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Kivonat

A dinamikus kornyezetérzékelés és mozgéskovetés mar kulcsszerepet tolt be az autoném
jarmiivek, a robotika és a kibGvitett valésig (extended realiy - XR) vildgdban. Segit-
ségiikkel ezek a rendszerek valés idében érzékelni és elemezni tudjak a koérnyezetiikben
bekovetkezett valtozasokat, valamint nyomon tudjak kovetni a koriilottiikk mozgd objektu-
mok helyzetét, sebességét és iranyat. A kihivasok kozott szerepel a valds idejli feldolgozas,
a zajos adatok kezelése és bizonyos eszkozokon a sziikos szamitasi kapacitas is.

Ebben a dolgozatban egy dinamikus kornyezetérzékelést és mozgaskovetést megva-
16sit6 rendszer keriil bemutatasra, amely kifejezetten XR alakalmazasok tamogatasara
lett kifejlesztve, figyelembe véve ezek késleltetéskovetelményeit és eréforrasait. A rendszer
része egy szemantikailag tovabbfejlesztett kivetési keretrendszer, amely az egyidejii lokali-
zécioy és feltérképezést (SLAM), valamint konnytisilyu kévetési algoritmusokat integralva
biztosit robusztus, valés idejili teljesitményt. Az eléterjesztett megoldds olyan kihivasokkal
foglalkozik, mint a szigoru késleltetési kévetelmények, az objektumok takarasanak kezelése,
valamint a dinamikus kérnyezet megértése, amelyek kritikusak az XR élmények szempont-
jabol.

A kutatds atfogd attekintést nytjtott az objektumkiévetési médszertanokrél, és egy
klasszikus és modern technikakat 6tvoz6 keretrendszer fejlesztésével zarult. A teljesitmény-
értékelések azt mutattak, hogy a keretrendszer megbizhatd kovetést biztosit ellendrzott
koriillmények kozott, de kihivasokkal szembesiilt nagy sebességli mozgasok és 6sszetett kor-
nyezetek esetén. Ezek az eredmények ramutatnak a szemantikai informaciok objektumko-
vetésbe torténd integralasanak lehetoségeire, mikozben hangsilyozzak a tovabbi finomitas
sziikségességét a robusztussag és az alkalmazkoddképesség javitasa érdekében dinamikus
koriillmények kozott.



Abstract

Dynamic environment understanding and motion tracking already play a key role in fields
of autonomous vehicles, robotics and extended reality (XR). These technologies enable
systems to detect and analyze changes in their surroundings in real time, as well as track
the position, speed, and direction of moving objects around them. Key challenges include
real-time processing, handling noisy data, and addressing limited computation resources
in certain devices.

This paper presents a system for dynamic environment understanding and motion track-
ing, with a particular emphasis on applications in extended reality (XR), taking into
account their latency requirements and resource constraints. The system features a se-
mantically enhanced tracking framework that integrates Simultaneous Localization and
Mapping (SLAM) and lightweight tracking algorithms to deliver robust, real-time perfor-
mance. The proposed solution addresses challenges such as stringent latency requirements,
occlusion handling, and dynamic scene understanding, critical for immersive XR experi-
ences.

The research involved a comprehensive review of object tracking methodologies, emphasiz-
ing their applicability to XR environments, and culminated in the development of a novel
framework combining classical and modern techniques. Performance evaluations revealed
that the framework demonstrated reliable tracking in controlled scenarios but encountered
challenges in high-speed motion and complex environments. These findings highlight the
potential of integrating semantic insights into object tracking while emphasizing the need
for further refinement to improve robustness and adaptability under dynamic conditions.

ii



Chapter 1

Introduction

Evolving Extended Reality (XR) applications necessitate immersive and reflexive ways to
participate and interact with the real and virtual world. For example, consider a manufac-
turing scenario, where the assembly process is guided step-by-step by the XR application,
or a household gaming/learning environment for children, where activity/interaction han-
dling between real and virtual characters is based on scene physics/mechanics understand-
ing. Therefore, movement detection, prediction and tracking directly affects the quality
of the XR applications and ultimately the user experience, since the interaction between
the physical and virtual artifacts will be driven by the positioning of actors and objects
of interest.

To adhere these challenges, besides the classical Al-based solutions (Simultaneous Local-
ization and Mapping (SLAM) and computer vision), XR systems require the introduction
of scene and activity understanding. These techniques are needed to build an up-to-date
semantic knowledge from the surrounding world based upon a higher level of dynamic
context interpretation, where the different object types and their spatio-temporal rela-
tionships can be infered in real-time and acted upon accordingly. Thus, the demand
for accurate and efficient context-aware Multiple Object Tracking (MOT) solutions also
becomes imperative.

Current high-performance object tracking algorithms, while effective, are resource-
intensive and operate suboptimally in terms of speed, even on graphics processing units
(GPUs) they rarely go beyond 20 frames per second. This can be attributed to the use of
convolutional neural network based (CNN) Object Detector (OD) algorithms as their fun-
damental building block. This computational performance limitation poses a significant
challenge for their integration into XR systems, which are characterized by their need for
real-time processing to ensure a seamless user experience. Additionally, the prospect of
fully offloading these tasks to edge cloud infrastructures is hindered by the strict latency
requirements intrinsic to XR environments. Since the OD provides a very robust mecha-
nism to cope with challenged use cases their omission from XR-based MOT design is not
advisable, the question is if we can use them in a more optimized, sophisticated way.

Classical computer vision algorithms, using pixel level visual characteristics (e.g. contours,
corners, line segments) and keypoint based detection and matching, are also frequently
used for object tracking and SLAM related tasks. While these solutions are efficient in
terms of processing and resource utilization, they are less robust in dynamic environments
(perspective changes, rotation and scale variances, lighting conditions, etc.) and in the
presence of multiple, often severely occluded objects. To overcome these issues, one should
employ a feature point management mechanism, which acts on a frame-by-frame basis,



continuously detecting and matching the visual keypoints related to the tracked objects.
Now the question is, how we distinguish the keypoints belonging to the objects of interest
and the surroundings?

As we point out the careful introduction and proper management of semantic information
would allow to employ these different solutions in a unified system, which combines the
advantages of both worlds.

This thesis posits that the utilization of specialized sensors, such as RGB and depth sensors
(Time of Flight (ToF) and RGB-D cameras) integrated within XR devices, alongside
the combination of object detection and semantic SLAM techniques with feature point
matching methods, presents a novel opportunity to develop innovative object tracking
solutions tailored for XR applications.

Our goals with context-aware MOT design and development are:

e to design mechanisms, which provide object and scene dynamics handling with a
layered semantic knowledge built upon the fusion of feature matching and more
advanced, Al-based solutions

e to combine highly efficient classical and modern MOT methods, which can be de-
ployed in XR environments

e to design context-aware MOT components that enable observability and adaptability
on dynamic object behavior

By integrating lightweight semantic knowledge into object tracking systems, there is a
potential to significantly enhance algorithmic performance, precision, and robustness. This
approach would enable more effective context-aware appearance and motion modeling,
improved occlusion handling, and the provision of customized inference models suited to
specific XR scenarios.

The focal point of this work is the development of an object tracking framework that in-
corporates semantic knowledge, specifically designed for XR applications. This framework
will be demonstrated through a hypothetical XR application, such as a multi-user game,
which will serve to contextualize and demonstrate the efficacy of the semantic integration
within the tracking solutions.

1.1 Chapter Overview

This thesis is structured to progressively build a comprehensive understanding of the
challenges, methodologies, and solutions in Al-based dynamic environment detection and
movement tracking for XR applications. Below is an overview of the content covered in
each chapter:

e Chapter 2: Theoretical Overview

This chapter provides a foundational understanding of the core concepts necessary
for XR systems, including the requirements for low-latency object tracking and the
key principles of visual object tracking. It categorizes tracking methodologies and
introduces advanced algorithms and metrics, with a focus on their applicability to
XR environments.

e Chapter 3: Related Work



Here, the most relevant prior research and innovative tracking systems are discussed.
The chapter highlights key advancements in visual tracking, semantic tracking, and
their integration into XR systems. It also identifies the gaps and limitations of
existing approaches, setting the stage for the proposed methodology.

Chapter 4: Proposed Method

This chapter introduces the conceptual framework of the proposed tracking system,
emphasizing semantic keypoint management for dynamic environments. It details
the architecture, main algorithmic modes, and the integration of lightweight semantic
knowledge to enhance performance and robustness for XR applications.

Chapter 5: Implementation

The implementation chapter focuses on the practical realization of the proposed
framework. It discusses the dynamic-static ORB keypoint separation method, the
algorithmic steps of the tracker, and adaptations for handling multiple dynamic
objects. Key implementation challenges and strategies for achieving real-time per-
formance are also addressed.

Chapter 6: Evaluation

This chapter outlines the configuration of the test environment and evaluates the
proposed solution using a comprehensive set of experiments conducted in controlled
conditions. It examines performance under various scenarios, including dynamic
object motion, camera displacement, and trajectory testing, while providing insights
into the robustness, efficiency, and limitations of the system.

Chapter 7: Summary and Future Directions

The final chapter summarizes the research findings and their implications for XR
applications. It also discusses the system’s limitations and proposes potential av-
enues for future work, aiming to enhance robustness, scalability, and adaptability in
complex environments.



Chapter 2

Theoretical overview

2.1 Requirements of XR

The importance of low-latency tracking in augmented reality (AR) and mixed reality (MR)
environments lies in its critical role in ensuring a seamless and immersive user experience.
Latency in object tracking disrupts the spatial alignment between virtual and real-world
objects, leading to a phenomenon known as "misregistration" [19]. Misregistration causes
virtual objects to appear to lag behind or shift inconsistently with the user’s viewpoint,
significantly degrading the perceived realism and usability of the system. Furthermore,
high latency exacerbates user discomfort by introducing visual and proprioceptive conflicts,
which have been linked to cybersickness symptoms such as nausea and dizziness [39].

Quantitative and qualitative studies have shown that even small delays in object tracking,
typically exceeding 20 milliseconds, can lead to noticeable perceptual discrepancies and
reduced task performance. It was demonstrated [19] that low-latency tracking minimizes
the errors in virtual object placement, ensuring that virtual content remains anchored to
its intended position within the real world. This precise alignment enhances the user’s
sense of presence and interaction fidelity, key factors in the overall effectiveness of AR/MR
Systems.

Thus, achieving low-latency tracking is not merely a technical requirement but a fun-
damental necessity for preserving the integrity of the AR/MR experience. The findings
underscore the need for robust tracking algorithms and optimized system architectures
that prioritize minimal lag to meet the stringent demands of immersive applications.

2.2 Visual object tracking

Object tracking is a fundamental task in computer vision and image processing, often
called Visual Object Tracking (VOT). Its purpose is the precise localization and continu-
ous monitoring of an object’s position within a sequence of frames. This process is crit-
ical in a variety of applications, ranging from surveillance systems, autonomous vehicles,
and robotics to augmented reality (AR) and human-computer interaction. By accurately
tracking objects, systems can make informed decisions, predict future states, and interact
intelligently with their environment.

The importance of object tracking lies in its ability to enable real-time analysis and inter-
pretation of dynamic scenes. For instance, in autonomous driving, object tracking ensures



the safe navigation of vehicles by continuously monitoring surrounding objects such as
pedestrians, other vehicles, and obstacles. In AR, object tracking allows for the seamless
integration of virtual objects into the real world, providing immersive and interactive expe-
riences. Similarly, in surveillance, object tracking facilitates the monitoring of suspicious
activities and enhances security measures.

2.2.1 Types of Visual Object Tracking

Object tracking methodologies can be broadly categorized into several types, each suited
for different applications and scenarios. These categories include Single Object Tracking
(SOT), Multiple Object Tracking (MOT), and the distinction between online, offline, and
batch processing methods. Each category addresses specific challenges and requirements
inherent to the application context.

2.2.1.1 Single and Multi Object Tracking

Object tracking methodologies can be divided into two primary categories: SOT and MOT.
These categories address different scenarios and present unique challenges and techniques
to ensure accurate and efficient tracking. Below is a brief overview of each category and
its specific focus.

« Single Object Tracking (SOT): Focuses on tracking a single target object within
the video frames. Methods in this category must efficiently handle challenges such as
occlusions, illumination changes, and background clutter. Techniques like correlation
filters and deep learning-based approaches are commonly used.

o Multiple Object Tracking (MOT): Involves tracking multiple objects simultane-
ously. This category addresses the complexities of managing the identities of multiple
objects as they move and interact within the scene. Approaches in MOT often em-
ploy data association strategies with the use of Kalman filters and the Hungarian
algorithm for assignment problems.

1. Detection-free Tracking;:

Detection-free tracking, or in its perhaps more common name detection-free track-
ing, is pivotal for tasks where predefined object models or detectors are unavailable
or impractical. Algorithms here are designed to adaptively learn and update the ob-
ject’s appearance model on-the-fly, making them highly flexible. Examples include
the MedianFlow, MOSSE, and CSRT trackers, which can be found in OpenCV!
natively. They are typically initialized with a bounding box around the object to be
tracked, either provided by the user or identified through some form of scene change
detection [9].

« Generative trackers focus on modeling the appearance of the target object.
They work by constructing a model of the object and then searching for the
region in each frame that best matches this model. Common techniques include
template matching and particle filtering. Template matching involves compar-
ing segments of the frame with the stored template of the target object to find
the best match, while particle filtering uses a probabilistic approach to estimate
the state of the object across frames [9].

LOpenCV is a popular computer vision library.



e Discriminative Trackers treat the tracking problem as a binary classification
task. They focus on distinguishing the target object from the background.
These trackers employ classifiers or correlation filters to separate the target
from its surroundings. Discriminative trackers are known for their ability to
handle occlusions and dynamic backgrounds effectively. Techniques like the
Multiple Instance Learning (MIL), Structured Output Tracking with Kernels
(Struck), and correlation filter-based methods are prominent in this category
[9].

e Collaborative trackers combine the strengths of both generative and dis-
criminative methods. These trackers use a collaborative approach to leverage
the complementary benefits of both models. For instance, a tracker may use a
generative model to generate potential target appearances and a discriminative
model to select the best match. This approach enhances robustness and accu-
racy in challenging tracking scenarios such as occlusions and rapid appearance
changes [9].

e Deep Learning-Based Trackers utilize convolutional neural networks
(CNNs) and other deep learning architectures to learn robust feature repre-
sentations directly from the data. These trackers can be divided into two cat-
egories: those that combine deep features with traditional tracking algorithms
and those that implement end-to-end learning frameworks. The deep learn-
ing approach allows trackers to adapt to a wide variety of appearance changes
and achieve state-of-the-art performance in terms of accuracy and robustness.
Examples include Siamese network-based trackers, recurrent neural network
(RNN) based trackers, and attention mechanism-based trackers [9].

e Feature-based Trackers

2. Detection-based Tracking

The term "detection-based" is seldom used, as utilizing some form of detection model
prior to tracking is a standard practice. However, grouping the following two meth-
ods separately from detection-free methods under this term provides greater clarity.

o Tracking-by-Detection (TBD) is the type of object tracking approach,
where, as the name suggests, object detection runs every frame. The tracker
processes the detection results while incorporating information from previous
frames to maintain continuity. In the context of Multiple Object Tracking, this
typically involves using a Kalman filter to predict object locations in the frame
preceding the current one, followed by associating detected object identities
across frames using the Hungarian algorithm.

o Joint Detection and Tracking (JDT) utilizes advanced techniques such
as backbone architectures, object detection, attention mechanisms, graph con-
volutional networks, and deep convolutional networks for end-to-end training
[16]. It differs from traditional tracking-by-detection methods by creating more
reliable tracklets?, enforcing temporal consistency, and not requiring a data as-
sociation mechanism for a given set of frames. It is considered more efficient
since it does the detection and tracking in 1 single step, but despite that, JDT
is still more tasking computationally for real-time applications.

2A tracklet is a short sequence of detections that represents the movement of an object over a brief
period.



2.2.1.2 Process Methods

In visual object tracking, the methods used to process video frames can significantly impact
the tracking performance and application suitability. These methods can be categorized

based

on how they handle and process the video data.

Online object trackers process video frames sequentially in real-time. These trackers
update their model with each incoming frame, allowing them to adapt dynamically
to changes in the object’s appearance, lighting conditions, and occlusions.

Offline object trackers operate on pre-recorded video sequences where the entire
video is available before tracking begins, as shown at the right side of figure 2.1.
These trackers can utilize global information from the entire sequence to improve
tracking accuracy.

Batch object trackers bridge the gap between online and offline trackers by pro-
cessing video frames in fixed-size batches. These trackers aim to balance real-time
adaptability with the accuracy of global information.

Online

\

Offline
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Figure 2.1: Online Tracking on the left, while offline tracking on the right [28].

2.2.1.3 Number of Cameras

Another significant categorization in object tracking is based on the number of cameras
involved. Single-Camera Tracking (SCT) and Multi-Camera Tracking (MCT) are two
distinct approaches that cater to different surveillance and monitoring requirements [21].
SCT is typically simpler and involves tracking objects within the field of view of a single
camera. In contrast, MCT leverages multiple cameras to provide a comprehensive view of
the scene, enhancing tracking accuracy and robustness.

Single-Camera Tracking (SCT)

Object tracking can be accomplished using video streams from a single camera,
referred to as single-camera tracking. In such tracking solutions, the video stream
may come from either stationary or moving cameras. When dealing with stationary
cameras, there is no need for camera motion compensation; however, a motion model
is generally required to predict the target object’s movements in subsequent frames.
Conversely, for moving cameras, both camera motion compensation and an object
motion model are necessary. Many deep learning-based approaches in object tracking
aim to enhance the accuracy and efficiency of SCT by addressing these challenges.



o Multi-camera tracking (MCT)

Multi-camera tracking involves processing video streams from multiple cameras to
track and associate objects across different views. This approach is inherently more
complex than SCT. MCT typically employs SCT techniques to track objects within
individual video streams and then performs an additional step to associate these local
tracks across multiple cameras. MCT scenarios can involve either overlapping or non-
overlapping fields-of-view (FOV). In overlapping FOV settings, common in smaller
areas like rooms, objects are simultaneously visible to multiple cameras, allowing for
the use of additional information such as ground-plane coordinates and movement
patterns to match local tracks. In non-overlapping FOV settings, where this extra
information is unavailable, a re-identification (RelD) module is required. The RelD
module compares images or videos of targets from different cameras, computing
similarity scores to match local tracks. If the similarity score is sufficiently high, the
local tracks from different cameras are combined into a single global track.

2.2.2 Tracking Metrics

There are quite a few metrics for evaluating tracking algorithms and solutions performance.
The purpose of this section is to make this field more clear and understandable.

The first 2 metrics to discuss are MOTA and MOTP [3] they are internationally accepted
as CLEAR metrics [42]. In the following lists there is either 1 or | after the name of the
metric. The 1 indicates that the performance is better when the number is bigger, while
J meaning the other way around.

2.2.2.1 Spatial Accuracy

These metrics evaluate how accurately the tracked object’s locations are estimated relative
to their true positions in the video frames.

o Intersubsection over Union (IoU) [34] 1

IoU (also known as Jaccard Index) is a primary metric used especially in visual
tracking to assess the accuracy of object detectors employed within the tracking
systems. IoU measures the overlap between the predicted bounding box and the
ground-truth bounding box, expressing this as the ratio of their intersubsection area
to their union area. A higher IoU score indicates better tracking accuracy, as it
reflects a greater overlap between the predicted and actual object positions.

Area of Overlap between Predicted and Ground Truth Boxes
Area of Union between Predicted and Ground Truth Boxes

IoU = (2.1)

o Multiple Object Tracking Precision (MOTP) [3]

MOTP quantifies the accuracy of object localization in tracking scenarios by measur-
ing the average Euclidean distance between all correctly matched predicted positions
and their corresponding ground truth targets. This metric evaluates the tracker’s
ability to estimate precise object positions across frames, contingent on successful
object identification and matching. While MOTP provides valuable insights into lo-
calization accuracy, it does not reflect other critical aspects of tracking performance
such as the ability to minimize identity switches, false positives, or missed targets,



thus offering limited insight into the tracker’s overall effectiveness. It is calculated
with the formula in equation 2.2.

Zt,i dt,i
2oLy

Where d;; represents the distance between the predicted and the actual position of
object ¢ in frame ¢, and m; is the number of matched objects in frame t.

MOTP =

(2.2)

2.2.2.2 Detection Quality

These metrics assess the ability of a tracking system to correctly detect objects and avoid
false detections.

o Tracking Precision (Pr) [14] 1
Precision measures the proportion of correctly tracked objects among all the tracked

objects, essentially quantifying the absence of false positives.

True Positives
Precision (Pr) =

2.3
True Positives + False Positives (2:3)

+ Recall (Re) [14]

Recall assesses the proportion of actual tracked objects that were successfully de-
tected by the tracker, highlighting the tracker’s ability to minimize missed detections.

True Positives
Recall (Re) = 24
ecall (Re) True Positives + False Negatives 24

2.2.2.3 Overall Tracking Performance

These metrics provide a holistic view of the tracker’s performance, integrating aspects of
detection accuracy, identity maintenance, and sometimes spatial accuracy.

o Multiple Object Tracking Accuracy (MOTA) [3]

MOTA is a critical metric used to evaluate the overall accuracy of object track-
ing algorithms. It integrates three main error sources: false positives, missed tar-
gets, and identity switches, to provide a comprehensive score. MOTA is calculated
by subtracting the sum of all tracking errors (normalized by the total number of
ground-truth objects) from 1, as shown at equation 2.5. Specifically, it considers the
ratio of missed detections (objects that should have been detected but were not),
false positives (objects wrongly added in the scene), and identity switches (times
an object’s identity is incorrectly changed) relative to the total number of actual
objects. This metric is essential in the fields of computer vision and video process-
ing because it reflects how well a tracking system maintains consistent and accurate
object identities over time, making it a standard for assessing the performance of
tracking algorithms in various applications, from autonomous driving to surveillance
and sports analytics.

3, (FP; + FN, + IDSW,)

MOTA =1 —
2 GT

(2.5)



Here, FP; is the number of false positives, FN; is the number of false negatives
(missed targets) IDSW, represents the number of identity switches, and GTy is the
total number of ground truth objects in frame ¢

o Average Multi-Object Tracking Accuracy (AMOTA) [48] 1

AMOTA is an extension of the MOTA metric that averages the MOTA scores at
different recall levels to provide a more robust evaluation of a tracking system across
varying levels of detection difficulty. This metric addresses the limitation of MOTA
being overly sensitive to the number of detections by normalizing performance across
a range of detection thresholds. AMOTA thus gives a comprehensive view of a
tracker’s performance under varied conditions.

AMOTA = & > MOTA(r) (2.6)
rel0,1]

In equation 2.6 r denotes different recall levels and R is the number of recall points
considered.

o scaled Average Multi-Object Tracking Accuracy (sAMOTA) [48] 1

SAMOTA scales the AMOTA score to a range between 0 and 1, making it easier to
compare performances across different datasets or tracking challenges. This scaling
ensures that the metric remains consistent and comparable across different testing
scenarios.

o Higher Order Tracking Accuracy (HOTA) [27] 1

HOTA balances the importance of detecting all objects (detection accuracy) and
keeping correct track identities over time (association accuracy). Unlike MOTA,
which predominantly focuses on detection, HOTA equally weights the association
of identities across frames. This metric provides a holistic measure of performance,
making it particularly suitable for applications where maintaining identity is crucial.

DetA x AssA
HOTA = \/DetA + AssA — DetA x AssA (2.7)

Here, in equation 2.7 DetA represents detection accuracy and AssA is association
accuracy.

2.2.2.4 Identity Maintenance

These metrics specifically focus on how well the tracking system maintains consistent
identities of the objects across frames.

o Identity Switches (IDs, IDSWs) [28] |

IDs is a critical evaluation parameter in multi-object tracking. An Identity Switch
occurs when a tracking algorithm incorrectly changes the identity of a tracked object
from one identity to another. This metric is crucial for assessing the consistency and
reliability of tracking algorithms in maintaining object identities over time. IDs is
often reported alongside MOTA to provide insights into the quality of trajectory han-
dling by the tracking algorithm. High numbers of identity switches can significantly
degrade user trust in a tracking system, especially in applications like surveillance
or sports analytics, where consistent object identity is crucial.
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« IDF1 [35] 1

IDF1 is a metric introduced to evaluate the accuracy of identity preservation in
multi-object tracking. It measures the ratio of correctly identified detections over the
average number of ground-truth and computed detections. It balances the precision
and recall of identity assignments, providing a comprehensive view of how effectively
a tracker maintains true identities across different frames.

2 x IDTP
IDF1 = 2.
IDTP + IDFP + IDFN (28)

In the above 2.8 equation IDTP (Identity True Positives) are correctly associated
identities, IDTP (Identity False Positives) are wrong identity associations considered
as matches, and IDFN (Identity False Negatives) are missed matches.

2.2.2.5 Continuity and Trajectory Integrity

These metrics evaluate the continuity and integrity of object trajectories throughout a
tracking sequence.

e Success Rate 1

The Success Rate in tracking is typically used in single object tracking scenarios
to measure the percentage of time a tracker successfully keeps the target within the
predefined bounds of accuracy, often defined by an overlap threshold. It is commonly
used in visual tracking benchmarks to evaluate how often a tracker succeeds in
following an object despite challenges like occlusion, motion blur, or lighting changes.

S Rat Number of Successful Frames (2.9)
uccess Rate = .
Total Number of Frames

In equation 2.9 the intuitive formula of Success Rate is shown. It is a direct measure
of a tracker’s effectiveness over the course of a video or a series of frames.

o Fragmentation (FRAG) |

Fragmentation is used to assess the integrity of tracking trajectories in a multi-object
tracking scenario. Fragmentation occurs when a single object track is interrupted
and resumed multiple times, effectively breaking a single trajectory into several frag-
mented parts. This metric is indicative of the tracking system’s ability to handle
occlusions and interactions among objects without losing track continuity.

2.3 ORB

The key elements of the ORB [13] (Oriented FAST and Rotated BRIEF) algorithm are
keypoints (KPs) and descriptors. Keypoints are specific points in the images that are
detected based on features such as edges and corners, identified by their position, scale,
and orientation. Descriptors describe the surroundings of these keypoints using a vector-
based representation, usually generated by feature detection algorithms. The matchers
that are more universal compare descriptors between different images, disregarding the
position of the keypoints during the matching process.

The steps of the ORB algorithm are as follows: detection of keypoints, computation of
descriptors (time-consuming), and comparison of descriptors (usually using a brute force
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approach). The algorithm also supports image pyramids, which provide scale invariance,
allowing keypoints to be extracted from different pyramid levels at varying levels of detail.

There are two main matcher methods for comparing descriptors:

o Brute Force Matcher (BFMatcher): This method compares all descriptors be-
tween images pairwise. It is particularly fast for binary descriptors, especially when
using Hamming distances. Symmetric matching, where matching is performed from
both sides, provides more robust results. This matcher is suitable for real-time
systems with a moderate number of keypoints (e.g., fewer than 2000).

e FLANN-based Matcher: The FLANN-based matcher utilizes distances between
descriptors and nearest neighbors, making it useful for larger keypoint sets. However,
symmetric matching with FLANN is carried out through two-way knnMatch, which
is not as precise as brute force but significantly faster when dealing with larger sets.

The quality and quantity of keypoints are critical in real-time algorithms. For small objects
(e.g., toy cars), 50-500 keypoints may be sufficient. Dynamic management of the number
of keypoints, depending on movement and the number of objects, is essential to maintain
speed. To enhance robustness, several techniques can be applied, such as filtering through
a homography model or validating keypoints based on orientation and scale.

Reviewing the quality of keypoints and descriptors can contribute to the overall efficiency
of the algorithm, ensuring that low-quality or false keypoints do not replace relevant ones.
Therefore, multiple filtering steps and selection strategies are employed to ensure that
keypoints have the desired quality during tracking and object detection.

2.4 Tessellations

Tessellations are the set of keypoints appearing in the 2D space (for example on the camera
image), and are formed from 2D pixel coordinates. Due to the perspective issues, this
representation does not correspond to their actual spatial positioning, but it is suitable
for gaining insight into the distribution characteristics of the detected KPs within the
image (e.g., whether they are distributed along the depth or perpendicular to it) and for
comparing them in a straightforward manner with the tessellation of the object model.

2.4.1 Principal Component Analysis (PCA) and Ellipsoid Similarity
Metrics

Principal Component Analysis (PCA) is a statistical method that allows for dimensionality
reduction of high-dimensional data, transforming it into a set of orthogonal components
called principal components. These principal components are arranged in decreasing order
of variance within the dataset. PCA enables data to be aligned along the directions of
greatest variance, providing a comprehensive view of the complex distribution of the data.
In this study, PCA was used to analyze and compare the spatial distribution of keypoint
sets extracted from two images. Using PCA, we identified the main directions and spread
of the two keypoint sets, allowing comparison of their shape, orientation, and overlap
through the construction of ellipsoids.

During PCA-based analysis, we determined the principal components and their corre-
sponding eigenvalues for both keypoint sets, which represent the primary axes and vari-
ances of the ellipsoidal distributions that approximate the shapes of these sets. Based on
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these ellipsoidal representations, several metrics were introduced to quantitatively evaluate
the similarity and alignment of the distributions. These metrics include the Distance In-
tersection over Union (DIoU), Inlier Ratio, Distance Metrics, Variance Align-
ment, and Aspect Ratio Comparison. Each metric aims to capture different aspects
of the spatial relationship and structural similarity of the two distributions.

» Distance Intersection over Union (DIoU): DIoU, applied to ellipsoids in this
study, measures the overlap and spatial alignment of ellipsoids. This metric is derived
from the standard IoU measure, enhanced by a penalty term based on the Euclidean
distance between the centers of the ellipsoids. DIoU can serve as a primary metric for
assessing the positional and shape alignment of the two distributions’ ellipsoidal ap-
proximations. High DIoU values indicate significant overlap and proximity between
the ellipsoidal distributions, signifying strong similarity.

e Inlier Ratio: This ratio indicates the percentage of points from the second keypoint
set (Set B) that fall within the ellipsoid boundaries defined by the first set (Set A).
The Inlier Ratio provides information about the spatial inclusion and similarity of
the distributions; a higher ratio indicates that the keypoints of Set B closely follow
the spatial boundaries defined by Set A.

e Average and Standard Deviation of Distances to Ellipsoid Center: This
metric represents the average distance of points from Set B to the center of the
ellipsoid representing Set A in PCA analysis. Along with the corresponding standard
deviation, it indicates how concentrated the points of Set B are around the center
of Set A’s distribution. Lower values suggest that points in Set B are closer to the
center of Set A, whereas higher values indicate greater divergence.

e Variance Alignment Ratio: The Variance Alignment Ratio compares the spread
of points in Set B with respect to the principal directions of Set A. By projecting
Set B onto the principal component axes of Set A and calculating the variance along
each axis, the ratio of variances along the first and second principal components
is determined. This ratio reflects the shape similarity of the distributions, with
values close to 1 indicating similar elongations, while significant deviations suggest
differences in shape.

e Aspect Ratio Comparison: The aspect ratios of ellipsoids were used to evaluate
the structural alignment between Sets A and B. Aspect ratio, calculated as the
square root of the ratio of eigenvalues, indicates the elongation of the ellipsoids.
Comparing these values provides insight into whether the two keypoint sets share a
similar shape or if one distribution is more elongated than the other.

e Variance Coverage: Variance Coverage evaluates the alignment of variance be-
tween Set B and Set A by comparing variance ratios along Set A’s principal com-
ponents with the corresponding values of Set B. A high coverage value indicates
that Set B extends to a similar degree as Set A within the PCA-transformed space,
signifying consistency in the size and spread of the distributions.

These metrics collectively allow for a comprehensive evaluation of the spatial and structural
similarity between the two keypoint sets. Representing the keypoints with ellipsoidal dis-
tributions and employing metrics like DIoU, inlier ratio, and variance alignment provides
an effective framework for assessing overlap and shape alignment. These metrics facilitate
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a robust comparison between distributions, especially in applications where the geomet-
ric consistency of keypoints extracted from images is critical, thus supporting consistent
conclusions regarding the similarity of keypoint sets based on their spatial configuration.
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Chapter 3

Related Work

In this chapter the most important techniques and semantic tracker related solutions are
presented, which show interesting characteristics, provide basic toolsets for building a
real-time semantic tracker for dynamic MR applications. In the first part we provide a
general view on proposals which use feature matching at different extent for tracking/pose
refinement purposes, then we present a few important trackers where semantic information
is also included. The second part of the chapter deals with modern, mostly tracking-by-
detection solutions which could be used as a back-end (as association, motion modeling
and tracklet manager) in our integrated tracker.

Since our proposal uses a combination of object detectors with feature matching to extract
and maintain the scenario related semantic knowledge we explore the related concepts and
solutions, with the remark that usually all these systems are also object detector depen-
dent. These modern day trackers assume a detector as a front-end module, a spatial
information provider (2D/3D bounding boxes of the tracked object exemplars), which is
then associated with the objects managed by the system. However, we use the object de-
tector quite differently than these solutions, thus their exact characteristics are irrelevant
at some point, so their detailed presentation can be omitted. Also, due to the constraints
of MR applications, we don’t investigate those modern CNN-based feature matching so-
lutions (e.g. SuperGlue [37], SuperPoint [11], which albeit provide outstanding matching
performance, require GPU-based hardware and run with a very moderate FPS (around
10-15 FPS). The presentation of some practical tracking solutions, like KCF (Kernelized
Correlation Filters), CSRT (Discriminative Correlation Filter with Channel and Spatial
Reliability) or MOSSE (Minimum Output Sum of Squared Error) [18, 47| is also omit-
ted, since these trackers focus on fixed camera settings, single object tracking, and are
used in static scenarios where perspective changes, complex occlusions are usually absent.
The adaptation of these solutions for our requirements (multiple object tracking, dynamic
scenarios, severe occlusions) would be rather painful and cumbersome.

3.1 Keypoint Matching in SLAM, Tracking and Pose Re-
finement

The most popular use case of ORB is related to SLAM (Simultaneous Localization and
Mapping) [31], where camera tracking is performed based on the collection and spatial
graph based optimization of the ORB keypoints detected and matched in the environ-
ment. It is important to notice, that the goal here is to recognize and track the topologi-
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cal characteristics, in order to determine the camera position and to build a feature point
based map representation of the environment, not to detect and track the dynamic objects
in it, which requires a completely different toolset. Usually on top of the classical SLAM
algorithms (ORB-SLAM [31], RTABMap [22]) are built the so called semantic SLAM solu-
tions (e.g. Kimera [36], PanopticFusion [32], where the map data is further extended with
semantic information, the different categories of recognized objects (e.g. indoor: furniture
types, building parts, like corridors, stairs; outdoor: buildings, vegetation, etc.) in the
mapped environment. The recognition and labeling is usually provided as a subsequent
operation, using the recorded video stream/point cloud, since it requires CNN-based ob-
ject detection algorithms (e.g. YOLO [33] Mask R-CNN [17]), which are resource heavy
and can run with 5-30 FPS. Some of these semantic SLAM solutions also employ dynamic
object detection (SLAMANTIC [38], Mask-SLAM [20], in order to filter out the keypoints
belonging to moving objects, which would result in invalid maps and erroneous localiza-
tion during subsequent use. However, the detectors are used on a keyframe basis, which
also degrades the system performance. Since these solutions are less revelant for our use
case (e.g. provide useless semantic data types, cannot track multiple objects in real-time),
considering the most demanding requirements of real-time MR, tracking applications, we
omit their detailed exploration here.

In some recent papers [44, 57, 56], ORB is used for robot or UAV localization/navigation,
further improving its characteristics in low light conditions or poorly textured environ-
ments. These solutions generally improve upon the classic two-level solutions, where an
initial coarse and then an advanced RANSAC-based algorithm is used to optimize key-
point associations between frames and filter out redundant matches and outliers. Their
common characteristic is that keypoint similarity checks are performed sequentially in the
Hamming space of associations and the Euclidean space of local image structures, thereby
creating a multi-level association strategy. Thus, they primarily examine geometric con-
straints, the ORB descriptors (e.g. angle, octave, response, size) and their characteristics
considering the dynamic and static objects in the environment are not considered in these
solutions. For these use cases, it is allowed to use more complex algorithms, since the
decrease in image processing performance (usually about 10-30 FPS) still makes them
useful for robotic applications.

Among the classical multiple object tracking (MOT) solutions for 2D objects the feature
point based methods play a prominent role in matching and associating keypoints of the
dynamic objects. In the following we present some of these solutions. In [10] the authors
present a 2D tracker solution, where ORB is used to match and associate feature points
extracted from adjacent RGB frames. The ORB feature matcher is improved with a ve-
locity based keypoint distance calculation method, which allows to filter out mismatches,
thus approving data association accuracy. The feature points are extracted using a detec-
tion algorithm (E-McGM), which extracts the edge of the object sequences and separates
the background using motion information. The contour of the object is recovered from
edge segments, these are connected to provide the segments of the object. Thus, the
ORB keypoints are extracted from the detected object contours, which makes the solu-
tion dependent on a relatively slow performing algorithm. The extracted and matched
keypoints are only validated with a 2D point based velocity model, thus, the perspective
and dynamic scene changing issues still exist for the 3D use cases. The solution runs
at 12-15 FPS, without the contour detector, this also indicates its inapplicability in MR
use cases. The solution presented in [52] uses the improved version of AKAZE to match
point pairs, where the real-time image is matched with a benchmark image. Descriptors
are extracted and matched, the best matching points are selected based on the fusion of
Hamming distance and matching line angle. RANSAC is used to calculate the homogra-
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phy matrix between images. The algorithm uses a Jetson Nano B01 board with Nvidia
GPU, which implies that the algorithm is resource demanding. The RANSAC algorithm
uses homography, which is a 2D-2D based geometric transformation method, it is also not
directly applicable for the dynamic 3D scenes. In [51] keypoint correspondences between
consecutive frames are found using the nearest neighbor search method between the ORB
feature sets. A special RANSAC method (RAMOSAC) is then applied to the keypoint
pairs to find the most appropriate motion model among multiple object transformations
(translation, similarity, affine, projektive) and using the information of the previous loca-
tion. The ORB feature set is updated by adding new features and pruning outliers. The
validation of new feature points is done iteratively based on their score, instead of using
the information from the different ORB parameters extracted from the actual frame. The
authors tested the algorithm in typical foreground-background senarios, where the object
to be tracked (e.g. human) was moving in the foreground, which represents quite simple
use cases. This solution is also resource intensive, due to the application of RANSAC,
which makes its application difficult for tracking multiple objects. In [50] the ORB de-
scriptors are extracted and matched between subsequent frames. Location is updated on
matched keypoints and on temporal/spatial constraints, depending on the success of key-
point matches. The comaprison of keypoints is done based on their Hamming distances.
For the next frame a search window is defined based on simple motion modeling. Based
on this the keypoint extractions and associations are applied. The solution was tested
in scenarios with classical fixed camera settings (e.g. surveillance cameras), where the
tracked objects (humans, cars) are moving along fixed trajectories with relative moderate
and constant speed.

In the following a few important solutions are presented, where the ORB-based feature
matching is combined with some additional computer vision techniques (e.g. silhouette
detection, object detection), in order to provide tracking and 6D pose refinement in dif-
ferent scenarios (e.g. AR, robotic object manipulations). While these solutions are quite
powerful, their application mode doesn’t allows to directly apply them in our use case.
The BYTE association method is extended in [41] to utilize the solution in heavy-occluded
detections for the associations which are usually discarded. Camera motion compensation
is applied for tracking by using the ORB feature detector and the RANSAC algorithm.
The ORB method is used like in SLAM, as a sparse image registration technique, in that
foreground objects like moving persons can be neglected. Also a method to terminate
inactive tracks under severe camera motion is proposed which further improves the per-
formance. However, this solution uses the ORB algorithm just for the camera tracking, to
compensate for small camera movements, thus the keypoints are not used in the dynamic
object’s detection, association or tracking. Object detection is provided by the usual CNN-
based algorithms, which makes it unapplicable for real-time MR applications. In [24] the
authors use a graph-based single-view RGB-D tracking approach for assembly guidance
based object tracking in AR environments, which is a markerless approach. Tracking is
initialized by YOLOv8Pose, which is followed by a constant pose update. For the tracking
between AR assisted assembly steps a graph is defined, with the kinematic links between
each assembly pair in different steps. GBOT can dynamically switch between different
assembly states, while other graph-based approaches require initialization per state. Each
assembly step is defined by the relative pose between the objects. The object detection
and tracking is done with the YOLOv8Pose algorithm, which aquires both bounding boxes
(BB) and keypoints detected in the object’s BB, by using non-maximum suppression and
Perspective-n-Point (PnP) recovery of the 6D object poses. Due to the usage of CNN-
based object detection and the PnP algorithm the solution requires GPU support, which
makes it unfeasible for MR applications. The solution of ICG+ in [43] uses region- and
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keypoint-based techniques, combined with depth data to perform a 6DoF object pose
estimate of a rigid object. For each frame a silhouette is constructed by statistically differ-
entiating the foreground and background. Detected ORB keypoints are are matched with
stored keyframe features. Keyframe formation is similar to ORB-SLAM. In case the new
frame is considered a keyframe a depth rendering process is initiated, and for points falling
on silhouette 3D model points are reconstructed. These are stored as a new keyframe.
Then the new object pose is calculated. ICG+ basically proposes an improvement for
region-based detection techniques, since all the other information sources are merged and
filtered (depth, feature point) using the object’s silhouette. However, region-based meth-
ods are mainly used for single object and close proximity scenarios, since they can only
moderately tolerate scale variations, are prone to background interference and proved to
be less sensitve for fast motion. Since ICG+ uses keypoint as a region validation technique
it does the keypoint management quite easily: all the keypoints falling on the shilouette
can be considered as valid ones for the new keyframe. In our case, since keypoints are the
primary focus factor of detection, a careful validation and acceptance criteria have to be
set, which involves several filtering and validation steps, depending on their actual quality
and the context.

3.2 Semantic Tracking

In the following, several notable semantic tracker solutions are discussed, highlighting that
such methods generally rely on 2D or 3D object detection on a frame-by-frame basis. This
inherent dependency makes their direct application challenging in mixed reality (MR)
scenarios, especially if real-time performance on resource-constrained devices is required.
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Figure 3.1: Overall architecture of the stereo vision-based seman-
tic tracking system proposed in [23].

A representative solution for autonomous driving scenarios is presented in [23], where
both camera ego-motion and 3D semantic object tracking are estimated concurrently.
Figure 3.1 shows the pipeline from initial 2D detection through 3D semantic inference
and feature matching, culminating in a dynamic object bundle adjustment stage. The
system leverages a 2D object detector (as opposed to a 3D detector) to reduce training
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complexity and computational burden. The semantic inference (3D box with direction)
is constructed from a 2D box and a viewpoint based classification. From the object
contours and occlusion masks provided by the 3D box inference module ORB feature points
are extracted, which are matched using temporal and stereo matching. The temporal
matching associates objects for successive frames by a 2D box similarity score voting,
while the stereo matching is performed by epipolar line searching. Object association with
previously detected objects is achieved by comparing the computed similarity scores, and
a RANSAC-based outlier rejection using a local fundamental matrix test ensures robust
feature correspondences. Finally, a dynamic object bundle adjustment integrates these
feature measurements to continuously track object states alongside the camera pose.

By separating dynamic objects from static scene elements and performing 3D tracking on
associated ORB keypoints, the approach provides semantic information regarding object
states over time. Its evaluation on the KITTI benchmark dataset shows that the ego-
motion estimation is on par with or better than ORB-SLAM2 in certain cases. Object
localization and tracking also appear effective, although a comprehensive quantitative
analysis of all aspects is not provided.

Despite these advantages, the reliance on a 2D detector (Faster R-CNN) executed on
a frame-by-frame basis, combined with the computational cost of the dynamic bundle
adjustment, limits the approach’s feasibility for real-time MR scenarios. The resource-
intensive nature of both the detection and the optimization steps poses challenges for
deployment on devices with constrained computational and energy budgets.

A more recent solution, UDOLO [45] stands out from other trackers as its system uti-
lizes dynamic object occupancy maps (OOM) and previous object states (3D bounding
boxes, predicted poses) as a spatial-temporal memory to enhance efficiency and accuracy
in detecting and tracking objects in various environments. This provides an extended,
semantic knowledge of the environment, which improves the new detections focusing the
tracker on relevant spaces, by providing 3D occupancy maps of the segmented areas, cat-
egorizing them based on different spatial characteristics, such as free, occupied, blocked
or potentially traversable zones. By incorporating temporal information directly into the
detection pipeline, UDOLO increases stability, reduces runtime, and enhances detection
precision over baseline methods. The system is shown in 3.2 The primary data flow is
indicated by solid arrows. Notably, the design incorporates a feedback mechanism high-
lighted by red arrows. At each time increment, the front-end component, referred to as
the OOM-Guided RPN, utilizes the point cloud as input. It selectively generates object
proposals for the current frame within regions demonstrating high object occupancy scores
(depicted by red points) as indicated by the object occupancy map. Additionally, it identi-
fies unobserved regions (illustrated by blue points) where new objects may emerge. These
proposals undergo fusion with back-end predictions of object future states from the pre-
ceding frame and are subsequently processed through the Fusion R-CNN detector in the
second stage. Following tracklet association, the current front-end predictions feed into the
Kalman Filter to yield fused object states representing the final bounding box prediction.
Subsequently, the motion prediction module updates the object occupancy map based on
future object states. The system achieved 32ms inference time minimum on unspecified
hardware. This speed, which can be translated into roughly 31 FPS, includes the time
for object detection as well. The most contributing factor to achieving such speed is the
early integration design in the OOM-Guided Region Proposal Network (RPN). However,
its performance metrics are provided for LIDAR input, which typically contains fewer 3D
points than stereo- or RGB-D-based depth maps. Furthermore, UDOLO relies heavily on
GPU-accelerated CNNs, making it unsuitable for MR devices with limited computational
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resources. There is no attention paid on point clouds generation methods, how depth
images are processed, what processing characteristics they have, and whether there is a
need to accelerate the generation of depth information. This leads to a rather heavyweight
solution, regarding the energy and computing requirements.
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Figure 3.2: UDOLO system.

Similarly, the YOLO object detector family was extended in [40] to offer semantic tracking
using point clouds coming from LIDAR and RGB camera streams. By merging 3D CNN-
based detections with visually derived semantic segmentations, the system provides object
detection and tracking tailored for autonomous driving, tested on the KITTI dataset.

Another approach, proposed in [1], builds on LIDAR-based panoptic segmentation. Here,
semantic scene understanding is achieved by categorizing the environment into various
classes (e.g., cars, pedestrians, roads, vegetation) and modeling object instances as prob-
ability distributions in the 4D spatio-temporal domain. This approach instead of relying
on explicit temporal data association, processes point clouds in parallel. The solution was
tested on the SemanticKITTI benchmark for LIDAR datasets.

Despite the advances outlined above, these semantic tracking approaches remain largely
dependent on heavy computational resources, such as GPUs and CNN-based object de-
tectors, often limiting their applicability in constrained mixed reality (MR) environments.
More importantly, many of these solutions lack the flexibility to integrate seamlessly with
non-neural detection modules or to adapt to stringent real-time performance requirements
on resource-limited hardware. Therefore, it becomes crucial to identify tracking algorithms
that are both modular and lightweight, capable of running at high frame rates, and easily
integrable with various front-ends and back-end data association schemes. In the follow-
ing, we present the criteria for an ideal baseline tracker that will serve as the core of our
proposed semantically enhanced MR tracking system.

3.3 Ideal Tracker

The ideal tracker to be the cornerstone of the semantically enhanced tracking system
should have the following properties:
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1. It should have minimal use of neural networks to enable modification in any
part.

2. It should have a flexible enough architecture to join with custom front-ends like
object detection or output of another tracker and so on.

3. It should be modular as to aid a distributed architecture.

4. Tt should be able to run with at least 60 Frames Per Second (FPS) on the target
hardware.

5. It should have clear, concise and easy to read implementation.

6. Would be beneficial if it has an actively managed GitHub! page and active commu-
nity.

3.4 Influential and Innovative Trackers

To identify suitable building blocks for a fast, modular, and easily integrable semantic
tracking system, it is helpful to examine the state-of-the-art solutions in both single and
multiple object tracking contexts. Although many of these existing trackers incorporate
complex neural components or rely on non-real-time hardware, they provide valuable
insights into current methodologies, performance benchmarks, and architectural principles.
In particular, detection-free solutions and those with open-source communities may offer
a promising starting point for developing a flexible tracker tailored to MR constraints.
Below, we first consider notable single-object trackers and then proceed to review cutting-
edge multi-object trackers, both in 2D and 3D domains.

3.4.1 Single Object Trackers

Although SOT is not the primary focus of this thesis, these trackers are worth mentioning.
They represent the current state of the art, and there is potential for their use in the Head
Mounted Devide (HMD) for last-minute processing. Notably, all the trackers listed below
operate without reliance on detection.

o OSTrack [54] stands out from other trackers because it uses a lightweight and
flexible framework and does not depend on large training datasets and complex
architectures. OSTrack is designed for real-time applications, with the help of its
innovative use of attention mechanisms and transformer-based models. Thanks to
these features it can focus on important details and maintain high accuracy, even in
tough scenarios.

Its smaller model, OSTrackssg is one of the fastest trackers running on GPU in the
detection-free category. It can achieve 105 FPS on GOT-10k dataset benchmark
with GeForce GTX TITAN X GPU.

o ARTrackV2 [2] is very similar to OSTrack in some ways, but it further advances the
attention mechanisms and enhanced transformer-based architecture. These improve-
ments allow the tracker to capture and focus on relevant features, even in complex
environments. Unlike other trackers that need large computational resources and

LGitHub is a platform that allows people to share and version control code
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Performance vs. Speed on GOT-10k (One-shot)
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Figure 3.3: Comparison of accuracy and speed of the current top
preforming, GPU focused, SOT trackers [2].

struggle with real-time applications, ARTrackV2 is optimized for efficiency without
sacrificing accuracy. It tops OSTrack in accuracy even with its fastest and least ac-
curate model ARTrackV2g56 by 4% (meaning an increase from around 73% to 77%)
as shown by Figure 3.3. While being more accurate, ARTrackV2s5¢ falls short to
the speed of OSTrackosg by 11 FPS with achieving 94 FPS on GOT-10k dataset
benchmark on GeForce GTX TITAN X GPU.

In Figure 3.4 you can see an example on how well the current State-Of-The-Art
(SOTA) detection-free single object tracker responds to object rotation, deformation
and size change.

Figure 3.4: ARTrack bounding box resizing [46]

STARK [53] is a currently more that 3 years old tarcker that based on its achieve-
ments, had a quite big impact on the field of VOT. STARK won the VOT-21 RGB-D
challenge and has 617 stars on its GitHub repository. The novelties STARK sets it-
self apart with are the spatio-temporal transformer network, end-to-end learning
framework and advanced attention mechanisms. Its benchmark performance is no
longer the SOTA, but they claim to achieve more than 200 FPS on RTX TITAN
GPU with their fast version of STARK called STARK-Lightning.
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o E.T.Track [6] presents significant advancements in visual tracking by introducing a
novel transformer-based architecture that balances high performance with real-time
operation with its 2 primary novelties described below:

1. Exemplar Attention: A new attention mechanism designed specifically for
visual tracking. Unlike traditional attention mechanisms, Exemplar Attention
leverages domain-specific knowledge to capture more explicit information about
the target object. It uses a single global query value to identify the object of
interest, reducing the computational complexity. This mechanism aggregates
information efficiently by utilizing a small set of exemplar values, which act as
a shared memory between the samples of the dataset, significantly improving
the tracker’s performance without incurring a substantial runtime penalty. The
Exemplar Attention module replaces conventional convolutional layers in the
tracker heads, resulting in a lightweight yet effective transformer layer that
enhances the tracker’s accuracy and robustness.

2. Real-Time Capability: Despite using a transformer-based approach,
E.T.Track operates at 46.8 FPS on a CPU, making it up to 8 x faster than other
transformer-based trackers. This impressive speed is achieved without compro-
mising much on performance, as E.T.Track consistently performs on par with
other methods on several benchmark datasets, including LaSOT, OTB-100,
NFS, TrackingNet, and VOT-ST2020.

3.4.2 Multi Object 2D Trackers

While single-object trackers provide essential insights into detection-free methods and the
potential of lightweight architectures, multi-object tracking (MOT) introduces additional
complexities. MOT systems must handle challenges such as object occlusion, interaction,
re-identification, and the maintenance of unique identities across multiple detections. This
section focuses on prominent multi-object trackers in the 2D domain, which are highly
relevant for applications requiring real-time performance and robust tracking capabilities
across dynamic scenes.

These trackers demonstrate diverse approaches, from leveraging traditional motion models
and simple data association techniques to employing sophisticated appearance features and
advanced optimization strategies. Many of the solutions highlighted also prioritize speed
and efficiency, making them suitable for deployment on devices with limited computational
resources. Below, we explore several state-of-the-art 2D MOT frameworks, analyzing their
methodologies, strengths, and benchmark performances.

o SORT 5] is a very influential solution introduced more than 9 years ago. It became
the base for many trackers later. The article it was proposed in has been cited in
around 4000 other works, and the GitHub repository containing its open source code
has 3800 stars.

In a more technical perspective SORT is a highly efficient and straightforward ap-
proach to multiple object tracking by focusing on real-time applications. Its method-
ology can be summarized in 4 points:

1. Detection: The flexible and simple architecture of SORT can utilize the output
of any object detector as long as it is in the the correct data format.

2. Estimation Model: Employs a linear constant velocity model to predict ob-
ject states (position, scale, aspect ratio) between frames. This prediction is
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updated using the Kalman filter, a classical method for estimating the state of
a dynamic system.

3. Data Association: Uses the Hungarian algorithm to associate detected ob-
jects with existing tracks. The association is based on the IoU metric, which
measures the overlap between predicted and detected bounding boxes. A mini-
mum [OU threshold is set to ensure reliable associations. It also handles short-
term occlusions implicitly by favoring detections with similar scales, thereby
maintaining robust tracking even when objects are temporarily obscured.

4. Track Management: As a mandatory finishing step, SORT initializes new
tracks for detections that do not match existing tracks, and assigns unique
identities to them. Tracks are deleted if they are not detected for a predefined
number of frames.

They claim that the tracking component runs at 260 Hz on single core of an Intel i7
2.5GHz machine on the MOT15 dataset benchmark, which is impressive. It easily
achieves real-time performance on other datasets from different research papers as
well: 60 FPS on MOT16 [49], 143 FPS on MOT17 and 57.3 FPS on MOT20 [12].
However, it is important to note that the time for detection is often excluded from
the reported FPS, as is the case here.

OC-SORT [7, 4], or Observation-Centric SORT), is an enhancement of the original
SORT algorithm, designed to improve robustness in multi-object tracking, especially
under challenging conditions such as occlusion and non-linear motion, where the
original is lacking. The main problem with SORT is; when a track does not receive
updates for several time steps, errors accumulate during state propagations. These
errors can become excessive, causing the track to be incorrectly lost even after an
update. This issue arises from the discrepancy between the true track direction and
the estimated direction. As the difference between these directions grows, the track
may be lost again after re-association.

OC-SORT addresses these limitations by introducing several key innovations:

1. Observation-Centric Re-Update (ORU): This method corrects errors that
accumulate during occlusions. When an object is re-detected after being oc-
cluded, ORU recalibrates the object’s state based on the latest observations,
rather than relying solely on prior estimates. This significantly reduces the
error that builds up during periods when the object is not visible.

2. Observation-Centric Momentum (OCM): OC-SORT adds a momentum
term to the data association process. This term helps maintain consistency in
the object’s velocity, improving tracking performance, especially during rapid
and non-linear movements.

3. Enhanced Data Association: Improves the association of detected objects
with existing tracks by incorporating more robust metrics that consider both
position and velocity, making the tracking more resilient to occlusions and
abrupt changes in motion.

OC-SORT simply overperforms SORT in every metric as on the MOT17 dataset it
almost doubled the achieved MOTA and HOTA scores and reduced the number of
identify switches (IDSW) to less than half. Speed wise OC-SORT runs at over 700
FPS on a single CPU (detection excluded), but it is unclear on what dataset exactly.
If if was on MOT17, which is likely, then the speed increase is a little less than a 5x
improvement.
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o SFSORT [30] is designed to be the fastest multi object tracking system. It employs
a tracking-by-detection method following the prior SORT literature. It also intro-
duces a novel descriptor, the Bounding Box Similarity Index (BBSI) that enhances
object tracking by considering the shape similarity, distance, and overlapping area
of bounding boxes. BBSI efficiently manages both overlapping and non-overlapping
bounding boxes without the need for motion prediction tools like the Kalman Filter.
Among its advantages are:

— reducing dependency on motion prediction, leading to faster tracking, and

— effective handling of non-overlapping bounding boxes.

Another key point of SFSORT is, that it incorporates scene features such as depth
and camera motion to improve object-track association and track post-processing,
which results in more accurate tracking. They call these components:

— Camera Motion Detection: Utilizes ORB features to detect camera motion,
adjusting interpolation timeouts according to whether the camera is moving or
stationary.

— Scene Depth Estimation: Introduces a depth score metric that evaluates
the variation in object heights within the scene, aiding in the adjustment of
tracking parameters for scenes with significant depth.
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Figure 3.5: SFSORT pipeline [30].

In Figure 3.5 the SFSORT system is shown. The last component on the right,
labeled "Track Manager", has the final innovation of the tracker. As usual, it manages
matched, new, and unmatched tracks, updating their status and handling lost tracks,
but it does so based on their last observed location (central or marginal). So SEFSORT
differentiates between tracks lost at the margins and those lost in the central areas
of the frame. It applies different timeouts based on this information hence the
likelihood of successfully revisiting lost tracks increases.

SFSORT delivers on the set goal of being the fastest tracker without compromising
too much on other metrics. Operating on a 2.2 GHz Intel Xeon CPU it achieves
a HOTA of 61.7% with a processing speed of 2242 Hz on the MOT17 dataset and
60.9% with a processing speed of 304 Hz on the MOT20 dataset.

o« UCMCTrack [55] is a tracking-by-detection based MOT system designed to man-
age significant camera movements efficiently that uses motion model only. It intro-
duces a uniform Camera Motion Compensation (CMC) approach that uses the same
compensation parameters consistently across a video sequence, rather than recalcu-
lating them for each frame. UCMCTrack employs a Kalman filter on the ground
plane and utilizes the Mapped Mahalanobis Distance (MMD) for data association.

The mentioned Mapped Mahalanobis Distance replaces the Intersection over Union
(IoU) distance measure and uses projected probability distributions on the ground
plane. This method effectively handles uncertainties introduced by homography pro-
jections and improves tracking accuracy. Utilizing the Kalman filter on the ground
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plane helps in mitigating the effects of camera movement by treating it as noise
within the motion model.

Regarding performance, UCMCTrack was benchmarked on MOT17, MOT20, Dance-
Track and KITTI datasets and when provided with detections, it can operate at more
than 1000 FPS. The exact hardware is not specified. The UCMCTrack+, which is
the enhancement of UCMCTrack with the additional incorporation of CMC, achieves
scores very close to the SOTA on every datase with the exception of MOT20.

« TOPIC [8], or the Two rOund Parallel matchlng meChanism is a multi object
tracking framework, that utilizes both motion and appearance features in parallel,
enhancing tracking performance. Additionally, it uses an Attention-based Appear-
ance Reconstruction Module (AARM) to improve appearance feature representation.
AARM enhances appearance feature embeddings by reconstructing them using an
attention mechanism, improving the distinction between different objects and the
similarity for the same object across frames.

The main reason for mentioning this tracker is its parallel association modul, but it
also performs slightly better on average than OC-SORT on both MOT17 (as shown
in Table 3.1) and MOT?20.

o« EMO [15] is not really a tracker by itself, more like a set of optimization strategies
designed to enhance the efficiency and performance of existing multi-object tracking
systems when deployed on resource-constrained edge devices. It can be integrated
with various existing trackers to improve their computational efficiency without sig-
nificantly compromising tracking accuracy.

EMO achieves this by frame skipping using one of the 2 following strategies:

— Motion Aware Periodic Skipping: A simple approach where detections are
skipped at regular intervals (e.g., every second, third, or fourth frame). This
method reduces the number of detection operations but may miss new objects
or significant movements.

— Context Aware Skipping: A more advanced approach that uses the context
of the video, such as motion patterns and frame similarity, to decide when
to skip detections. This method aims to balance computational savings with
tracking accuracy.

Tracker HOTA 1 MOTA {1 IDF1t IDSW | FPS1t
SORT 34.0 43.1 39.8 4,852 143.3
OC-SORT 63.2 78.0 7.5 1,950 700
SFSORT 61.7 78.8 74.4 3264  2241.8
UCMCTrack+ 65.8 80.5 81.1 1,689 157.1
TOPIC 63.9 78.8 78.7 1,515 -
EMO (+FairMot)  63.0 71.3 79.4 196 <100

Table 3.1: Benchmark results on MOT17 dataset. The best result is noted with the color
red, the second best result with color blue and what is uncertain if correct
is tilted [49] [7] [30] [55] [8] [15] [29]

These were the most unique or promising 2D multi object trackers that i have overviewed.
The discussed trackers benchmark details on the MOT17 dataset are shown in Table 3.1. It
can be seen that UCMCTrack+ dominates the MOT17 benchmark, but with the exception
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of SORT, there is not a very big difference in performance. UCMCTrack is noted as the
second fastest tracker not by mistake, but because on the MOT17 benchmark results i
could not confirm the claimed 700 FPS of OC-SORT, rather found multiple versions with
varying values ranging from 28-67.

3.4.3 Multiple Object 3D Trackers

Building on the principles and challenges of 2D multi-object tracking, 3D tracking extends
these systems into spatial domains where depth information is critical. This capability
is essential for applications such as autonomous driving, robotics, and augmented reality,
where understanding the position and movement of objects in three dimensions allows
for more sophisticated and context-aware interactions. Unlike their 2D counterparts, 3D
trackers must account for the complexities of depth estimation, rotational variance, and
sensor-specific noise, such as that from LiDAR or RGB-D cameras.

This section explores state-of-the-art solutions in 3D multi-object tracking, highlighting
methodologies designed for real-time performance and robust operation in dynamic envi-
ronments. These trackers demonstrate a range of approaches, from filter-based methods
that emphasize computational efficiency to learning-free frameworks optimized for rota-
tional alignment and scalability. Below, I examine key 3D trackers, emphasizing their
pipelines, innovations, and benchmark results to identify trends and opportunities in this
rapidly evolving domain.

o« AB3DMOT [48] is a simple yet effective 3D multi-object tracking (MOT) system
designed for real-time applications such as autonomous driving. It leverages a com-
bination of a 3D Kalman filter and the Hungarian algorithm for state estimation and
data association. The system pipeline as shown in figure 3.6 includes: (A) obtaining
3D detections from LiDAR point cloud using off-the-shelf 3D object detector, (B)
predicting the state of associated trajectories using a 3D Kalman filter, (C) matching
predicted trajectories and current frame detections with Hungarian algorithm, (D)
updating matched trajectories with the 3D Kalman filter, and (E) creating/deleting
trajectories for new/disappeared objects. AB3DMOT does not require training and
can be directly used for inference.

(D) State update

3D
K'E:i!lTan Test Dmatch / Tmatch
ilter g
(B) State prediction
Tnewf Tlosl
(©) L Tunmatch
Data Association (E)
(A) 3D Object Dt Birth and Death
Detection Dunmatch Memory
s

LiDAR Point Cloud

Figure 3.6: AB3DMOT proposed pipeline.

With the output of an object detector provided, AB3DMOT achieves 207 FPS on
the KITTI dataset for cars, the highest among 3D trackers, and even higher for
pedestrians and cyclists. This speed was achieved on a CPU, though the exact
hardware specifications were not disclosed.

o Fast-Poly [26] is a learning-free method for 3D multi-object tracking that utilizes
filter-based techniques to enhance accuracy and speed. It addresses object rotational
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Poly,
datasets, establishing itself as the state-of-the-art in 3D multi-object tracking.

3.5

searc
workings of ORB feature points and maintaines the object related keypoint sets initially
ident

anisotropy, enhances local computation densification, and leverages parallelization
techniques to improve inference speed and precision. The method employs two inde-
pendent computing processes to filter 3D detections and predict existing trajectories
at each frame, utilizing SF (Score Filter) and NMS (Non-Maximum Suppression) fil-
ters for processing detections and predicting motion, score, and time-invariant states
of trajectories. Key features contributing to Fast-Poly outperforming other methods
include alignment to counter object rotation, densification to increase computational
efficiency, and parallelization to alleviate serial bottlenecks. Additionally, Fast-Poly
demonstrates robustness in device migration and parallel efficiency as the number of
objects increases, showcasing outstanding computational efficiency in autonomous
driving scenarios. It achieves high performance on nuScenes and Waymo datasets,
outperforming other advanced methods in terms of speed and accuracy. Concretely
it can run with 34.2 and 35.5 FPS on nuScenes and Waymo datasets on a personal
CPU. However, the inference time for object detection is not included in the reported
FPS values.

Its pipeline is shown in figure 3.7. Notable enhancements to the baseline method
(which was called Poly-MOT [25]) are visually distinguished. Specifically, alignment
adjustments to counter object rotation are represented in orange, densification strate-
gies aimed at augmenting computational efficiency are highlighted in blue, while cyan
indicates parallelization methods employed to alleviate serial bottlenecks.
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Figure 3.7: Fast-Poly pipeline [26].

All three 3D trackers reviewed perform well on their respective datasets, but they were not
benchmarked on the same datasets, making direct comparison difficult. However, Fast-

being the most recent method, demonstrates a significant lead on its benchmarked

Chosen Approach

Ultimately, none of the mentioned trackers provide the exact end-to-end utility we were

hing for, thus I decided to design and go with a custom solution, which uses the inner

ified by an object detector.

To achieve this I came up with a theory how to mitigate the drawbacks of the feature
points based tracking, and concluded a research to back it up.
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Chapter 4

Proposed Method

This chapter explains the proposed method, how it works, and the reasons behind its
design. It also discusses how the solution addresses the issues identified in existing ap-
proaches.

4.1 Core Concept of Semantic Keypoint Manangement

As T previously pointed out current MOT solutions are not able to cope with the require-
ments of XR scenarios, mainly because their frame-by-frame OD dependency. Semantic
information in MOT is also introduced through OD solutions, with the main goal to dis-
tinguish between different object categories (e.g. cars, pedestrians) or between dynamic
and static object types (e.g. tracked cars vs. road elements, buildings, vegetation).

Based on these findings I categorize the use of object detectors in MOT as follows:

o Tracking-by-detection methods: The tracked objects (usually focusing on spe-
cific object categories, e.g. people) are found frame-by-frame in the video stream
by the OD, the outcome of this process are the 2D/3D bounding boxes built (BB)
around the respective objects. The object categories, semantic information is not
considered in the tracking process beyond this point. After this the tracker asso-
ciates the BBs found with the managed objects, based on the previous tracker state
(object poses, motion model) and the BB parameters (size, coordinates).

e Semantic tracking methods: The categories of detected objects are used as se-
mantic information to distinguish object types in the tracker back-end. This infor-
mation is usually used in the association process, like in [40] [1], while there are
also solutions [23], where the semantic BBs are used to extract category related key-
points, which can belong to static or dynamic objects. Then these semantic keypoint
categories are used to provide information for the tracking and camera ego-motion
modeling tasks.

Albeit all these trackers [40][1][23] are using semantic information in some form, they are
also using OD (as the source of semantic information) on a frame-by-frame basis. This
means that these trackers would also fail in XR scenarios.

To overcome the above shortcomings I devised a tracking solution where the OD is used
only at specific points of the system’s life-cycle (initialization step, fallback for severe use
cases: e.g. objects completely lost). In our case the outcome of the OD (the object’s
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2D BB) is also used to extract semantic information in form of keypoints (as in [23]), but
after this the keypoint populations are maintained by other, more lightweight mechanisms.
Thus, by providing an initial semantic separation of keypoints (groupings extracted from
object instances) and the possibility to validate and update the related keypoint sets on
each iteration (incoming frame) I avoid to use the OD on a frame-by-frame basis.

To provide the required semantic information maintenance I must employ several mech-
anisms, like the separation of detected keypoint types (whether they are extracted from
static or dynamic objects), the association of the dynamic keypoint sets with the tracked
objects, respectively the update of the object related keypoint database, which will be used
in the next step as reference dataset. The solution and exact mechanisms are presented
in the following.

4.2 Architecture

Figure 4.1 presents the architecture of nearly the entire system. I contributed to its
development as part of a collaborative effort, though it is far from being solely my work.
Components that are less relevant to the primary focus of this thesis have been excluded;
however, the architecture still remains too large to explain every element in detail. This
section will focus on elaborating the most relevant components that are closely related to
the main topic of this thesis.

e Feature matcher: The primary focus of this thesis. It is a feature point based
associator, filterer and validator, providing tailored keypoint sets for other compo-
nents. It processes the incoming camera frames based on the received Region of
Interests (Rols) and the stored object keypoint sets (KPs).

e Voxar: The main controller component, it serves as an mediator between compo-
nents to ensure keypoints and depth related information for other components.

¢ Rol-based Depth: Creates a depth map of the received frame or frame part, which
is used by the Voxel Matcher in cases when the detected and matched keypoints
aren’t enough for object identification.

o Displacement Model: Receives the device (headset) pose, and its camera prop-
erties. From these and the previous location and trajectory of the tracked objects,
it creates a prediction in the form of a Rol and a list of visible faces of the object.
These Rols are then used both by the Feature Matcher and the Voxel Matcher.

e Voxel Matcher: Its main role is to provide a 6DoF pose for the tracked objects
and in the meantime to update the object’s keypoint set with their spatially validated
coordinates. It is composed from three sub-components, each playing a distinct role
in processing of dynamic objects:

— The Sprite detector identifies voxelized dynamic objects in the environment
by distinguishing between dynamic, static, and noise voxels. Object voxel shells
are formed along the visible sides of objects and are searched based on their
predicted displacement to enhance detection accuracy. Ray casting is utilized to
locate object voxels effectively, while the search space is progressively reduced
by focusing on the identified sides of the objects, optimizing both performance
and computational efficiency.
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— 3D Refin determines the exact orientation of the object using point cloud
registration algorithms and similar techniques.

— The Associator ensures the continuity of object identities. Its role is akin
to that in methods like SORT, employing algorithms such as the Hungarian
algorithm to associate data between frames and maintain consistent tracking.
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Figure 4.1: Architecture of the system the proposed method
is a core component of.

4.2.1 Feature Matcher

The Feature Matcher is used for the semantic information based keypoint management in
the tracker, by providing the detection, filtering and primary association steps, while the
final phase of the keypoint set forming (spatial filtering and object model based association)
is done by the Voxel Matcher. This way the information derived from the 2D and 3D image
data is decoupled, which leads to a more robust and efficient system architecture.

For further understanding, Figure 4.2 provides a detailed view of the architecture of the
Feature Matcher component. All non-gray elements in the figure represent the main
contribution of this work. It should be noted that this architecture is meant to form a
detachable module from the Feature Matcher, facilitating the development and testing
phases, while the final tracker will look like the one in Figure 4.1.

e The Manager subcomponent, represented in blue, initiates the entire process. The
gray camera and phone icons indicate real devices that stream data to their respec-
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tive processing components. In the final system, the phone will not be present; it
currently simulates pose data required by the Displacement model, which in produc-
tion will be obtained from the tracker’s output. This data (tracked object’s pose)
is solely used by the Displacement Model to predict the Rol’s position and size for
the current frame. Physically the phone is attached to the tracked object (LEGO
toycar) to provide accurate position and orientation data, using a SLAM algorithm.

The camera streams frames via a cable to a script running on a computer. This script
places the frames and their timestamps into a ring buffer to ensure no frames are
lost for consumers with different rates. The Feature Matcher processes each frame
sequentially, retrieving the next one only after completing its current processing task.

The Controller subcomponent orchestrates and supervises the overall functionality,
ensuring seamless operation of the various components.

Pybind11: The Displacement model, written in C++ by a colleague, was ported
to Python using Pybind11. Its functionality remained unchanged: using incoming
pose data, it predicts the visible faces of the object and estimates its future pose
after a predefined time interval (for the next frame’s arrival). These predictions are
stored in a ring buffer, from where the Feature Matcher retrieves them as needed.

Feature Matcher: The Feature Matcher starts its cycle with ORB feature detection
in every case. It retrieves a frame and applies ORB feature point detection to identify
keypoints (KPs). If critical information required for the main loop is missing, this
step (Main function) is excluded, and the process continues with object segmentation,
which provides the missing semantic information by adding the keypoints of the
frame and the detected object to the KPDB. Ideally, this only needs to be executed
once, at the start of the algorithm. If no semantic data is missing, the main process
proceeds as follows:

1. Keypoint matching: The detected keypoints are matched with those from
the previous frame.

2. Get Rols: The algorithm retrieves a prediction from the Displacement model
in the form of a Region of Interest (Rol) corresponding to frame t’s timestamp.

3. Filter by Rol: If the Rol is successfully acquired, keypoints outside the Rol
are filtered out, as they are not relevant to the objects being tracked.

4. Keypoint Classification: One of the main novelties of this thesis is the
classification of keypoints into those belonging to static and dynamic objects.
Details on this process are discussed in Section 5.1.

5. Identification (IDing): The remaining keypoints are assigned to specific
objects or are discarded if they are not relevant. A successful IDing operation
ensures that enough keypoints remain for the voxel matcher to proceed with
the final step, the spatial keypoint mapping.

6. Voxel Matching: The voxel matcher uses the retained keypoints, along with
techniques like point cloud registration, to estimate the precise position and ori-
entation of the object. This information is used to update a custom database
with the ORB feature points of the object (parameters, 3D constellation, asso-
ciations to object sides, etc.)

Additionally, static keypoints from the current frame are also saved to facilitate
filtering in subsequent processing steps. If the Rol cannot be acquired, the algorithm
bypasses the intermediate steps and directly saves the keypoints from the frame
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into the database. Similarly, if the identification process fails, an object detection
algorithm is triggered, and its results are stored in the database for future use.
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Figure 4.2: Architecture of the system the proposed method
is a core component of.

4.3 Main Modes of the Algorithm

1. Initialization: The initial state, assuming static objects, where an object detector
(OD) is run on the objects within the camera’s field of view and we wait for its
result (without significant movement or camera displacement). Unlike continuous
operation, there is no previous state or keypoint dataset to match the currently
detected keypoints against.

o Extracting keypoints and descriptors from the initial image(s) from the object
bounding box (BB) as defined by the OD, which initializes the system. These
keypoints will represent the semantic information in the system, since a clear
distinction between object exemplars, different categories and other static static
elements can be formed as an outcome of this step.

o Transferring the respective keypoints and descriptors, associated with the ob-
jects of interest, to the other system components (for keypoint database update
and initial pose refinement).

2. Continuous (frame-by-frame) operation: this is the normal operation mode
of the system, when the object tracking task is supported by the Feature Matcher
output.

(a) Extracting keypoints and descriptors from the current frame, based on the Rol
determined by the prediction component (Displacement Model).

(b) Matching, filtering and validating the stored (from previous frames and from
KPDB) and the currently extracted keypoint descriptors, in order to identify
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dynamic objects and to associate keypoints with the tracked objects. This step
maintains the semantic keypoint set, which enables to find and associate the
proper objects with the managed tracklets.

(c) Transmitting the matching results and new potential keypoints to other com-
ponents, where the keypoints and their descriptor dataset are managed. At the
end of this step the keypoint database (KPDB) will be also updated with the
spatially filtered and visible side associated keypoints.

(d) Handling special cases (e.g., when no keypoints are found in the given Rol):
o Potentially expanding Rol zones (if no matchable keypoints are found and
there is no occlusion).
e Signalize potential occlusion to components.

e Indicate the omission of depth image creation for a given object, based on
keypoint matching results.

4.4 2D and 3D Keypoint Characteristics

The following section presents the different operational levels and steps of the Feature
Matcher, aimed to address the problems and requirements described earlier. During oper-
ation, we progress from basic information processing to more complex interpretations, thus
building an expanding a contextual knowledge that accelerates computationally intensive
operations.

1. Keypoint Detection and Pre-processing;:
During the pre-processing and filtering of keypoints (KPs) detected in the current
camera frame, we rank and pre-filter them based on their quality. The goal of pre-
processing is:
e Determining the characteristics of keypoints and assessing their quality:
— Based on ORB indicators (orientation/angle, response, scale/octave, size).
— Based on their 2D spatial characteristics.
e Ranking and pre-filtering keypoints, such as deprioritizing low-quality keypoints
to reduce runtime during the matching process, if needed.
2. Keypoint Matching and Validation

The keypoint matching process is based on comparing ORB descriptors, which results
in a ranked list based on Hamming distances. The comparison occurs between two
sets of keypoints: those detected in the current frame and those saved in the keypoint
database of the object.

Reducing the set of keypoints enhances the efficiency of the matching process with
a larger number of KPs and provides an opportunity to interpret the ranking within
the matching list. The goal of validation is:

o Interpretation and validation of the keypoint matching list, for example, con-
sidering the ORB ranking in subsequent steps.
« Filtering the keypoint set for higher-quality analyses and faster execution.

e Updating the keypoint database and determining the position of the object if
no significant changes have occurred.
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The objective is to determine at this stage whether further 3D analysis is required
or if the keypoint set associated with the object and the 6D position can be updated
appropriately.

3. Analysis of Matching List

The result of keypoint matching and validation can lead in two directions:

(a) If keypoint matching is consistent and of high quality, the object’s 3D position
can be estimated, and the keypoint database can be updated without requiring
further detailed analysis.

(b) If the matching result is unsatisfactory or not convincing enough, a 3D analysis
of the keypoints may be necessary.

During validation, other indicators and information can be considered alongside the
ORB ranking, such as:

e Tessellation information related to the object model.

o Analysis of object sides and positions determined by the camera model.

4.5 Keypoint Management

Knowing the object’s 6D pose and visible sides helps to intelligently manage the keypoint
database, the spatial filtering of the matched and newly identified members of the keypoint
set, respectively the association of keypoints with the visible object sides. The outcome
of this also accelerates of the next matching process, by focusing the processing only on
the subset of keypoints assigned to the actually visible sides of the object. This allows
the currently detected keypoints to be evaluated based on context, such as examining
the disappearance, orientation, or emergence of new keypoints. Also helps to assess the
potential displacement or occlusion of the object.

The set of keypoints placed on the 3D object is categorized and stored per side in previous
iterations, enabling efficient searching and analysis. The sides of the object model are
divided into segments (e.g., Side A, B further subdivided into segments I, II, III), as
illustrated in Figure 4.3. This allows for simple spatial categorization of keypoints without
requiring complex geospatial tools.

Visible sides

| PO X

Obj Model | 4 v

(3D BB)

Figure 4.3: Visible sides with regions and an example of a point
drifting out of the camera field of view.

The knowledge of side lengths and the associated keypoints aids in analyzing keypoint
stability and preparing for the disappearance of keypoints. It is worth combining this
information with the filtering and spatial characteristics of keypoints and other relevant
data for more efficient analysis.
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Chapter 5

Implementation

This chapter delves into the implementation details of the proposed solution, outlining the
key components and processes that drive its functionality. The feature matcher, central
to the tracking algorithm, is explained in depth, including its handling of dynamic-static
keypoint separation, the use of Rols, and the integration of keypoints into the Key Point
Database (KPDB). Additionally, the chapter explores the steps of the tracker, from initial
detection to the identification process, and discusses the challenges of tracking multiple dy-
namic objects simultaneously. The implementation builds upon the theoretical framework
presented earlier, with a focus on real-world applicability, efficiency, and adaptability.

5.1 Dynamic-Static ORB Keypoint Separation

Classifying whether a given pixel belongs to the static background or a moving object
without relying on an object detector can be achieved by analyzing the intrinsic values
of ORB feature points. Specifically, the internal ORB characteristics change differently
between matched keypoints depending on whether the points belong to the static back-
ground or the dynamic object. When the camera remains relatively stable and the object
moves (i.e., it is dynamic), the keypoints on the object exhibit greater changes compared
to those on the static background. This behavior is supported by the results presented
later in Section 6.3.

Before delving into these figures, consider Figure 5.1, which illustrates two clearly distinct
sets of matches. Matches where the keypoints and their connecting lines are red represent
dynamic keypoints, assuming the object has moved to some extent (in this example, the
lower image is 10 cm further away from the camera than the upper image). In contrast,
matches represented by green points and lines indicate keypoints that remained unchanged
between the two images and are thus considered static.

One of the primary objectives of this research is to demonstrate that this distinction
between static and dynamic keypoints can be achieved using the intrinsic values of ORB
feature points.

The measurements are detailed in the following list, but some clarification on their orga-
nization is necessary. While the ideal and contaminated scenarios are explained within
the list, the concepts of set-based and matched-point-based approaches require further
elaboration.
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Figure 5.1: Illustration of dynamic (red) and static points (green)

Set-Based Approach: This approach treats keypoints as sets, evaluating a specific
property of all points in the set, computing the average value of that property, and then
comparing the averages across sets.

Matched-Point-Based Approach: This approach calculates differences in specific
properties (e.g., angle) between matched keypoint pairs. The differences for all pairs
are then averaged to provide a final result.

List Explaining the Ideal and Contaminated Scenarios

1. Ideal Scenario: This scenario represents an idealized condition where noise is
entirely absent, and comparisons are made with perfect precision. Here, we utilize
masks from both images, ensuring that points are clearly and exclusively categorized
into one of two sets: internal (belonging to the object) or external (belonging to the
background).

e Set-Based: ORB keypoint detection is applied to both images, and each im-
age’s keypoints are split into internal and external sets using segmentation
masks. For the internal keypoints in the first frame, average values are cal-
culated for each ORB characteristic (angle, response, size, and octave, as de-
scribed in 2.3). These averages are then compared with the averages of internal
keypoints in the second frame.

e« Matched-Point-Based: Descriptors from ORB keypoint detection in both
images are matched. The matches are split into two groups: internal matches,
where both keypoints lie within the mask in their respective images, and exter-
nal matches, where both keypoints lie outside the mask. Differences in ORB
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characteristics between matched points are calculated for each group, and the
averages and standard deviations of these differences are computed.

2. Contaminated Environment Scenario: In a realistic scenario, perfect masks are
not available, leading to potential contamination of keypoint sets. For example, a
keypoint on the toy car may be incorrectly matched with a point in the background.
This contamination is expected to impact the results, particularly in terms of in-
creased variance and altered averages. Notably, the internal (object) set remains
uncontaminated in this case, as the initial mask ensures no extraneous keypoints
are included. However, the external (environment) set becomes contaminated with
points from the internal set.

o Set-Based: In the first image, keypoints are separated using the segmentation
mask as before. For the second image, internal keypoints are selected based on
matches with internal keypoints from the first image. Unmatched keypoints are
classified as external, resulting in contamination of the environment set. Then,
the average values are calculated as in the previous set-based case.

e Matched-Point-Based: Using the same internal and external sets as in the
contaminated set-based approach, the differences in ORB characteristics are
calculated for all matched keypoint pairs within each group. Unlike the set-
based approach, where differences between averages are computed, here the
averages of individual (pair) differences are used.

The graphs illustrating these results have the 5 measurement scenarios on the horizontal
axis, each encompassing nine image pairs in very similar situations. These scenarios
specifically involve:

e Small Distance Change: Changing the object distance from 50 ¢cm to 52 cm with
different orientations.

¢ Medium Distance Change: Changing the object distance from 50 cm to 60 cm
with different orientations.

e Object Rotation at Close Range: Involves a 10-degree rotation at object dis-
tances of 50, 52, and 54 cm.

e« Object Rotation at Medium Distance: Involves a 10-degree rotation at object
distances of 152, 156, and 160 cm.

e« Object Rotation at Long Distance: Involves a 10-degree rotation at object
distances of 318 and 324 cm.

5.2 Feature Matcher Process

This section addresses the additional differences in the feature matcher compared to the
idealized process shown in Figure 4.2. While the steps may be familiar from the previous
architectural descriptions, Figure 5.2 highlights key differences. The steps are outlined as
follows:

e ORB Detection: ORB feature point detection is performed on the entire frame.
This step also includes the matching of points from the Key Point Database (KPDB).
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Figure 5.2: Operation of the implemented feature matcher.

(GT) Object segmentation: Object segmentation is executed for every frame,
even before the step it is intended to simulate (discussed further below in 'Filter by
mask’). This simplifies the implementation by reducing variability and also enables
evaluation using ground truth data. In the final solution, object segmentation or
detection will not be part of the main loop.

Get Rol-s: Acquire predicted Rol from the Displacement model.

Object moving?: This conditional step determines whether the object is likely
moving by comparing the predicted Rol with the Rol obtained from object seg-
mentation. If the distance between the centers of the two Rols exceeds 2 pixels (a
heuristic "magic number" currently used for evaluation), the object is classified as dy-
namic, and the din-stat point separation is triggered. In the finalized algorithm, this
information will be derived from more robust sources. For now, object segmentation
is used as a placeholder to simulate the intended functionality.

din-stat separation: The classification of keypoints as static ( ) or dynamic
(red) based on their intrinsic properties. This step gets skipped if the object is static,
since currently that case is not handled properly in the classification algorithm.

Filter Rol KPs & descriptors: Filter the remaining dynamic points further (or
all the points if the din-stat was skipped) by removing KPs that are outside of the
predicted Rol.

IDing: The KPs of the KPDB that belong to the object get matched to the remain-
ing KPs further reducing the number of KPs while increasing their quality.

Filter by mask: This step is currently substitutes the functionality of the voxel
matcher component 4.2. Using the mask gained from running the object segmenta-
tion we select new KPs from the current frame to put into the KPDB
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« Save KPs to KPDB: Save the current frames all KPs and the objects new KPs
into the KPDB.

5.3 Steps of tracker

Figure 5.3 illustrates the steps the tracker goes through under ideal conditions. The images
are numbered sequentially to reflect their order of execution.

1. Initial detection: The first image displays all the keypoints detected in the frame,
visualized as red points. Additionally, the ground truth Rol is shown, but this is
included solely for evaluation purposes.

2. Din-stat separation: The second image shows the state of the keypoints after the
dynamic-static (din-stat) separation. Most static keypoints have been filtered out,
although some remain, and a few object keypoints have also been lost.

3. Rol-based filtering: In the third image, keypoints are filtered based on the pre-
dicted Rol. This step removes distant keypoints that were not eliminated during the
din-stat separation.

4. Identification process: The final step involves matching the remaining keypoints
to the object’s keypoints stored in the KPDB. Once this step is complete, the pre-
sumed center of the object is calculated from the surviving keypoints. Subsequently,
new keypoints are added to the KPDB while the previous ones are removed.

In future implementations, the addition and removal of keypoints in the KPDB will be
managed by a more advanced algorithm to improve performance and accuracy.

All detected KPs on frame and Ground Truth Rol After din-stat separation

Figure 5.3: Steps of the tracker
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5.3.1 Multiple Dynamic Objects

Figure 5.4 demonstrates a special case involving multiple dynamic objects simultaneously.
The two moving objects in this scenario are a hand holding a paper box and the usual
LEGO car. On the left, all detected keypoints in the frame are shown as red points. On
the right, the result of the din-stat separation is displayed.

Apart from a few rogue points, the algorithm effectively filters out most static points,
leaving primarily the truly dynamic keypoints. The separation results in two distinct
clusters of keypoints, one on each dynamic object.

All detected‘ KPs

KPs after din-stat separation

.| [t

Figure 5.4: Operation of din-stat algorithm in presence of multi-
ple dynamic objects.
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Chapter 6

Evaluation

This chapter evaluates the proposed approach across a variety of controlled and real-world
conditions. It begins with a description of the test environment and data preparation, in-
cluding object segmentation via a trained model. Key experiments then examine the
effects of distance, rotation, and environmental factors on feature matching performance.
Additional analyses explore dynamic keypoint management, tessellation, and timing mea-
surements, demonstrating both the algorithm’s strengths and areas needing improvement.
Ultimately, these results inform future refinements, ensuring a more robust and eflicient
solution.

6.1 Test Environment

The images used for testing were captured in one of the rooms of Building I at the uni-
versity, using an OAK-D Pro W camera. The target object was a small LEGO car. Ap-
proximately 450 images were taken, capturing the object from various distances, angles,
and perspectives to ensure comprehensive coverage of scenarios relevant for subsequent
processing as we can see on Figure 6.1.
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Figure 6.1: Visualization of the research and evaluation setup
The images were categorized based on the following parameters:

o Distance Variation: Images were captured at six distinct distances within seven main
distance groups. The starting distances for these groups were 20, 50, 90, 140, 200,
300, and 500 cm, measured between the camera and the target object. Within each
group, incremental changes in distance were applied, with step sizes of 1, 2, 3, 4, 5,
6, and 20 cm. For example, the first set of distances included 20, 21, 22, 23, 24, and
25 cm.

o Rotation: At each distance, multiple profiles of the target object were captured.
The orientation directly facing the camera was defined as 0°. From this position, the
object was rotated clockwise around an anchor point at its front in 10° increments,
capturing images at angles of 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°.
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e Camera Movement: For this setup, the target object remained stationary at the 50
cm mark. Instead, the camera was shifted laterally to the right by 10, 20, 30, 40, and
50 cm. This movement resulted in apparent object rotations of approximately 11.31°,
21.801°, 30.964°, 38.66°, and 45°, while also introducing changes to the environment
in the captured images.

e Small Rotation: Additional images were taken at finer rotation increments of 2°
from the 50 cm distance. This was done because, as discussed later, rotations of 10°
already pose significant challenges for subsequent processing.

The algorithm itself must be tested and evaluated on appropriate data. For this purpose,
I captured videos of the LEGO car moving along various trajectories, including a straight
line, a rotated L-shape, a half-circle, a full circle, and free roaming. These videos were
recorded at multiple movement speeds to assess the algorithm’s performance under varying
conditions.

6.2 Object Segmentation Model

To enable proper testing without the need to manually draw a mask for the target object
in every new scenario—a process that would have been both unsustainable and incon-
sistent given the hundreds of images involved—I trained a segmentation model based on
Detectron2 using transfer learning. The result, shown in Figure 6.2, demonstrate that
the generated mask is highly accurate. To ensure consistency during testing and evalua-
tion, the generated masks were saved as separate images, with filenames referencing their
corresponding original images.

Figure 6.2: Operation of the Detectron2 segmentation model made
with transfer learning
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6.3 Measurements Demonstrating the Need for the Solution

As intuitively expected, the number of successful matches decreases as the distance be-
tween the camera and the object increases. Figure 6.3 illustrates the results of this mea-
surement. The trend lines confirm the assumption, showing a clear decreasing trend as
the distance grows. Given that 500 keypoints were detected in both images, the maximum
possible number of matches was also 500.
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Figure 6.3: Number of matches between an image taken at 20 cm
and other images at 0°, 30°, and 70° orientations.

Figure 6.4 presents how the number of keypoints detected on the object decreases as the
target object becomes smaller in the image. For this measurement, the detection algorithm
was configured to search for 500 keypoints. For example, when the toy car was positioned
at 0° and 105 cm from the camera, 157 keypoints were detected on the object.
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Figure 6.4: Number of keypoints on the object decreasing propor-
tionally with distance.

Figure 6.5 depicts the number of keypoints that can be matched as the target object
rotates around a fixed point while maintaining a constant distance from the camera. This
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measurement was taken at a distance of 99 cm from the object. The maximum number of
matches, as derived from previous measurements, averages approximately 120. The trend
line indicates a sharp drop in matches between 20° and 30° of rotation. Beyond this range,
consistent matches where the same keypoint is identified on the object become practically
nonexistent. In most cases, similar-looking points are matched, but they correspond to
completely different locations on the car. As the rotation angle increases, the probability
of correctly matching keypoints continues to decrease. If fortunate, a few accurate matches
may still be found at 30°.

Relation of matching and object rotation
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Figure 6.5: Number of matching keypoints decreasing proportion-
ally with rotation.

I also conducted measurements in which two images were taken, with 500 keypoints de-
tected in each, and then attempted to track the best matching 50 points across a sequence
of approximately 14 images. The images were captured sequentially to simulate the slow
distancing of the target object. If a keypoint could not be found in the next image, it was
eliminated from the set of keypoints searched in subsequent images. Manual verification
was later performed to determine whether the algorithm consistently identified the same
point throughout the sequence.

The results revealed that, out of 500 initial keypoints, only 3-4 survived a slow retreat of
1 meter, even when the object orientation remained constant. This scenario, involving a
gradual withdrawal, was the most favorable among all tested cases in terms of keypoint
tracking.

From these measurements, it can be concluded that dynamic keypoint management is
essential, as it is rare for a keypoint to be consistently matched across more than three
consecutive images.
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6.4 Measurements Leading to the Algorithm

Figure 6.6 presents a portion of the results from these measurements, specifically com-
paring ORB angle changes in ideal (top) and contaminated (bottom) scenarios. Since the
differences between the cases are quite similar, it suffices to analyze just one of them.
Based on the graphs, the following observations were made:

Mean difference between sets - ideal Mean difference between matched points -
ideal

m Environment Object

©
3

W Environment Object

ANGLE DIFFERENCE [°]
R
58888338
DIFFERENCE [
N oW oo s
5888

w15
| gu l
ﬁ ﬁ * b — 1 0 i * | ] —— —— —_— *
small distance medium object rotation object rotation object rotation small distance medium object rotation object rotation object rotation

change distance change  from close from midrange from far change distance change  fromclose  from midrange from far
MEASUREMENT CASE MEASUREMENT CASE

o

Mean difference between sets - c. env. Mean difference between matched points - c.
env.

® Environment  # Object

70 m Environment Object

ANGLE DIFFERENCE [°]

20 g 15 I [

wml ol ;

0 ﬁ 0 L | ] —— —— —_—
small distance medium object rotation object rotation object rotation small distance medium object rotation object rotation object rotation

change distance change  from close midrange far change distance change  from close midrange far
MEASUREMENT CASE MEASUREMENT CASE

Figure 6.6: Average angle differences between ORB keypoints. The left side shows
set-based averages, while the right side shows matching-based averages.
The ideal scenario is depicted at the top, and the contaminated scenario
is at the bottom.

o The object consistently exhibits greater orientation changes than the environment,
whether due to distance increase or rotation. This holds true for both the general
set-based and matched-point-based measurements. Based on this, the moving or
dynamic object appears distinguishable from its static environment.

o As the distance to the object increases, the difference in changes between the object
and the environment decreases in the case of rotation. This trend is not observed
when simply increasing the distance between the camera and the object while keep-
ing the rotation fixed, possibly because testing did not occur at sufficiently large
distances.

o Rotation induces greater changes than simply increasing the distance, particularly
at close distances.

o In the matching-based scenario, the difference values are more moderate (approxi-
mately half as much as in the set-based measurements).

e In the case of environmental contamination, the differences are further moderated.
However, a significant gap between the object and the environment remains in the
matched-point-based measurements. In contrast, for set-based measurements, the
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average difference and standard deviation of the environment drastically increase,
thereby greatly reducing the ability to distinguish it from the object.

The set-based approach did not yield fruitful results in distinguishing keypoints, espe-
cially compared to the matched-point-based approach. The matched-point-based approach
proved to be more straightforward and easily applicable for the development of the tracker.
For this reason, the data obtained from the matched-point-based measurements (primar-
ily thresholds) were used in the creation of the algorithm, and I will primarily showcase
graphs that highlight the results of these measurements.
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Figure 6.7: Average angle differences between matched ORB keypoints at dif-
ferent distances from the camera in the category of small distance
changes.

Let us take a look at Figure 6.7, which zooms into the small distance change scenario of
the matched-point-based approach under ideal conditions. Specifically, it highlights the
first column pair of the top-right graph in Figure 6.6. This scenario represents the smallest
observed difference between the object and the environment, consistent with our current
understanding.

Despite the minimal difference in this case, there is still a significant enough gap between
the object and the environment to establish distinct thresholds. These thresholds can
indicate when the difference between two points suggests that they are not static and
represent a true positive match. Ideally, in the case of a true positive match, such a
difference would imply that the keypoints are indeed located on the object. However, it is
currently unclear how to handle false matches—instances where one keypoint lies on the
environment but is incorrectly matched with the object—as their intrinsic differences can
vary significantly.

The figure also demonstrates that as the object moves farther from the camera, differ-
entiating it from the environment becomes increasingly challenging, even under optimal
conditions. Nonetheless, a discernible and exploitable difference persists, offering a solid
basis for the development of effective thresholds.
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The next figure, Figure 6.8, shows changes in the response intrinsic characteristic of ORB
keypoints. For distance changes alone, this characteristic does not provide much mean-
ingful insight; however, in the ideal case, it can indicate the object’s rotation. While
not sufficient on its own, it could be used to reinforce results when combined with other
characteristics. This figure also highlights how a few keypoints that infiltrate the envi-
ronment can distort the interpretation of characteristics. In the contaminated scenario,
the environment exhibits uniform changes, while the object shows variability, making it
challenging to extract actionable information.
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Figure 6.8: Mean response differences between ORB keypoints. Both graphs show

set-based results, but the left one is of the ideal case, while the right
one is with contaminated environment.

Finally, from this category, Figure 6.9 presents the results for the size characteristic of ORB
keypoints. As the findings for the octave characteristic are almost identical, a separate
discussion is unnecessary. The following observations were made:
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A similar relationship between rotation and distance was observed as with the angle
characteristic: farther objects produce smaller deviations, though this is only evident
in the matched-point-based scenario.

In every scenario, there is a significant difference in the changes between the object
and the environment, highlighting the potential for distinguishing dynamic objects.
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change distance change from close midrange far change distance change from close midrange far

MEASUREMENT CASE MEASUREMENT CASE

I

SIZE DIFFERENCE

Figure 6.9: Average size differences between ORB keypoints. On the left are set-

based averages, while on the right are matching-based averages.

6.4.1 Case of Camera Displacement

The previously presented measurements assume a practically static camera; however, this
is rarely the case in real-world environments. Under these conditions, mostly chaotic
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behavior is observed: in some cases, the object exhibits greater variation, while in others,
the environment does. Thus far, no reliable characteristic or combination of metrics has
been identified that can accurately predict whether a changing feature is part of the object
in these scenarios.

Idealis

Szennyezett

Figure 6.10: PCA results visualized as ellipses for images at 0° and 10° orien-
tation from Table 6.1. The green dots indicate the point set used
for PCA.

6.4.2 Tessellation Analysis

In keypoint tessellation, we do not necessarily focus on the 2D keypoint (KP) coordi-
nates—since these coordinates are likely to shift across consecutive frames due to perspec-
tive changes—but rather on their relative structural differences. Metrics such as distances
or angles between point pairs and eigenvalue ratios are used to assess whether the charac-
teristics of the compared sets remain consistent or change over time. The construction of
tessellations, whether based on relative or absolute coordinates, depends on camera move-
ment. In cases where the camera movement can be considered constant, distance-based
calculations may also be feasible. The metrics and methods outlined in Section 2.4.1 were
used to evaluate the tessellations.

.. Average | Standard Aspect .
Condition Distangce Deviation | Ratio C(f)mparison Variance Coverage
0 - 10 - ideal 108.941 41.043 0.172 1.145
0-10- cont. | 380.838 274.497 2.814 0.055
0 - 30 - ideal 149.953 64.32 0.445 1.047
0-30- cont. | 412.809 254.569 2.669 0.052
0 - 60 - ideal 185.246 92.221 0.328 0.642
0-60 - cont. | 415.402 246.9 2.595 0.053

Table 6.1: Tessellation metrics at 10°, 30°, and 60° rotations with an object distance of
50 cm.

Table 6.1 provides a subset of tessellation test results. The metrics, as described in Sec-
tion 2.4.1, are used to quantify the quality and consistency of keypoints across various
conditions. The corresponding images and visualizations for the first two rows of the table
are shown in Figure 6.10. In the ideal case (top half of Figure 6.10), when the points of
an object are compared with points from the same object in subsequent frames, a reason-
able number of acceptable matches are found with relatively high accuracy. This result is
reflected in metrics such as variance coverage, which is greater than 1. Conversely, in the
contaminated case (bottom half of Figure 6.10), where the points from the first image are
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compared with all points in the second image, the PCA metrics reveal significant differ-
ences. These differences are visually evident from the larger ellipse size, indicating a less
consistent point set.

Idealis

Szennyezett

Figure 6.11: PCA results visualized as ellipses for images at 0° and 60° orien-
tation from Table 6.1. The green dots indicate the point set used
for PCA.

Based on these observations, tessellation analysis will primarily serve as a method to
validate the quality of the obtained keypoint sets. This method is not currently utilized
by the feature matcher at any stage of its process. However, it shows promise and is
planned to be integrated into the system as a validation mechanism.

Figure 6.11 provides a similar visualization for a larger orientation change. While the
variance coverage metric does not reach a value of 1, there is still a significant difference
between the ideal and contaminated cases, both numerically and visually.

Figure 6.12: The investigated trajectories visualized on real footage. The red
trajectory is of the fast and slow L, green is of the ’big circle’, and
the blue trajectory belongs to the fast and slow ’arc’.

6.5 Tested Trajectories

Figure 6.12 shows several of the trajectories used in the subsequent measurements, chosen
for their ease of comparison across multiple parameters. The figure features three distinct,
color-coded, and dotted trajectories, with arrows indicating their direction of movement.
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X Position

Y Position

The measuring tape visible at the bottom of the image is 1 meter long and positioned
approximately 80 centimeters away from the camera. The farthest point of the 'big circle’
trajectory is located around 2 meters from the camera.
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Figure 6.13: Comparison of individual and merged trajectories of the tracker
and its ground truth on the ’slow_ arc’ scenario.

Figure 6.13 illustrates the accuracy of the feature matcher tracker on one of the prerecorded
trajectories, referred to as the "slow arc'. Here, "slow" indicates a movement speed of
approximately 15%7, while "arc" denotes a half-circle trajectory.

At the top of the graph, the X and Y pixel positions are plotted on the Y-axis, with the
corresponding frame numbers on the X-axis. The bottom section of the figure displays
the merged trajectory derived from the 2D points. Each graph contains two lines: one
representing the tracker’s output and the other representing the ground truth, obtained
using object segmentation. It is important to note that the evaluation of trajectories was
conducted using OpenCV, which uses a coordinate system with the origin point at the
top-left corner. As a result, the trajectories depicted in Figures 6.13 and 6.15 have their
Y-coordinates inverted compared to their natural orientation as shown in Figure 6.12.

To provide a sense of scale, one pixel in this specific measurements corresponds to approx-
imately 0.9 millimeters. Based on this, the average distance between the tracker’s results
and the ground truth is approximately 2.2 centimeters. It is important to note that the
average distance values shown in Figure 6.14, which were used to make this deduction,
only include frames where both tracker data and ground truth data are available. If the
tracker fails to provide data for a frame, the corresponding ground truth data is excluded
from the calculation.
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Figure 6.14: Average distance between the trackers result and the ground truth.

Not all scenarios were favorable to the tracker. In the top-left quadrant of Figure 6.15, we
observe that when the movement speed increased to approximately 28<*) and the object
simultaneously turned while closing its distance to the camera, most of the track was lost.
The exact reasons for this failure are still under investigation. One of the most likely
explanations is the presence of motion blur, which occurs when factors such as high speed,
specific perspectives, and relative positioning to the camera align. Interestingly, in the
presence of strong motion blur, the novel din-stat separation drops most of the keypoints
from the object. This results in the tracker failing to identify and calculate the 2D position,
even though the din-stat separation previously appeared sufficient for identifying moving
keypoint pairs. While motion blur also reduces the number of detected and subsequently
matched keypoints, its impact on the din-stat separation is more pronounced, leading to
a greater degradation in performance. This effect is even more evident in the ’fast_ L’
scenario (bottom-left quadrant of the figure). In this case, when the object moves perpen-
dicularly to the camera at its maximum speed of approximately 31.25<", the tracker loses
the object entirely. Conversely, when the object follows the same trajectory (bottom-right
quadrant of the figure) but at a slower speed, tracking remains mostly continuous and
closely aligns with the ground truth.

The challenges encountered on the straight part of the ’fast L’ trajectory can be attributed
to a combination of subtle differences in keypoint characteristics and the limitations of the
current din-stat separation method. The angle differences between matched keypoints, as
observed in the data, often fall below the threshold of 3, which was established as the
minimum difference for reliable separation in previous measurements. This threshold,
however, is not robust enough to distinguish between dynamic points on the object and
points from the environment, leading to the rejection of a significant number of valid
keypoints.

Other keypoint characteristics, such as size, remain unchanged in this scenario, rendering
them ineffective for separation. While response values exhibit variations, their behavior
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needs to be further analyzed, particularly in video scenarios, to better understand their
contribution to object tracking.

Interestingly, the difficulty faced by the tracker does not seem to be solely related to speed,
as certain sections of the trajectory still show effective separation. This suggests that the
fast straight trajectory differs sufficiently from the measurement scenarios used during
development, exposing gaps in the algorithm’s ability to generalize.

To address this issue, the threshold could be adjusted, and future work could focus on
uncovering deeper relationships between movement types and parameter variations. A po-
tential quick fix might involve lowering the threshold to 0.5, which still effectively discards
most static points but retains a greater number of keypoints overall. This adjustment
would shift some of the load and responsibility to other steps, such as Rol filtering and
IDing, to eliminate invalid keypoints. Furthermore, exploring more adaptive methods for
distinguishing between dynamic and static points could enhance the tracker’s robustness
and reliability across a wider range of scenarios.
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Figure 6.15: 2D trajectories of the measurement cases of fast_arc - top left,
big_ circle - top right, fast_ L - bottom left and slow__L - bottom right.

Figure 6.16 highlights the significant impact of high movement speed and motion blur on
the tracker’s success rate. The "straight" scenario, involving a trajectory perpendicular to
the camera, is particularly challenging in its high-speed version, as it combines factors that
exacerbate the tracker’s current limitations. This is evident in the results shown. Con-
versely, in scenarios classified as "slow," the percentage of frames with failed identification
cases is reduced to less than 6%.

6.5.1 Timings

The ability for the algorithm to run efficiently is critical, as the ultimate goal is to achieve
60 FPS on a CPU. Despite this aspiration, most of the tests were conducted on frames
with a resolution of 1920x1080 while searching for 1000 ORB feature points. This setup
was chosen to facilitate testing and measurements. Higher resolution aids in identifying
quality feature points, and searching for 1000 keypoints increases the likelihood of finding
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Figure 6.16: Decimal percentage of failed identification in fast vs
slow measurement cases

a sufficient number on the object, simplifying the filtering and identification processes.
However, this configuration is quite detrimental to timing performance.

Timing values, as shown in Figure 6.17, reveal that the most time-consuming step is cur-
rently ORB feature detection, which takes over 25 ms per frame. While this is a significant
bottleneck, it is expected to improve with further optimization. Several approaches can
help reduce the processing time. The most impactful variable is lowering the resolution
of the input frames, which can be achieved either by capturing them natively at a lower
resolution or by applying post-processing. Another option is to crop Regions of Interest
(Rols) from the frame and perform feature detection only on smaller sections of the im-
age. Additionally, certain ORB parameters, such as limiting its pyramid levels, can further
reduce computation time.

Lowering the resolution to 1280x720 already reduces detection time to approximately 12
ms per frame. However, if the goal is to achieve 60 FPS, which equates to 16.6 ms per
frame for the entire pipeline, additional optimizations will be necessary.
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Chapter 7

Summary

This thesis has explored innovative approaches to visual object tracking tailored for Ex-
tended Reality (XR) applications, a field demanding high precision, real-time performance,
and robust adaptation to dynamic environments. The research focused on integrating se-
mantic knowledge into tracking frameworks to improve performance, particularly in XR
contexts where latency and accuracy are critical.

1. Comprehensive Overview of Tracking Technologies: The study began by
surveying the theoretical foundations of object tracking, including single and
multi-object tracking (SOT and MOT), and state-of-the-art advancements such as
tracking-by-detection and end-to-end methodologies. Metrics for evaluation and
technologies like ORB feature extraction and tessellation analysis were also dis-
cussed.

2. Proposed Feature Matching Framework: A novel, semantically enhanced
tracking framework was developed, leveraging object detection, ORB features and
various filtering, analysis steps (e.g. principal component analysis).

3. Methodological Innovation: The framework introduced a novel way of classifi-
cation of keypoints as static or dynamic, enhancing semantic filtering.

4. Evaluation and Performance Analysis: Performance evaluations revealed that
the framework demonstrated reliable tracking in scenarios containing normal or rel-
atively slow motion but encountered challenges in high-speed motion environments.
These findings highlight the potential of integrating semantic insights into object
tracking while emphasizing the need for further refinement to improve robustness
and adaptability under dynamic conditions.

7.1 Limitations

Despite its strengths, the framework has limitations:

e Certain modules rely on manual tuning of parameters, which could be automated
for broader applicability.

e The dynamic-static keypoint separation currently functions only with a static cam-
era, as further research is required to identify an exploitable correlation among in-
trinsic parameters of ORB keypoints. Fast, perpendicular motion near the camera —
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at a distance of approximately 1.2 meters and a speed exceeding 30+ — significantly
degrades the algorithm’s ability to retain the majority of valid keypoints.

7.2 Future work

A broader range of testing scenarios and datasets is necessary to better understand the
algorithm’s limitations and strengths. Collecting and analyzing more video footage un-
der diverse environmental conditions, object types, and movement patterns will provide
valuable insights for improving robustness and generalization.

Future efforts should focus on creating an adaptive and automated mechanism to adjust
parameters dynamically, tailoring the algorithm to suit varying environmental conditions
and object behaviors in real time.

Focus on implementing and evaluating keypoint handling in 3D space, as outlined in
Section 4.5. This involves leveraging the concept of visible object sides to refine keypoint
selection and processing. By incorporating 3D spatial information, the algorithm could
improve accuracy in dynamic scenarios, better account for occlusions, and enhance overall
robustness in identifying and tracking objects across frames. It is also the first step to
occlusion handling.

Enhancing the efficiency of ORB keypoint detection is crucial for meeting real-time re-
quirements. Parallel processing techniques, focused detection within Regions of Interest
(Rols), and determining an optimal resolution for detection (balancing keypoint qual-
ity and quantity) should be investigated. Additionally, optimizing the matching process
to operate effectively with only the minimal necessary number of keypoints will further
streamline the algorithm while preserving accuracy.
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