dissimilarity. With this approach, SSIM offers a more accurate assessment of image

quality.

• Multi-scale SSIM (MS-SSIM) extends SSIM by evaluating across multiple

scales or resolutions [39]. This is done by applying SSIM at different image scales,

capturing both local and global structural information. It allows the algorithm to account

for image details at different levels of granularity. It captures more complex distortions,

which makes it more robust for images with varying sizes of deviations.

After an appropriate anomaly score is obtained for all images, the metrics to

measure the performance of anomaly detection are in practice the same as the metrics

used for binary classifiers, since the goal is to separate normal and anomalous images.

Thus, the most used are precision, recall, and F1-measure. A confusion matrix can be

created to visualize the distribution of true positive (TP), false positive (FP), true negative

(TN) and false negative (FN) detections. Precision measures the accuracy of true

predictions among the positive predictions. Recall measures the ability of the model to

identify all relevant instances (anomalies). The F1 score is the harmonic mean of

precision and recall, providing a balance between the two when the class distribution is

uneven.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹1 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

• For the evaluation of the segmentation masks in SAA+, several metrics were

used at both instance (i_ prefix) and pixel (p_ prefix) levels [36]. Instance level measures

the proportion of correctly predicted anomalous instances, while pixel level measures the

proportion of correctly classified pixels. The i_ROC and p_ROC (Receiver Operating

39

Characteristic) metrics measure the model’s ability to detect anomalies, while i_AP and

p_AP measure the Average Precision scores and i_F1 and p_F1 provide the F1-scores.

3.6.2 Objective metrics

• By visual inspection it can be seen whether the images with high anomaly scores

are anomalous, or whether they have any salient features that cause the network to

consider them as anomalies. To facilitate this, the heatmap of the differences between

the original and target image can be generated. This method reveals which pixels of the

image caused the model difficulty to recover, i.e., detected as possible anomalies.

40

4 Implementations

In this chapter details about the used hardware, software and libraries are

provided. The implementation of the different methods is available in a public GitHub

repository1.

4.1 PyTorch

In this research, Python was used as the main language, as it is the most popular

language for deep learning nowadays. PyTorch and Keras are two commonly used

libraries, that are specifically designed to effectively solve deep learning problems. From

these, PyTorch was used. This library [40] has the advantage of being more flexible and

customizable. It offers dynamic computation graphs, enabling users to build and modify

models on the fly, making experimentation and debugging easier. PyTorch provides a

comprehensive set of tensor operations with GPU acceleration support, simplifying tensor

manipulation. It provides a variety of pre-defined modules, models, and layers.

4.2 Scikit -learn

Scikit-learn is a Python library, which contains simple and efficient tools for

predictive data analysis [41]. It offers pre-defined, optimized solutions for a wide range

of machine learning algorithms. It is open-source, accessible, and reusable to everybody.

It’s easy to use and import. The library is based on Numpy, SciPy, and Matpotlib. It was

used for simpler machine learning operations, like clustering and dimension reduction.

4.3 Albumentations

Albumentations is a Python-based computer vision library that aims to boost the

performance of deep learning-based vision methods [42]. It’s a popular, open-source

library, that is widely used in industry and deep learning research. It provides techniques

for fast and flexible image augmentations by efficiently implementing a rich variety of

image transform operations that are optimized for performance. It supports any computer

vision tasks and works well with data from different domains: photos, medical images,

satellite images, manufacturing, and industrial applications. It can be integrated into

1 https://github.com/TBeatrix/Anomaly-Detection-For-Industrial-Automatization.git

41

various deep-learning frameworks such as PyTorch and Keras. This was used for

augmentation techniques and for adding different kinds of noises to the images.

4.4 Weights & Biases

Weights & Biases (WandB) is an outstanding tool for tracking, managing, version

controlling and visualizing machine learning training experiments. It is simple and

intuitive to use, easy to integrate into an existing environment and offers a wide range of

extra features. It logs the results, creates easy-to-view charts, and stores all the parameters

and results in a spreadsheet. The different trainings can be easily grouped or ordered

according to any criteria.

4.5 Label Studio

Label Studio is an open-source tool for annotating data like text, images, and

audio. It’s customizable for various tasks, helping create labelled datasets for many

machine learning projects. The labels and segmentation masks were obtained with this

tool.

4.6 Docker

Docker is an open-source platform that allows developers to automate the

deployment, scaling, and management of applications inside lightweight, portable

containers that include everything needed to run the software, such as code, libraries, and

system dependencies. The experiments were run within a Docker container on a server.

4.7 GPU

Since the training of an anomaly detection model is very time- and computation-

consuming, the Graphics Processing Unit (GPU) played an important role in the

successful completion of the training. Two 40GB NVIDIA A100 GPUs were used. The

autoencoder-based method was trained the longest, as it used cross-validation. The

training of five folds took about 20 GPU hours.

https://pytorch.org/
https://keras.io/

42

5 Results

In this chapter, the performance of the three different methods to detect anomalies

is presented. Each of them has different advantages and weaknesses, which are discussed

in detail. The results have been numerically evaluated and are also visualized with

diagrams.

5.1 Autoencoder approach

Different autoencoder models have been trained for each product type. The exact

hyperparameters and transformations are detailed in Appendix A. All models were trained

on clean, normal images with randomly initialized weights. The vanilla autoencoder

compresses the images into a low-dimensional space and restores them with minimal

errors, which is the original aim of autoencoders. However, in anomaly detection, the aim

is not the perfect restoration of the whole image, but to learn and restore the characteristics

of a particular product, and only that. This model failed to do that, as it even restored

objects that represent something completely different, as can be seen in Figure 5.1.

Therefore, this method is not suitable for anomaly detection since the reconstruction error

does not increase significantly for anomalous cases.

5.1. Figure - The Vanilla autoencoder method well-reconstructed images of the product (first), even

if it contained anomalies (second), as well as images completely unrelated to the product (third,

fourth).

The purpose of the de-noising autoencoder was to make the model's task more

difficult, forcing it to focus more on the given products. It became an additional task to

43

remove the noise mixed with the images and to fill in any missing details. This way it

learned the main characteristics of the items and if something looked different than usual,

it tried to recreate the original product in its place, as seen in Figure 5.2.

5.2. Figure – The de-noising autoencoder well-reconstructed images of the product (first), but not

its anomalous parts (second), and nor the ones, completely unrelated to the product (third, fourth).

In this case, as intended, the reconstruction of the anomalous parts appears to be much

worse. Thus, it is appropriate for anomaly detection. The drawback was that the

restoration of normal images could also become blurrier. To find the best-performing

model, several optimization was performed with different types of noises and

transformations. The final ones are detailed in Appendix A. It can be concluded that for

simpler-looking products (e.g. pizza boxes), less noise led to the best results, while for

more complex configurations (e.g. side reels), more noise was needed.

The model’s evaluation was complicated by the fact that insufficient data were

available from each product for a good performance. This drawback was especially clear

when setting a threshold, above which the images are classified as anomalous. Ideally,

this would completely separate the two types, but since the notion of anomaly can also be

questionable, there should inevitably be some overlap between the two. A separate test

set was not created, as there were already few images available, and reducing them would

have hurt the quality of the training, thus currently the exact numerical evaluation is less

meaningful. The threshold was set at the value, where 75% of the validation set is

correctly classified. This would be weak in practice, as it is assumed that every fourth

detection would be a false positive. However, this is a reasonable expectation, due to the

small dataset, which is not sufficiently representative for all data types. By examining

these false positive detections, they mainly contain images that are poorly represented or

44

have some special (but not anomalous) characteristics, like too many labels, a different

colour, dissimilar shape, or simply were captured from an unusual angle, such as the ones

in Figure 5.3.

5.3. Figure - Examples for false positive detections, with unique characteristics. (1. is from stacked

boxes, 2. is from side reels, 3. and 4. are from pizza boxes and 5. and 6 are from reels.)

This does not mean that the method was incorrect at these detections, since product types,

that occur too few times are correctly considered as anomalies by the algorithm. Even if

they are not domain-specific anomalies. This problem could be reduced and even a much

higher threshold could be established as soon as more images are collected. Despite this,

the results demonstrate that the method is capable of finding anomalies and will be worth

using. The results are visualized in Figures 5.4 and 5.5, separately for each product and

for each anomaly type, that was observed for them. The top yellow bar in each diagram

belongs to the validation set of the normal data. The threshold is visualized with a dashed

red line. Figure 5.4 shows the anomaly groups, that contain completely different images

from the task, these were almost perfectly separated. Figure 5.5 shows all the other

anomaly types.

5.4. Figure - Boxplots of the performance of the de-noising autoencoders on the different datasets

(columns) with the anomaly types, that contained different images than the given product (rows).

The threshold is visualized with a dashed red line.

45

5.5. Figure - Boxplots of the performance of the de-noising autoencoders on the different datasets

(columns) with different anomaly types (rows). The threshold is visualized with a dashed red line.

The exact evaluation of the accuracy of the detected anomalies by the model, for

different threshold values (75, 80, 90, 95) is shown in Table 1.

1. Table - The accuracies of the detected anomalies for each product and anomaly type in

percentages, at different thresholds, which shows the accuracy of the correctly identified images in

the validation set: 75 (blue), 80 (green), 90 (yellow), and 95 (orange).

 Reels (%) PCBs (%) Side reel (%) Pizza box (%) Stacked box (%)

validation

images
75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95

animals and

things
100

other factory

images
100 100 96 85 96 96 92 88 100 96 88 69 96 100 96 96 96 96 85 69

hands 67 64 31 14 50 33 13 3 97 56 40 23 60 97 74 41 83 71 42 25

paper

package
- - - - - - - - 68 50 36 32 100 92 77 62 94 88 75 44

red knife - - - - - - - - - - - - 100 100 100 80 91 84 56 31

fingers 59 47 18 6 47 40 17 7 56 50 28 17

black - - - - - - - - 100 100 89 44

front reel - - - - - - - - 100 100 94 69

packed 100 100 88 62 100 100 100 92

empty box - - - - 100 100 88 65

hidden parts 73 73 45 9 26 19 13 10

red packed 100 100 100 80

vacuum

packed
100 100 88 62

As can be seen, this method worked best for the Pizza and Stacked boxes. This is

because their features are more simply captured by the autoencoder, as these items have

much simpler characteristics, without a lot of edges or fine details. Among the different

46

types of anomalies, the larger ones (red and vacuumed package, packed, front reel) scored

higher, due to the fact that larger anomalies imply larger deviations in reconstruction.

However, it is not true that the smaller the anomaly is, the harder it is to detect. For

example, knives were small, but because of their striking red colour, they had high

anomaly scores. Hands are more detectable than fingers, but they became harder to spot

when the worker wore a white glove that blended into the background. In general, the

autoencoder managed to detect better those anomalies, which had bigger differences from

the normal data, in size or colour. Based on the differences between the original and

reconstructed images, heatmaps can be created, to obtain information about the location

of the anomalies. Figure 5.6 shows examples of these, based on different metrics.

5.6. Figure – Heatmaps, based on different metrics. They well reflect the differences between them.

Preconditions:

• To effectively use this approach a huge amount of data is needed.

• The images should be diverse, high-quality, and have a clear resolution.

• The anomaly types should be clearly distinguishable from the normal.

• The construction of the dataset requires a lot of pre-processing steps.

Advantages:

• Do not need labels.

• Fast prediction.

• It is not considered an anomaly if some parts do not always appear in the same

place and the same number.

• Even small deviations can be detected.

• The heatmaps produce pixel-based information about the location of the

anomalies, which explains the decisions.

Limitations:

47

• Every product requires a separate model and a sufficiently large dataset.

• Can not be used right away for new products.

• It has difficulty detecting anomalies with similar characteristics to the normal.

• Does not consider an anomaly when two separately already known things appear

together or parts that differ from the norm only in size or number.

5.2 Anomaly detection with clustering

The proposed architecture for clustering involved a lot of hyperparameters, which

had to be carefully adjusted, as it was very sensitive to them. In the final models, the

YOLO was truncated before the Neck, only at the biggest resolution, so no concatenated

method was needed. Both PCA and UMAP were used for dimension reduction, the

scaling type was MinMax or Robust scale and HDBSCAN was the clustering algorithm.

The exact parameters of the best models are detailed in Appendix B.

This method was not able to detect small anomalies such as hands or knives. This

is because there are normal images that share too many similarities with the anomalous

ones and clustering tends to classify based on the greater similarities (e.g. the style of the

reel) and neglects the minor differences. Examples of this are shown in Figure 5.7. This

was also complicated by the fact, that the used dataset contained complex images, which

have varying appearances even within the same product. In other words, in the case of

small anomalies, the variance within the normal data was larger and more significant for

clustering, than the variance between anomalous and normal images. This is due to the

way clustering works. This does not cause a problem for autoencoders, where the model

distinguishes based on the differences, rather than similarities.

5.7. Figure – Anomalous images of reels, and normal images, which were highly similar to them.

However, the model successfully detected images with larger anomalies. The datasets

that contained bigger anomalies were Reels (the red, vacuumed, and other packages), Side

reels (front and black reels), and PCBs (empty and packed), so only these were used with

this method. Currently, the most essential aspect of the use case is to identify these bigger

outliers. Minor ones cause fewer problems, as most of them will not even occur later,

48

when the workflow is automated, such as hands or knives. But there might be new types

of smaller anomalies, in new situations. For these, one of the other solutions should be

used. The best performance was achieved when both anomalous and normal images were

used for clustering. This way the anomalies made it easier for the clustering algorithm to

recognise what should be separated and it was also easier to determine which parameters

needed to be tuned. Moreover, the obtained results were more stable and robust. This way

there were anomalous images not detected as anomalies by the algorithm but assigned to

a separate cluster when enough instances of an anomaly type occurred in the dataset to

form its own cluster. This could only happen with known anomalies. After the training of

these methods, these specific clusters can be identified and marked. When a new data is

assigned to these clusters, they should be considered as anomalies. Thus, information

about the anomaly type of this new data is also obtained (based on the cluster, it was

assigned to), which is important for the explanation of the detections. New kinds of

anomalies should be selected as anomalous by the algorithm, as they do not fit into any

predefined cluster. The method was evaluated based on the original clustering partitioning

on the full dataset. No separate test dataset and prediction were used, as there were only

a few instances of the larger types of anomalies, and they were highly similar to each

other. Hence, it was not possible to construct a proper and suitable test dataset, not even

for cross-validation. However, if the clustering analysed this way separates the anomalies

properly, similar behaviour can be expected during prediction. The clustering was

performed in more dimensions, but for visualization purposes, a 2-dimensional

representation of the data was created with UMAP, which is visualized in Figure 5.8. The

points were coloured based on the assigned cluster, and anomalies were coloured red.

Side Reels:

49

PCBs:

Reels:

5.8. Figure - 2D UMAP visualizations of the clustering result for the Side reels, PCBs and Reels

datasets. Each colour corresponds to a different cluster. The anomalous points are coloured red

and some samples from them are visualized.

It can be seen from the results, that the bigger anomalies are indeed assigned to separate

clusters. Moreover, examining the different clusters showed that, the method was capable

of well separate the different types within a product. This way this method can also be

used to detect special types of the product, which are not anomalies, if we want to

distinguish them for some reason. To demonstrate this, Table 2 shows some of the

elements of the clusters created in the Reel dataset. This clearly shows that the different

types have been distinguished into separate clusters. Their colour indicates their location

on the plot. This also shows that the 4th, 5th and 6th clusters, which contain similar

50

elements, are also close to each other in the visualisation. And the 1st, 2nd and 3rd

clusters, which are more dissimilar, appeared further apart.

2. Table - The clustering results of the Reels dataset, with visualized instances of each cluster.

Cluster -1 corresponds to the outliers detected by the model.

1.

2.

3.

4.

5.

6.

-1

 Since all the bigger anomaly types in the dataset formed their own cluster, the

anomalies that are currently detected by the HDBSCAN clustering algorithm are all false

positive detections in each dataset, but their numbers are small. These are the images, that

the algorithm could not assign to any of the other clusters for some reason (e.g. they are

underrepresented in the dataset). Examples of these can be seen in Table 2 at the -1 cluster.

Nevertheless, these detections cannot be ignored, because new anomaly types will be

included here. If perhaps in a later model, despite proper tuning of the parameters, the

number of these false positive elements grows out of control, it may be worth introducing

51

extra filtering on these items to find out which ones are actually anomalous, for example

using the autoencoder-based solution.

 Table 3 shows the numerical results of the clustering as the recall, precision and

F1 score of the detected anomalies, and the numbers of different positive and negative

detections. In this method, each image is an anomaly or not, depending on which cluster

it is assigned to. No confidence values or anomaly values are associated with the images.

3. Table - The Recall of the detected anomalies, and the number of True Positive (TP), False

Negative (FN), False Positive (FP), and False Negative (FN) detections. The second element of the

addition at the FPs corresponds to the number of anomalies detected by the clustering.

 TP TN FP FN
Recall of

anomalies

Precision of

anomalies

F1 score of

the anomalies

Reels 24 491 1 + 27 2 92,3% 46% 61,4%

Side

reels
46 593 6 + 3 2 95,8% 83% 91,5%

PCBs 37 1282 5 + 13 7 92,5% 67% 77,7%

Anomalies were found with a high degree of accuracy for all data sets. The future

increase of the dataset will also have a positive impact on this approach, since more types

of normal data will occur, thereby improving the performance of clustering and false

positive detections will be reduced by increasing the number of currently

underrepresented types.

Preconditions:

• To use this approach a large amount of good resolutioner, clean data is needed.

• The data should be of only one product, and it should not contain too diverse

images.

• The anomaly types should be large and distinguishable from the normal ones.

Advantages:

• It can be easily integrated into workflows, with a trained object detection model.

• It can detect those cases, in which the object detection model is assigned to a given

product but has some major deviation that suggests they might need to be handled

differently.

• It finds large anomalies fast and with high accuracy.

52

• The cases when two separately already known things appear together, and items,

that only differ from the normal in size or number could be detected as anomalies.

Limitations:

• Do not work well for smaller anomalies or new products.

• Require a re-clustering and a new parameter tuning, after many new images are

obtained.

• Every object type requires a separate model and a sufficiently large dataset.

5.3 Anomaly detection with Segment-Any-Anomaly+

To run Segment Any Anomaly+, the implementation was used from the original

article [43]. For each product, a separate model was used, with its own prompt. As this

method does not require training, its successful use entirely depends on the construction

of the prompts. These should summarise the most significant features of the already

known or expected domain-specific anomalies for every product. Hence, its limitation is

that it mainly focuses on the known anomalies. However, with the continuous monitoring

of the workflow, the list of possible anomalies can be expanded, so the system can be

prepared for the most possible errors. The characteristics of the normal data can only be

described with one term. This may be enough for general objects from benchmark

datasets (e. g. tile, wood, screw, hazelnut), but not for complex or special products, which

the large language models, may not be capable of properly recognising. For example,

after the word "reel" it may not recognise the exact object in this dataset and the more

abstract categories (e.g. PCB in a tinfoil package, stacked boxes) were even harder to

describe with a single term. Consequently, the model occasionally gave false positive

detections for the normal products, that it did not recognise. This could be resolved by

upgrading the model to include one or two normal images as input. Currently, the authors

of the SAA+ model are working on an enhancement to achieve this, using few-shot

techniques. By using this technique, the model could get implicit information about the

characteristics of the normal product.

The detected anomaly masks were highly dependent on the defined size of the

anomalies, if too large value was determined, it did not detect smaller anomalies well.

Therefore, the anomalies in the datasets were separated based on their size into two

groups, and a different model was used on them. One aimed to find the smaller anomalies

and the other for the bigger ones. Their evaluation is also done separately because they

53

achieved different results on the normal data, which influences the value of the threshold.

In general, this method was less successful for larger anomalies, because when the defined

size could be larger than the size of the whole product, the model gave too much false

positive detection as it considered the entire product as an anomaly (because it did not

recognise it well). The defined prompt for the small reels was: (the rest are detailed in

Appendix C):

Manual prompts:'reels_small': [
['package material on top. ', 'reel disc'], ['hands.', 'reel disc'],
['narrow rubber band around it.', 'reel disc'], ['fingers. ', 'reel disc'],
['paper package on top.', 'reel disc'], ['gloves. ', 'reel disc'],
['skin. arm.', 'reel disc']],
Property_prompts = {'reels': 'the image of reels have 1 dissimilar
reel_disc, with a maximum of 3 anomalies. The anomaly would not exceed 0.3
object area.'}

In many cases, the model was successful in detecting the desired anomalies and

the detected anomaly masks were almost perfect. Examples of correct detections are

visualized in Figure 5.9. The strength of the anomaly score is indicated by the colour,

with red being the strongest, then yellow, green, and blue as the weakest.

5.9. Figure - Examples of the obtained segmentation masks from SAA+.

The evaluation results of the created segmentation masks, based on the evaluation

methods implemented in SAA+, can be seen in Table 4. The accuracy of these results is

not too high, as the results are greatly affected by the fact that the ground truth masks

were obtained by hand and are not accurate at a pixel level. Furthermore, these metrics

also take into account anomaly detections that have low confidence, which are later

filtered out, when the final anomalous images are obtained. Thus, the real scores would

54

be even higher, but these metrics were perfect to measure the performance of different

tests and to select the best prompt for each product.

4. Table - - Numerical results of the SAA+ model on the five different datasets.

 I_ROC P_ROC I_AP P_AP I_F1 P_F1

Reels (small) 90.43 72.60 77.78 37.70 71.76 46.69

Side reels (small) 88.33 71.44 61.93 26.91 56.54 80.0

Stacked boxes 81.12 74.02 41.48 7.07 46.61 16.17

Pizza boxes 88.18 79.63 61.01 28.99 58.59 38.83

PCBs (small) 91.48 85.16 65.03 39.78 62.96 45.41

The anomaly scores of the whole images were the value of the highest-scored

anomaly mask. The results of these scores are presented in Figure 5.10., in the same ways

as the autoencoder’s. The threshold is higher here because this method does not require a

training dataset, so later increasing it, will not yield better results. Therefore, a threshold

(95%) was required, that is already acceptable for real-world use. The thresholds were

defined based on the percentage of true positive results on the available images, without

anomalies (called validation set).

5.10. Figure - Boxplots of the performance of the SAA+ on the five datasets (columns) with different

anomaly types (rows). On the top for the smaller anomalies. The anomaly threshold (red dashed

line) is set to correctly classify 95% of normal data.

55

The exact evaluation of the accuracy of the detected anomalies by the model, for

different threshold values (75, 80, 90, 95) is shown in Table 5.

5. Table – The accuracies of the detected anomalies for each product and anomaly type in

percentages, at different thresholds 75 (blue), 80 (green), 90 (yellow) and 95 (orange), based on the

correctly identified images in the validation set.

 Reels (%) PCBs (%) Side reel (%) Pizza box (%) Stacked box (%)

validation

images
75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95 75 80 90 95

hands 100 100 94 92 83 83 80 56 83 66 60 49 95 90 82 69 88 75 62 25

paper

package
- - - - - - - - 59 36 23 5 62 61 38 38 62 62 50 19

red knife - - - - - - - - - - - - 100 100 100 100 94 94 84 66

fingers 100 100 94 82 90 90 83 77 83 78 56 44

black - - - - - - - - 100 89 89 67

front reel - - - - - - - - 97 97 97 91

packed 33 22 11 11 62 54 54 47

empty box - - - - 88 85 50 38

hidden parts 36 36 0 0 23 17 7 0

red packed 50 40 30 20

vacuum

packed
12 12 0 0

It can be seen from Table 5, that this model achieved very diverse results on different

products and anomaly types. Overall, it can be concluded that it gave exceptionally high

results in cases where both the anomaly type and the product type could be well defined

using prompts (e.g. fingers and hands for reels, front reels for side reels, or red knife for

the pizza boxes). In cases where the model did not understand correctly the characteristics

of the anomaly or product in question, very poor results were obtained. (e.g. vacuum

package for reels, paper package for pizza box, and stacked box). For the remaining

groups, the results were intermediate, suggesting that there were several variants within

the anomaly types, some of which were correctly detected, but others were not. All in all,

the model is useful for detecting some pre-defined anomalies, but it is not sufficient on

its own to find all anomalies.

Preconditions:

• The anomaly types must be well describable and explainable.

Advantages:

• Do not need training images. Easy to apply for new products.

56

• Domain knowledge can be incorporated. The attributes of the anomalies can be

precisely defined, making them more easily detectable.

• For some known anomaly types, the results are better than the other methods.

• The pixel-based segmentation masks of the anomalies can also be obtained.

Limitations:

• Function worse for unexpected anomalies, that were not added as domain

knowledge.

• Sensitive for the parameters, i.e., the size of the anomaly.

• Cannot detect the absence of something.

• The model has trouble figuring out what the original products look like, in the

case of complex items, which may not be known by the foundation models.

• The model cannot be told exactly what the normal data looks like, its

characteristics are only determined by the prompt. (Using few-shot learning would

be a solution for this, however, this is not yet implemented in SAA+.)

• It is slower than the previous approaches, as many foundation models are used.

57

6 Discussion

All three approaches performed well for some anomaly cases. Based on the

previous results, in Table 5 the most appropriate method is defined for each anomaly type.

These are not final decisions, because the results of the different solutions are not yet fully

comparable, as the autoencoder and clustering results will improve later, due to the

collection of a larger dataset. However, general conclusions and trends can already be

drawn from the current results and the table has been filled based on these. The SAA+

solution should be used where current results show high accuracy. The clustering-based

solution has provided a good solution wherever it was used. For those types where SAA+

did not provide a good solution and clustering cannot be used, the autoencoder-based

solution should be used.

5. Table – The most suitable methods for the different kinds of anomalies, in the different datasets.

 Reels PCB Side reels Pizza box Stacked box

hands SAA+ SAA+
SAA+ /

autoencoder
SAA+ autoencoder

paper

package
- - autoencoder autoencoder autoencoder

red knife - - -
SAA+ /

autoencoder

SAA+ /

autoencoder

fingers SAA+ SAA+ autoencoder

black - - clustering

front reel - -
clustering /

SAA+

packed
autoencoder /

clustering

autoencoder /

clustering

empty box - clustering

hidden parts autoencoder autoencoder

red packed
autoencoder /

clustering

vacuum

packed
clustering

All three methods worked based on quite different approaches and therefore, had

different advantages and limitations, which were detailed after each one. Among them, if

the best solution must be chosen, the autoencoder solution has the highest potential, as it

has been able to detect the most types of anomalies. Also, by increasing the dataset, it can

be made much more accurate than the published results. The clustering approach is

appropriate as long as there is no need to find smaller, more subtle anomalies. For new

58

industrial processes and products without a proper dataset only the Segment Any

Anomaly+ model can be used.

However, the use case is not limited to the selection of only one method. Since

each model works in different ways and hence excels in different aspects, it could be

valuable to combine their strengths to make more reliable, robust, and accurate

predictions for each anomaly type and reduce variance and bias. This can also increase

the detection time, so it should be used with caution. For their combination, there are

many possible solutions, such as ensemble models, stacking, and hybrid modelling. A

simple ensemble-based approach could be to perform predictions with all methods for all

the images, and one should be only considered anomalous if one of the methods has a

high anomaly score or at least two of them predict a medium score. As more complex

approaches, meta-models or simpler ML-based models could be optimized to select the

best decision, based on the three models. The first step towards this will be to collect a

much bigger dataset for better autoencoder and clustering results.

The research of finding suitable anomaly detection methods for the given use case

has concluded successfully, with methods, which can be integrated into the industrial

process.

59

7 Human-Centred Considerations

Nowadays, when it comes to artificial intelligence-based applications, there is a

growing focus on human-centric approaches, especially in real-world settings, with direct

human interaction. When it comes to using these solutions in a factory environment, they

provide plenty of additional challenges, beyond the development of the appropriate AI

models. These issues are addressed in this chapter, along four major dimensions: ethical,

safety, security, and legal aspects. These considerations not only help in the operation of

AI-based systems but also ensure a smooth, socially responsible transition for their use

that is aligned with social values.

7.1 Ethics

In every application, the AI-based decisions should be transparent, to build trust

among workers and enable them to better understand the system. The autoencoder and

SAA+ methods give information about the exact pixels that indicate anomalies, thereby

explaining the decisions. The clustering approach also provides some level of

explainability, as we can analyse the resulting clusters.

The automatization of a workplace can have a large social impact, as the

workplace will be transformed, and the employees will need retraining programs as

different types of human support will be needed. They need to be provided with adequate

information about the changes and it must be ensured, that they are not negatively affected

by the transition. The AI-based algorithms should be free from bias, which can occur due

to mishandled training data or flawed design. Bias in anomaly detection could lead to

unequal attention to different parts of the production process. The method could become

discriminative against specific brands or products, which could give a misleading

impression of them. For example, if fewer products were received from a given supplier,

when the dataset was collected, as a result, the model might give false positive detections

more frequently for their items in production. This can mistakenly trigger negative

feelings towards the supplier or cause possible conflicts, which can implicitly affect the

employees working there.

60

7.2 Safety

When an anomaly detection system is deployed in a real environment, it should

be reliable and minimize inaccurate detections as they could lead to accidents. In case of

an anomaly, there should be straightforward rules for a safe intervention and possible

system shutdowns. To ensure maximum safety, the Unpacking Machine will operate in a

closed, human-inaccessible environment, as sharp, narrow, or moving parts may make its

interior unsuitable for human work. The problematic products will be transferred to a safe

external location where the employees can handle them, or if it is necessary, the machine

can be accessed, but only after a complete shutdown.

7.3 Legal

AI-based applications must comply with the industry-specific regulations, the

GDPR for the protection of private images (especially those, that include potentially

recognisable parts of people, which are also carefully excluded from this thesis), and the

AI Act [44], to align with the human-centred considerations. The used AI solutions in this

research were open source, which was further improved and combined with the novel

dataset.

7.4 Security

From the perspective of security, it is a strong protection, that the solutions use

only the company's data from a trusted source and do not use any online datasets or pre-

trained weights for the trainings. Except the SAA+-based solution, which is based on

foundation models. A potential vulnerability could be, if suppliers are packaging products

in some special way, for example, to deliberately increase the number of incorrect

anomaly detections, thereby slowing down the unpacking process. However, by using the

combination of the three proposed models, and making a joint decision, this could be

effectively mitigated, because it is much more difficult to confuse more different models

with one adversarial input. These potential cases can also be identified by the regular

analysis of false positive detections.

61

8 Future work

In future works, an approach could be used, which focuses on the individual

products instead of the whole open boxes. The removal of the box and the unnecessary

adjacent items can help the model to focus more on the specific items. The methods had

trouble with the small white labels on the products, as their location and appearance

varied, so they could be rightly considered as an abnormality. As a workaround, with the

help of object detection, these labels could also be identified, and their areas could be

masked out during evaluation to not affect the results. This could decrease the number of

false positive detections. Furthermore, as discussed before, it would be beneficial to

explore the possibilities of using the three models together.

62

9 Summary

Industrial automation is becoming a more and more popular method nowadays,

driven by the continuous development of various AI solutions. For their appropriate use

in a real environment, these complex systems must be prepared for any potential problem.

Anomaly detection can provide a solution for identifying these unexpected cases so that

they can be diagnosed and resolved in real-time. Consequently, this research explored

deep learning-based anomaly detection techniques to be integrated into the automation

processes of a company's existing workflow. It was identified between which steps of the

process it should be incorporated, and what should be its preconditions, inputs, and

outputs. Three different approaches were proposed, all with comprehensive evaluation.

The limitation of the autoencoder and clustering-based approaches was that they require

a very large dataset. The de-noising autoencoder-based, unsupervised method provided

the most appropriate solution, which could detect a very large variety of anomalies. The

second was a semi-supervised, clustering-based solution, which was able to detect the

major anomalies with high probability but struggled to find the smaller ones. The third

approach leveraged a novel model, called Segment Any Anomaly+. This model does not

require a training set, so it can be used for completely new processes immediately. It was

not able to detect all anomalies, instead, it mainly focused on known anomalies, that can

be described well in an appropriate prompt. All approaches were capable of providing

great results, but each stood out in different aspects with different advantages and

limitations. It would be beneficial to use them together, as they could complement each

other to provide a more robust and reliable solution. These developed solutions are under

patent registration, and they will make a major contribution to the company’s

automatization system.

63

References

[1] Mohd Aiman Kamarul Bahrin , Mohd Fauzi Othman, Nor Hayati Nor Azli,

Muhamad Farihin Talib, „Industry 4.0: a review on industrial automation and

robotic” (2016), Jurnal Teknologi (Sciences & Engineering), 78(6-13), DOI:

https://doi.org/10.11113/jt.v78.9285 (Accessed: Oct 2024)

[2] EDGEWORTH, F. Y. 1887. On discordant observations. Philosoph. Magazin. 23,

5, 364–375. (Accessed: Apr 2024)

[3] Chandola, Varun, Arindam Banerjee, Vipin Kumar, “Anomaly detection: A

survey.”, Doi: 10.1145/1541880.1541882 (Accessed: Apr 2024)

[4] Chong Zhou and Randy C. Paffenroth. 2017. „Anomaly Detection with Robust

Deep Autoencoders”, https://doi.org/10.1145/3097983.3098052, (Accessed: Apr.

2024.)

[5] Jonathon Shlens, „A Tutorial on Principal Component Analysis”,

arXiv:1404.1100, (Accessed: Apr. 2024.)

[6] Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, John

Platt (1999). “Support Vector Method for Novelty Detection”. NIPS. 12. 582-588.

(Accessed Okt 2024)

[7] T. Ojala, M. Pietikainen and T. Maenpaa, "Multiresolution grey-scale and rotation

invariant texture classification with local binary patterns," in IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, (2002),

doi: 10.1109/TPAMI.2002.1017623., (Accessed: Okt 2024)

[8] Te-won Lee, Michael Lewicki „The Generalized Gaussian Mixture Model Using

ICA. Int. workshop on ICA”. (2000),

https://www.researchgate.net/publication/2620375_The_Generalized_Gaussian_

Mixture_Model_Using_ICA, (Accessed: Okt 2024),

[9] Dan Hendrycks, Mantas Mazeika, Thomas Dietterich, „Deep Anomaly Detection

with Outlier Exposure“, 2019, https://openreview.net/forum?id=HyxCxhRcY7,

(Accessed: Okt. 2024)

[10] Ahad Alloqmani, Yoosef B., Asif Khan, Fawaz Alsolami, “Deep Learning based

Anomaly Detection in Images: Insights, Challenges and Recommendations.”

International Journal of Advanced Computer Science and Applications. 12.

10.14569/IJACSA.2021.0120428. (Accessed: Apr 2024)

[11] Rosenblatt, Frank, “The Perceptron: A Probabilistic Model for Information

Storage and Organization in the Brain.” (1958) Psychological Review, 65(6),

386–408. https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf,

(Accessed: Nov 2024)

https://doi.org/10.11113/jt.v78.9285
https://doi.org/10.1145/3097983.3098052
https://arxiv.org/search/cs?searchtype=author&query=Shlens,+J
https://www.researchgate.net/publication/2620375_The_Generalized_Gaussian_Mixture_Model_Using_ICA
https://www.researchgate.net/publication/2620375_The_Generalized_Gaussian_Mixture_Model_Using_ICA
https://openreview.net/forum?id=HyxCxhRcY7
https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf

64

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet

classification with deep convolutional neural networks. Commun. ACM 60, 6

(June 2017), 84–90. https://doi.org/10.1145/3065386 (Accessed: Nov 2024)

[13] OpenAI, Josh Achiam et al., “GPT-4 Technical Report” , arXiv:2303.08774

(Accessed Okt 2024)

[14] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009).“ ImageNet:

A large-scale hierarchical image database.” In 2009 IEEE Conference on

Computer Vision and Pattern Recognition (pp. 248-255). IEEE. (Accessed: Apr

2024)

[15] Laith Alzubaidi , Jinglan Zhang, Amjad J. Humaidi, Ayad Al‑Dujaili, Ye Duan,

Omran Al‑Shamma, J. Santamaría, Mohammed A. Fadhel, Muthana Al‑Amidie

and Laith Farhan „Review of deep learning: concepts, CNN architectures,

challenges, applications, future directions”. J Big Data 8, 53 (2021)., (Accessed:

Apr 2024)

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, „Attention Is All You Need”,

Curran Associates, Inc., (2017)

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd0

53c1c4a845aa-Paper.pdf, (Accessed: Apr. 2024.)

[17] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, „You Only Look

Once: Unified, Real-Time Object Detection”, 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016,

pp. 779-788, doi: 10.1109/CVPR.2016.91. (Accessed.: Apr. 2024.)

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, Alexander C. Berg, “SSD: Single Shot MultiBox Detector”,

Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer

Science(), vol 9905. Springer, Cham. https://doi.org/10.1007/978-3-319-46448-

0_2 (Accessed: Apr. 2024.)

[19] Liu Haiying, Fengqian Sun, Jason Gu, and Lixia Deng. 2022. "SF-YOLOv5: A

Lightweight Small Object Detection Algorithm Based on Improved Feature

Fusion Mode" Sensors 22, no. 15: 5817. https://doi.org/10.3390/s22155817,

(Accessed: Apr. 2024.)

[20] Dehua Peng, Zhipeng Gui, Huayi Wu, „Interpreting the Curse of Dimensionality

from Distance Concentration and Manifold Effect” (2023), arXiv:2401.00422

(Accessed: Okt 2024)

[21] Leland McInnes, John Healy, James Melville, „UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction”, (2018) Journal of Open

Source Software, 3(29), 861, https://doi.org/10.21105/joss.00861, (Accessed: Okt

2024)

https://doi.org/10.1145/3065386
https://arxiv.org/abs/2303.08774
https://arxiv.org/search/cs?searchtype=author&query=Vaswani,+A
https://arxiv.org/search/cs?searchtype=author&query=Shazeer,+N
https://arxiv.org/search/cs?searchtype=author&query=Parmar,+N
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit,+J
https://arxiv.org/search/cs?searchtype=author&query=Jones,+L
https://arxiv.org/search/cs?searchtype=author&query=Gomez,+A+N
https://arxiv.org/search/cs?searchtype=author&query=Kaiser,+L
https://arxiv.org/search/cs?searchtype=author&query=Polosukhin,+I
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/search/cs?searchtype=author&query=Redmon,+J
https://arxiv.org/search/cs?searchtype=author&query=Divvala,+S
https://arxiv.org/search/cs?searchtype=author&query=Girshick,+R
https://arxiv.org/search/cs?searchtype=author&query=Farhadi,+A
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.3390/s22155817
https://arxiv.org/search/cs?searchtype=author&query=Peng,+D
https://arxiv.org/search/cs?searchtype=author&query=Gui,+Z
https://arxiv.org/search/cs?searchtype=author&query=Wu,+H
https://arxiv.org/abs/2401.00422
https://arxiv.org/search/stat?searchtype=author&query=McInnes,+L
https://arxiv.org/search/stat?searchtype=author&query=Healy,+J
https://arxiv.org/search/stat?searchtype=author&query=Melville,+J
https://doi.org/10.21105/joss.00861

65

[22] Lilian Weng, „From Autoencoder to Beta-VAE”, Lil’Log,

https://lilianweng.github.io/posts/2018-08-12-vae/, (Accessed: Apr. 2024.)

[23] Jie Yang, Ruijie Xu, Zhiquan Qi, Yong Shi, “Visual Anomaly Detection for

Images: A Survey”, arXiv:2109.13157, (Accessed: Apr. 2024.)

[24] Hartigan, J. A., and M. A. Wong. “Algorithm AS 136: A K-Means Clustering

Algorithm.” Journal of the Royal Statistical Society. Series C (Applied Statistics),

vol. 28, no. 1, 1979, pp, https://doi.org/10.2307/2346830. (Accessed: Apr. 2024.)

[25] Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). „A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with Noise”. In

Proceedings of the 2nd International Conference on Knowledge Discovery and

Data Mining (KDD-96) (pp. 226–231), https://cdn.aaai.org/KDD/1996/KDD96-

037.pdf (Accessed: Oct 2024)

[26] Ricardo Campello, Davoud Moulavi, Joerg Sander. “Density-Based Clustering

Based on Hierarchical Density Estimates”. . (2013) 7819. 160-172. doi:

10.1007/978-3-642-37456-2_14., (Accessed: Apr. 2024.)

[27] Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality

assessment: from error visibility to structural similarity," in IEEE Transactions on

Image Processing, vol. 13, no. 4, pp. 600-612, April 2004, doi:

10.1109/TIP.2003.819861. (Accessed: Apr. 2024.)

[28] Xiangpeng Fan, Zhibin Guan (2023). “VGNet: A Lightweight Intelligent

Learning Method for Corn Diseases Recognition”. Agriculture. 13. 1606.

10.3390/agriculture13081606. (Accessed: Apr. 2024.)

[29] Mayu Sakurada and Takehisa Yairi, “Anomaly Detection Using Autoencoders

with Nonlinear Dimensionality Reduction.” (2014),

https://doi.org/10.1145/2689746.2689747, (Accessed: Apr 2024)

[30] Christoph Baur, Benedikt Wiestler, Shadi Albarqouni, Nassir Navab, Deep

Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR

Images,(2018) arXiv:1804.04488v1 (Accessed: Apr 2024)

[31] Xiaoran Chen, Ender Konukoglu, “Unsupervised Detection of Lesions in Brain

MRI using constrained adversarial auto-encoders” (2018), Medical Imaging with

Deep Learning, https://openreview.net/forum?id=H1nGLZ2oG, (Accessed: Apr

2024)

[32] Polykarpos Thomadakis, Angelos Angelopoulos, Gagik Gavalian, Nikos

Chrisochoides, “De-noising drift chambers in CLAS12 using convolutional auto

encoders”, Computer Physics Communications Volume 271, 2022, 108201, ISSN

0010-4655, https://doi.org/10.1016/j.cpc.2021.108201., (Accessed: Apr 2024)

[33] Pramuditha Perera, Vishal M. Patel. “Learning Deep Features for One-Class

Classification”, (2019), IEEE Transactions on Image Processing, vol. 28, no. 11,

pp. 5450-5463, doi: 10.1109/TIP.2019.2917862. (Accessed: Okt. 2024)

https://lilianweng.github.io/posts/2018-08-12-vae/
https://cdn.aaai.org/KDD/1996/KDD96-037.pdf
https://cdn.aaai.org/KDD/1996/KDD96-037.pdf
https://doi.org/10.1145/2689746.2689747
https://arxiv.org/search/cs?searchtype=author&query=Baur,+C
https://arxiv.org/search/cs?searchtype=author&query=Wiestler,+B
https://arxiv.org/search/cs?searchtype=author&query=Albarqouni,+S
https://arxiv.org/search/cs?searchtype=author&query=Navab,+N
https://arxiv.org/abs/1804.04488v1
https://arxiv.org/search/cs?searchtype=author&query=Chen,+X
https://arxiv.org/search/cs?searchtype=author&query=Konukoglu,+E
https://doi.org/10.1016/j.cpc.2021.108201

66

[34] Chen, Jinghui & Sathe, Saket & Aggarwal, Charu & Turaga, Surya Deepak.

“Outlier Detection with Autoencoder Ensembles.” (2017)

10.1137/1.9781611974973.11., (Accessed: Okt. 2024)

[35] Umap-learn, UMAP: “Uniform Manifold Approximation and Projection for

Dimension Reduction”, https://umap-

learn.readthedocs.io/en/latest/clustering.html, (Accessed: Okt. 2024.)

[36] Yunkang Cao, Xiaohao Xu, Chen Sun, Yuqi Cheng, Zongwei Du, Liang Gao,

Weiming Shen, “Segment Any Anomaly without Training via Hybrid Prompt

Regularization” 2023, arXiv:2305.10724 (Accessed: Apr. 2024.)

[37] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang,

Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang “Grounding dino:

Marrying dino with grounded pre-training for open-set object detection”, (2023),

https://openreview.net/forum?id=DS5qRs0tQz, (Accessed: Apr. 2024.)

[38] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr

Dollár, Ross Girshick, “Segment anything”. Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pages: 4015-4026

arXiv:2304.02643, (Accessed: Apr. 2024.)

[39] Z. Wang, E. P. Simoncelli and A. C. Bovik, "Multiscale structural similarity for

image quality assessment," The Thrity-Seventh Asilomar Conference on Signals,

Systems & Computers, 2003, Pacific Grove, CA, USA, 2003, pp. 1398-1402

Vol.2, doi: 10.1109/ACSSC.2003.1292216., . (Accessed: Apr. 2024.)

[40] Pytorch, https://pytorch.org/, (Accessed: Apr. 2024.)

[41] Scit-learn, https://scikit-learn.org/stable/, (Accessed: Apr. 2024.)

[42] Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA.

„Albumentations: Fast and Flexible Image Augmentations.” Information. 2020;

11(2):125. https://doi.org/10.3390/info11020125, (Accessed: Apr. 2024.)

[43] Github, “Segment Any Anomaly Official Implementation “,

https://github.com/caoyunkang/Segment-Any-Anomaly (Accessed: Okt. 2024.)

[44] European Parliament, EU AI Act: first regulation on artificial intelligence,

https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-

first-regulation-on-artificial-intelligence, (Accessed: Okt. 2024.)

https://umap-learn.readthedocs.io/en/latest/clustering.html
https://umap-learn.readthedocs.io/en/latest/clustering.html
https://openreview.net/forum?id=DS5qRs0tQz
https://pytorch.org/
https://scikit-learn.org/stable/
https://doi.org/10.3390/info11020125
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

67

Appendix

Appendix A:

- Hyperparameters of the autoencoder methods (for all products):

Hyperparameters

learning rate 0.001

batch size 32

num of epochs 500

num of folds 5

Encoder model ResNET50

criterion SSIM

optimizer Adam

image size 256x256

Eval method MS-SSIM

- The added noises and transformations:

PCBs and Reels:

- CoarseDropout(p=0.7, num_holes_range=(2, 6), hole_height_range=(30, 30),

hole_width_range=(30, 30))

- OneOf([GaussNoise(p=0.5, var_limit=(10.0, 100.0), per_channel=False, mean=0.0,

noise_scale_factor=1.0),

GlassBlur(p=0.3, sigma=0.0005, max_delta=1, iterations=1, mode='fast'),

 RandomGravel(p=0.3, gravel_roi=(0.0, 0.0, 1.0, 1.0), number_of_patches=4),] p=0.7),

- PixelDropout(p=0.5, dropout_prob=0.01, per_channel=False, drop_value=None,

mask_drop_value=None)

- OneOf([MotionBlur(p=0.2, blur_limit=(3, 3), allow_shifted=True),

Sharpen(p=0.5, alpha=(0.2, 0.5), lightness=(0.5, 1.0)), Blur(p=0.2, blur_limit=(3, 3)),], p=0.4)

- OneOf([OpticalDistortion(p=0.3, distort_limit=(-0.05, 0.05), shift_limit=(-0.05, 0.05),

interpolation=1),

GridDistortion(p=0.1, num_steps=5, distort_limit=(-0.3, 0.3), interpolation=1], p=0.3)

Pizza boxes:

- CoarseDropout(p=0.7, num_holes_range=(2, 6), hole_height_range=(30, 30),

hole_width_range=(30, 30))

- OneOf([GaussNoise(p=0.5, var_limit=(10.0, 100.0), per_channel=False, mean=0.0,

noise_scale_factor=1.0),

GlassBlur(p=0.3, sigma=0.0005, max_delta=1, iterations=1, mode='fast'),

RandomGravel(p=0.3, gravel_roi=(0.0, 0.0, 1.0, 1.0), number_of_patches=4),], p=0.7)

- PixelDropout(p=0.5, dropout_prob=0.01, per_channel=False, drop_value=None,

mask_drop_value=None)

68

Side Reels and Stacked boxes:

- CoarseDropout(p=0.7, num_holes_range=(2, 6), hole_height_range=(30, 30),

hole_width_range=(30, 30))

- OneOf([GaussNoise(p=0.5, var_limit=(10.0, 100.0), per_channel=False, mean=0.0,

noise_scale_factor=1.0), GlassBlur(p=0.3, sigma=0.0005, max_delta=1, iterations=1, mode='fast'),

RandomGravel(p=0.3, gravel_roi=(0.0, 0.0, 1.0, 1.0), number_of_patches=4),], p=0.7)

- PixelDropout(p=0.5, dropout_prob=0.01, per_channel=False, drop_value=None,

mask_drop_value=None)

Appendix B: Parameters of the clustering method

 Reels Side Reels PCBs

YOLO layers before the Neck before the Neck before the Neck

Dim red type PCA & UMAP PCA & UMAP PCA & UMAP

umap params:

- metrics correlation correlation correlation

- set_opt_mix_ratio 1.0 0.9 0.5

- n_components 30 30 30

- n_neighbors 50 50 30

- min_dist 0.2 0.1 0.0

clastering_method HDBSCAN HDBSCAN HDBSCAN

HDBSCAN params:

- min_cluster_size 10 8 10

- cluster_selection_epsilon 0.1 0.1 0.08

- min_samples 3 3 5

- alpha 1.0 1.0 1.0

- metrics l2 l2 l2

- cluster_selection_method eom eom eom

scaling_type MinMax MinMax robust

image_size 640 640 640

Appendix C: Prompts for Segment Any Anomaly+

manual_prompts = {
 'stacked': [
 ['Crumpled paper package on top. ', 'stacked boxes'],
 ['package material on top.', 'stacked boxes'],
 ['paper sheet on top.', 'stacked boxes'], ['arm.', 'stacked boxes'],
 ['red knife.', 'box cutter.', 'stacked boxes'], ['hands.', 'stacked boxes'],
 ['anything other than boxes next to each other.', 'stacked boxes'],
 ['fingers. ', 'stacked boxes'], ['opened box.', 'stacked boxes']
],

 'side_reels_small': [
 ['paper package on top. plastic package on top.', ' stacked reels'],
 ['red knife', 'red box cutter.', 'stacked reels'],
 ['black reels.', 'stacked reels'],
 ['circular object. a reel disc lays on top.', 'stacked reels'],
 ['hands. ', 'stacked reels'], ['fingers.', 'stacked reels'],
 ['glove. ', 'stacked reels'], ['skin. arm.', 'stacked reels'],
],

69

 'side_reels_big': [
 ['paper package on top.', ' stacked reels'], ['black reels.', 'stacked reels'],
 ['circular. ', 'stacked reels'], ['a reel disc lays on top.', 'stacked reels'],
 [' plastic package on top.', 'stacked reels'],
],

 'reels_small': [
 ['package material on top. ', 'reel disc'],
 ['paper package on top.', 'reel disc'], ['skin. arm.', 'reel disc']
 ['narrow rubber band around it.', 'reel disc'], ['hands.', 'reel disc'],
 ['fingers. ', 'reel disc'], ['gloves. ', 'reel disc']
],

 'reels_big': [
 ['paper package on top.', 'reel disc'], ['red package.', 'reel disc'],
 ['not circular.', 'reel disc'], ['vacuumed packed. ', 'reel disc'],
 ['in a metalized foil package. ', 'reel disc'],
],

 'pizza_boxes': [
 ['plastic package on top.', 'pizza box shaped box'],
 ['paper sheet on top.', 'pizza box shaped box'],
 ['red knife. ', 'pizza box shaped box'], ['hands.', 'pizza box shaped box'],
 ['fingers. ', 'pizza box shaped box'], ['gloves. ', 'pizza box shaped box'],
 ['skin. arm.', 'pizza box shaped box'],
 ['paper package next to. ', 'pizza box shaped box']
],

 'PCBs_small': [
 ['fingers.', 'metalized foil bag'], ['hands.', 'metalized foil bag'],
 ['gloves ', 'metalized foil bag'], [' skin. arm.', 'metalized foil bag']
],

 'PCBs_big': [
 ['polystyrene material on top', 'item in a metalized foil bag'],
 ['paper package on top. ', 'item in a metalized foil bag'],
 ['plastic package on top .', 'item in a metalized foil bag'],
 ['empty box. the foil bag is missing', 'item in a metalized foil bag']
],
}

property_prompts = {
 'stacked': 'the image of boxes have 1 dissimilar stacked_boxes, with a maximum of
3 anomaly. The anomaly would not exceed 0.6 object area. ',
 'side_reels_small': 'the image of reels have 1 dissimilar stacked_reels, with a
maximum of 2 anomaly. The anomaly would not exceed 0.35 object area. ',
 'side_reels_big': 'the image of reels have 1 dissimilar stacked_reels, with a
maximum of 2 anomaly. The anomaly would not exceed 0.8 object area. ',
 'reels_big': 'the image of reels have 1 dissimilar reel, with a maximum of 2
anomaly. The anomaly would not exceed 1.0 object area. ',
 'pizza_boxes':'the image of box have 1 dissimilar box, with a maximum of 2 anomaly.
The anomaly would not exceed 0.5 object area. ',
 'PCBs_small': 'the image of PCB have 1 dissimilar metalized_foil_bag, with a maximum
of 3 anomaly. The anomaly would not exceed 0.4 object area. ',
 'PCBs_big': 'the image of PCB have 1 dissimilar item_in_a_metalized_foil_bag, with
a maximum of 2 anomaly. The anomaly would not exceed 1.0 object area. ',
 'empty_box': 'the image of box have 1 dissimilar box, with a maximum of 3 anomaly.
The anomaly would not exceed 0.4 object area. ',
}

70

Self-assessment for Human-Centred Artificial Intelligence

(AI) Master's

All relevant HCAI aspects are detailed in Chapter 7, according to the ethical, safety, security and

legal considerations.

Activity Y/N Documents to be provided as appendix

Does this activity involve the

development, deployment and/or use of

Artificial Intelligence-based systems?

 Y Yes, the research involves the development and deployment of

Artificial Intelligence-based systems. It focuses on deep learning-based
image anomaly detection methods, that can be integrated into an
existing industrial automatization process.

Could the AI based system/technique

potentially stigmatise or discriminate

against people (e.g. based on sex, race,
ethnic or social origin, age, genetic
features, disability, sexual orientation,

language, religion or belief,
membership to a political group, or
membership to a national minority)?

 Y In general, such cases cannot happen, as the research is entirely
focused on industrial use and the classification decision is only made
for products, not people.
However, as detailed in Chapter 7, it can have a small explicit impact
on the employees of a given supplier, if the model is discriminatory

towards a supplier's products, and thus the supplier is perceived
negatively, so it is important to use the same number of images from
all suppliers.

Does the AI system/technique interact,

replace or influence human decision-

making processes (e.g. issues affecting
human life, health, well-being or human

rights, or economic, social or political
decisions)?

 Y Yes, the industrial process in which the anomaly detection will be
integrated, is related to industrial employees. This requires, everyone to
be well-informed about the exact operation of the machine and the
rules for its use. The methods can also give explanations for their

decisions. In addition, to ensure maximum protection of employees, the
Unpacking Machine will work in an area isolated from people and will
only be accessible after the machine has been completely shut down.
This AI-based solution will not replace or influence human decision-
making processes.

Does the AI system/technique have the

potential to lead to negative social (e.g.

on democracy, media, labour market,
freedoms, educational choices, mass
surveillance) and/or environmental

impacts either through intended

applications or plausible alternative

uses?

 Y Yes, because the AI-based model will be part of an automatization
process in a company’s factory. Currently, employees are doing

manually the tasks that the AI-based solution will replace. This will
have a high social impact. For the transition of the workplace,
employees must be provided with appropriate information about the
changes and they need retraining programs. Overall, it will have a
positive impact by allowing workers to do a different, easier and less
monotonous job. But the changeover must be done in a way that they
are well informed and do not suffer negative consequences.

Does this activity involve the use of AI

in a weapon system?
 N No, the research is entirely focused on industrial automatization.

If
YES

Is it possible to establish which

specific function/functions are

automated/autonomous in the

weapon system?

If the weapon system has AI-

enabled functions, could these

functions render the weapon

system indiscriminate?

Does the design include the

possibility of an autonomous

mode for selfprotection? If yes,

can the system reliably

distinguish between targets

(threats) and non-targets?

Does the AI to be developed/used in the

project raise any other ethical issues

not covered by the questions above
(e.g., subliminal, covert or deceptive AI,
AI that is used to stimulate addictive

behaviours, lifelike humanoid robots,
etc.)?

 N No, all relevant aspects had been covered.

