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Összefoglaló 

Az 5G hálózatok bevezetése és térhódítása várhatóan jelentős átalakulást fog 

eredményezni az élet számos területén. A nagyobb sávszélességnek, kis késleltetésnek és 

a rugalmas hálózati strukúrának köszönhetően olyan új alkalmazási területek kerülnek 

majd előtérbe, mint az Ipar 4.0, az önvezető járművek és az okos város, de az 

egészségügyben, a tömegközlekedésben, és az energiagazdálkodásban is radikális 

fejlődésre számíthatunk a mobilhálózatok új generációjának köszönhetően. 

A felsorolt példák közül is számos esetben elengedhetetlen a mobilhálózathoz 

kapcsolódó eszközök pontos és megbízható helymeghatározása. Különösen összetett 

feladat a beltéri pozícionálás, ahol a legnagyobb kihívást a beltéri jelterjedési 

sajátosságok jelentik. Az ismeretlen helyzetű mobileszköz koordinátáinak meghatározása 

speciális referencia-jelek segítségével történik. Beltéri környezetben a jelterjedést 

gyakran nehezítik falak és egyéb akadályok, amik a referencia-jelek csillapítását, 

visszaverődését és szóródását okozzák. Ezek miatt a hátrányos hatások miatt nehéz olyan 

beltéri helymeghatározó rendszert alkotni, amely elfogadható telepítési és üzemeltetési 

költségek mellett képes az elvárt pontosságot biztosítani. Egy ígéretes megoldási 

alternatíva az 5G mobilhálózaton keresztül történő pozícionálás, mivel megbízható, 

eszközfüggetlen helymeghatározást tesz lehetővé járulékos telepítési költségek nélkül. 

Ebben az esetben a fő kérdés, hogy a pontossági követelményeknek képes-e megfelelni a 

redszerünk. 

A diplomamunkámban bemutatom, hogy szoftveresen milyen lehetőségek vannak 

a pontosság növelésére, illetve milyen algoritmusokkal lehet ellensúlyozni a beltéri 

jelterjedésből adódó hátrányokat. Ezenkívül implementálok egy vételi időkülönbség 

(Time Difference of Arrival, TDOA) mérés szimulátort, amely figyelembe veszi a beltéri 

jelterjedés jellemzőit is, és más hatásokat, amik a TDOA alapú helymeghatározást 

befolyásolják. Ezt követően több különböző módszer kombinálásával megalkotok egy új 

pozícionáló algoritmust, és a saját készítésű szimulátor segítségével demonstrálom, hogy 

milyen pontosság érhető el ezzel az új technikával a különböző körülmények 

függvényében. 



 

 

Abstract 

The deployment and expansion of 5G mobile networks will bring a radical change 

in several aspects of our life. The higher bandwidth, low latency, and flexible network 

structure are key enablers for new use-cases, like Industry 4.0, autonomous vehicles, and 

smart cities. But substantial changes are expected in the field of healthcare, public 

transportation, and energy management as well.  

Many of these applications require accurate location estimation of devices that are 

connected to the cellular network. Indoor positioning is a particularly complex problem, 

where indoor propagation properties are the greatest challenge. Positioning Reference 

Signals (PRS) are used to calculate the position estimate of a mobile device. Because of 

walls and other obstacles, these signals suffer from reflection, refraction, and attenuation. 

These impairments make it hard to construct an indoor positioning system, that is cost-

effective and accurate at the same time. 5G network-based localization is a promising 

solution to this problem because it enables reliable, device-agnostic position estimation 

without additional installation costs. In this case, meeting accuracy requirements is the 

key challenge. 

In my thesis work, I show how is it possible to enhance accuracy in the positioning 

software, including multipath and Non-Line-of-Sight mitigation algorithms. I implement 

a Time Difference of Arrival (TDOA) measurement simulator, considering indoor 

propagation characteristics and other impairments affecting the TDOA positioning. After 

that, I combine two different approaches to produce a novel positioning algorithm, that is 

robust to propagation challenges. Finally, I use this simulator to demonstrate the expected 

accuracy of the new positioning algorithm. 
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1 Introduction 

1.1 Motivation 

Mobile communication is undoubtfully one of the most popular technologies in 

the world: almost everybody is carrying around a cellphone in their pocket. They are part 

of our everyday life, making it more comfortable and connecting people since the very 

beginning of the mobile network evolution. 

Nowadays not only people are connected through the mobile communication 

system, but thanks to the Internet of Things and Industry 4.0 more and more devices are 

getting involved. Many different sectors make use of this reliable, widely available, and 

ever-evolving service. The time around 2020 is considered as a breakthrough from a 

mobile technology point of view, because of the deployment of the first commercial 5G 

networks [1]. 5G is expected to bring radical changes in the telecommunications sector, 

enabling a whole bunch of new use-cases with its high data rate, low latency, and energy 

efficiency. Many of these use-cases require device positioning. This functionality is used 

for emergency call localization for a long time, but the demand for it has significantly 

increased in the last years [2]. Automated industries, location-based services, and traffic- 

and transport services show a high interest in being able to localize mobile equipment 

with the assistance of the mobile communication network. 

The main advantages of this method compared to other popular positioning 

methods, like GPS (Global Positioning System) is wide availability and device 

agnosticism. This means, that mobile network-based positioning requires no special 

resources from the devices: it works with the simplest IoT device as well as high precision 

industrial robot arm. Besides, it can be used under such circumstances, where GPS is not 

available: indoors, underground, underwater, and dense-urban areas. 

1.2 Problem statement 

Accurate indoor positioning is a complex engineering problem [3], mainly 

because of the radio signal propagation challenges. Office buildings, factories full of 

metal objects, underground mines, and shopping malls are harsh environments: there are 

surfaces made of a wide range of materials, walls with different thicknesses, moving 

objects like people or machines, and typically many other devices transmitting radio 
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signals. All these factors are causing severe multipath, shadowing, scattering, and 

interference, which makes mobile equipment positioning a challenging task. 

Network-based positioning builds on different features of the radio waves: Time 

of Arrival (TOA), Angle of Arrival (AOA) or received signal strength. The problem is, 

these attributes have an erratic behavior due to the Non-Line of Sight (NLOS) 

propagation, in contrast to free-space propagation, where all of these characteristics can 

be described with simple models. Fortunately, there are many options for mitigating the 

NLOS effect on positioning, as I summarize in Chapter  2.6. 

1.3 Current research 

The research background of indoor positioning is abundant, a tremendous amount 

of studies can be found about this topic from the last 25 years, and new studies are 

published continuously to this day. Despite that, there is not a single solution that is 

widely spread and universally applicable to most of the indoor use-cases, like the GPS 

positioning is in an outdoor environment. Most of the proposed solutions are only 

applicable in specific circumstances. 

The most popular technologies for indoor location estimation include UWB 

(Ultra-Wide Band radio), Bluetooth, and Mobile Network-based solutions [4]. UWB is 

known to be the most accurate method with centimeter-level accuracy, Bluetooth is the 

most affordable and easily available from the above-mentioned solutions, and Mobile 

Network positioning has the advantage that it can be deployed on the already built-out 

infrastructure. 

Wireless target location estimation is a two-step process. In the first step, received 

signal strength, TOA, or AOA measurements are gathered. After that, the measurements 

are processed to determine the position. Various positioning methods are available for all 

kinds of measurement inputs. 

1.4 Scope 

Implementing a complete indoor location estimation system, that is generally 

applicable, reliable, and accurate enough is a yet unresolved challenge. 

In this Thesis work, I aim to contribute to deploying such a system on a small cell 

5G mobile network. The localization is based on Time Difference of Arrival (TDOA) 
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measurements, and it is device-agnostic, which means it applies to every standard 5G 

mobile equipment right out of the box. 

To achieve notably good accuracy, relative timing error (rTE) corrections and 

multipath mitigation is applied to TDOA measurements. The system is intended to 

provide high accuracy position estimates in a wide variety of environments, but the 

prototype system will be deployed in a semi-open office area. The goal is setting up a 

functional prototype as an end-to-end solution, being able to present the capabilities of 

the system and provide a blueprint for future implementation of a commercial-grade, 

scalable solution. 

1.5 Approach 

Setting up a mobile equipment localization system on a 5G network is a highly 

collaborative task, including lots of different knowledge areas, like signal propagation, 

signal processing, telecommunication standards, system integration, and positioning 

algorithms. 

To deploying a prototype as quickly as possible, fulfilling all the requirements, 

effective teamwork is fundamental. While every developer taking part in this project has 

his and her specific knowledge, an overall understanding of the whole system is also 

necessary to bind the different aspects into a working solution. 

My primary knowledge area in this project is positioning methods, which means 

I’m responsible for implementing the location estimation algorithm, including NLOS 

mitigation. My part also includes some integration, propagation, and synchronization 

aspects. Integration is required to insert my location estimation algorithm as a component 

in the network positioning system. Synchronization insights are necessary for being able 

to understand and apply relative Time Error (rTE) corrections to the TDOA 

measurements. I also need to build competence in the radio signal propagation properties 

field, to better understand multipath and NLOS conditions. 

The position estimation algorithm is developed based on simulated TDOA 

measurements and it is going to be verified with real network measurements in 2021. 

Based on 5G live network measurement results, improvements might be needed, and 

experiences can be drawn. 
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1.6 Thesis Organization 

The remainder of this thesis is organized into 5 Chapters. My research begins by 

investigating current time-based positioning methods, network synchronization methods, 

and indoor propagation environment properties including NLOS simulation and 

elimination methods. 

Then I present the solution architecture, system information, limitations, and the 

detailed task specification with the requirements in Chapter 3. 

In Chapter 4 I focus on the main problem: implementing a time-based, indoor, 3D 

positioning algorithm, which is robust to NLOS conditions and applies rTE corrections 

to improve accuracy. In this Chapter, I rely on previously studied theories and combine 

them for a reliable, accurate mobile equipment localization. In the first part of my work, 

I’m using simulated TDOA measurements as input for my location estimation algorithm. 

In Chapter 5 I evaluate the positioning performance of the developed positioning 

method. I investigate the robustness to changes in the propagation environment, and I 

analyze the possibilities to improve accuracy. 

Finally, I summarize my work in Chapter 6 and present my plans regarding future 

work. 
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2 Background 

In Chapter 2  I summarize the theoretical background knowledge that I gathered 

in the research phase of my thesis work. In the latter part of this Thesis, I am going to rely 

on the information and references collected here. 

2.1 Time-based localization techniques 

There is a wide variety of network-based localization techniques, and one possible 

classification of them is based on the type of the measurement input. Radio signals have 

three main features that can be measured in the receiver: received signal strength (also 

called RSSI, Received Signal Strength Indicator), Time of Arrival (TOA), and Angle of 

Arrival (AOA). The location of a target device with an unknown position can be 

determined based on these measurements. 

In this paper, I only consider the category of time-based positioning methods [5], 

because my assignment is to implement such a method, see Chapters 3 and 4. This choice 

is based on the fact, that time-based position estimation is a good trade-off between 

accuracy and complexity: typically, more accurate than power-based methods, and less 

complex than angle-based methods. They are also suitable for indoor positioning because 

of the relatively high NLOS error tolerance. 

The basic methods I describe in this chapter, are independent of the network type: 

they are applicable to Wi-Fi, Bluetooth, UWB, or any other radio network, however, the 

position estimator algorithms might be different depending on the characteristics of the 

network, as I explain later in Chapter 2.2 and 2.6. 

The subject of my Thesis is the cellular mobile network, so for the sake of analogy 

with the next parts of this paper, I’m going to use the mobile network terminology. 

2.1.1 TOA-based positioning 

Time of Arrival can be measured by the receiver antenna, as shown in Figure 1. 

The location of a mobile device with an unknown position can be estimated based on 

TOA measurements with the following fundamental method [5]. 

Time-synchronization between the network and the target device is mandatory for 

TOA-based positioning, so the Time of Departure (TOD) of the positioning signal can be 



 

6 

measured as well. The Time of Flight (TOF) can be calculated as the difference between 

TOD and TOA, see Equation (1). Assuming that signals propagate at the speed of light in 

air, the length of the actual propagation path between transmitter and receiver can be 

determined, see Equation (2). 

𝐓𝐎𝐅 = 𝐓𝐎𝐀 −  𝐓𝐎𝐃 (1) 

𝐝 = 𝐜 ∗ 𝐓𝐎𝐅 (2) 

Where d stands for the length of the propagation path, and c is the speed of light. 

In ideal, free-space propagation d is equal to the Euclidean distance between the 

transmitter and receiver. Three TOA measurements yield three distances, and the 

unknown UE position can be calculated as the intersection point of three (or more) circles. 

 

Figure 1: TOA-based positioning illustration 

However, in an indoor propagation environment, the direct path is often blocked 

by an obstacle, and a reflected path might become dominant, which results in an elongated 

propagation path, as shown in Figure 2. As a consequence, the circles don’t intersect in a 

single point anymore. In this case, the position estimate can be calculated as the optimal 

solution of a cost function minimalization, see Chapter 2.2 for details.   
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Figure 2. Direct path blockage, and a dominant reflected path's effect on TOA-based positioning 

2.1.2 TDOA-based positioning 

Synchronization between the cellular network base stations and the target User 

Equipment (UE) is usually not feasible. If that is the case, the Time Difference of Arrival 

(TDOA) can be measured instead of TOA, see Figure 3.  

A TDOA measurement can be derived from the difference of two TOA 

measurements. This way, the unmeasurable TOD can be eliminated. Usually, the serving 

BS is selected as reference BS, and their TOA measurement is subtracted from all the 

other TOA measurements.  

𝑻𝑶𝑭𝒊 = 𝑻𝑶𝑨𝒊 −  𝑻𝑶𝑫 (3) 

𝑻𝑫𝑶𝑨𝒊,𝒓𝒆𝒇 = 𝑻𝑶𝑭𝒊 −  𝑻𝑶𝑭𝒓𝒆𝒇 = 𝑻𝑶𝑨𝒊 −  𝑻𝑶𝑨𝒓𝒆𝒇 (4) 

It can be seen from the above equations as well, that the Antenna Reference Points 

(ARPs) must be time-synchronized for TDOA-based positioning as well, so the TOD can 

be the same for all of them. The TDOA can be measured by the UE, without being 

synchronized with the network. 

 

Figure 3: TDOA positioning illustration 
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In this case, the location of the UE can be determined as the intersection point of 

two (or more) hyperbolas. The direct path blockage affects the TDOA positioning the 

same way as I showed in Figure 2: if one of the ARP’s direct paths is blocked, the 

hyperbola illustrating the TDOA measurement is shifted. 

2.2 Solution of the TDOA localization problem 

2.2.1 Problem formulation 

The (x,y,z) coordinates of an unknown UE can be calculated as the solution of a 

system of nonlinear equations based on TDOA measurements, assuming that the ARP 

coordinates (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) are known. This system of equations can be formulated as follows: 

𝒄 ∗ 𝑻𝑫𝑶𝑨𝒊,𝒓𝒆𝒇 = 𝒄 ∗ 𝑻𝑶𝑭𝒊 −  𝒄 ∗ 𝑻𝑶𝑭𝒓𝒆𝒇 =  𝒅𝒊 − 𝒅𝒓𝒆𝒇 (5) 

𝒅𝒊 =  𝒅𝒓𝒆𝒇 + 𝒄 ∗ 𝑻𝑫𝑶𝑨𝒊,𝒋 (6) 

𝒅𝒊 =  √(𝒙 − 𝒙𝒊)𝟐 + (𝒚 − 𝒚𝒊)𝟐 (7) 

(𝒅𝒓𝒆𝒇 + 𝒄 ∗ 𝑻𝑫𝑶𝑨𝒊,𝒓𝒆𝒇)𝟐 = (𝒙 − 𝒙𝒊)
𝟐 + (𝒚 − 𝒚𝒊)

𝟐 (8) 

Where di denotes the distance between the UE and i-th BS, where i goes from 1 to n, 

where n is the number of BSs. This way, we have a system of n nonlinear equations in 

the form of (8), where the unknowns are the UE coordinates. 

From here, it is straightforward, that at least 2 TDOA measurements are required 

for a 2D position estimate because it means we have 2 unknown variables: x and y. 

However, solving this set of nonlinear equations is difficult, but there are multiple 

solutions proposed for this problem. 

2.2.2 Taylor-series linearization solution 

One possible way to do it is by linearization of the (8) equations with the Taylor 

series method [6], and then iteratively calculating the optimal solution estimate by the 

local least squares (LS) solutions [7]. This method obtains a precise position estimate at 

reasonable noise levels but suffers from initial condition sensitivity and convergence 

difficulty [8]. Weighted least squares (WLS) is a generalized variant of traditional least 

square regression. It makes use of the knowledge of the variance of measurements, as it 

is used as a weighting factor.  
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2.2.3 Maximum-likelihood estimation 

ML estimators [9] [8] provide a closed-form solution; thus, they are less 

computation-intensive than iterative methods, but usually, they can’t make use of 

additional TDOA measurements to improve solution accuracy [10].  

In 1994, Chan proposed a simple and efficient estimator for the TDOA 

localization problem [9], which is widely used to this day, even in 5G positioning 

simulations [11]. 

2.3 TDOA measurement technique 

In this chapter, I summarize shortly how TOA measurements are carried out. As 

I derived in Equation (4), a TDOA measurement equals the difference between two TOA 

measurements.  

Positioning Reference Signals (PRS) are transmitted by the ARPs, and the TOA 

of the signal is determined based on the received Power Delay Profile (PDP), which is 

produced by sampling the received signal strength. The goal is to find the exact time when 

the transmitted signal reached the receiver. 

 

Figure 4. Illustration for different methods determining the TOA based on the PDP (source: [12]) 

There are multiple ways to this, as illustrated in Figure 4, but the most common 

method is choosing the sample with the highest received power. Technically, this is done 

by correlating the received signals [10], see Figure 5 for illustration. The cross-correlation 

function can be written as 
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�̂�𝒙𝒚(𝝉) =  
𝟏

𝑻 − 𝝉
∫ 𝒚𝟏(𝒕)𝒚𝟐(𝒕 − 𝝉)𝒅𝒕

𝑻

𝝉

 (9) 

where T is the observed interval, and we are looking for the 𝜏 that maximizes 

�̂�𝑥𝑦(𝜏) value as it is the measured TDOA.  

PRSs defined by 3GPP standards were chosen for having good correlation 

properties. However, under severe multipath propagation caused by good reflectors, it 

can be difficult to determine the reception time, because of the many multipath 

components it is impossible to distinguish the LOS (Line of Sight) path from NLOS (Non-

LOS) paths. 

 

Figure 5: TDOA measurement estimator block diagram 

2.4 Network synchronization 

As mentioned in Chapter 2.1, time synchronization between ARPs is mandatory 

for TDOA, and requirements are more stringent for localization than they are for 

communication purposes. [13] 

According to the 3GPP standard, TDD (Time Division Duplex) operation using a 

guard period between UL and DL transmissions: the network synchronization inaccuracy 

is 3 microseconds between any two radios [14]. Assuming that radio wave propagation 

speed equals the speed of light, a rule of thumb can be calculated, that 1ns error in timing 

causes 30cm error in positioning, so 3 microseconds synchronization error equals to 900 

meters error in positioning, which is unacceptable in indoor localization. Therefore, 

accurate and stable clock synchronization is essential for high accuracy TDOA 

positioning. 
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Three common methods for clock synchronization are GNSS (Global Navigation 

Satellite System), PTP (Precision Time Protocol, standardized in IEEE 1588), and 

Network Listening, which is a 3GPP standard for synchronizing eNodeBs. 

2.4.1 Clock drift and offset 

In mobile positioning, every ARPs have a clock equipped with a disciplined 

oscillator that is regulated by a synchronization reference (e.g. GNSS or PTP). The local 

time in an ARP can be expressed as: 

𝑪(𝒕) = (𝟏 + 𝜹)𝒕 + 𝝁 (10) 

where 𝛿 is the clock drift (frequency difference from real value), and 𝜇 is the clock 

offset (time difference from real-time), both being 0 in an ideal clock, however, they are 

nonzero in real clocks. Clock offset that is adequate for communications is generally 

assumed to be inadequate for purposes of positioning, so it should be corrected 

periodically with a synchronization technique. 

2.4.2 Network Listening 

Network Listening is a fairly new approach for clock synchronization in cellular 

mobile networks, defined in 3GPP TR 36.922 [15]. It can be used in scenarios where GPS 

and PTP are not applicable: a typical use-case for Network Listening is indoor macro-

cells synchronization.  

Indoor eNodeBs obtain their clock synchronization from the so-called Sync 

eNodeB, which is an outdoor radio equipped with a GNSS synchronization reference. 

Indoor eNodeBs periodically track synchronization signals from the Sync eNodeB to 

maintain synchronization. However, because of the nonidealities in the cellular network, 

the synchronization between eNodeBs contains Relative Timing Error (rTE), which 

impacts TDOA timing measurements, and thus indoor positioning accuracy. 

Relative timing errors can be monitored transparently, without affecting the clock 

control [16]. The method is based on the assumption, that the radio link between two RDs 

is symmetrical, even in NLOS indoor environment, so any asymmetries experienced 

between double-directional propagation channels are the result of rTE between eNodeB 

clocks. 
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Figure 6. Clock synchronization, and rTE effect on TDOA measurements 

The rTE correction observation process consists following steps (see Figure 6 for 

illustration): 

Node1 initiates TOA measurement to determine Time-of-Flight (𝑇𝑂𝐹1) to Node2. 

After that, 𝑇𝑂𝐹2  is measured in the opposite direction, from Node2 to Node1. 

Because of the channel symmetry, 𝑇𝑜𝐹1 is assumed to be equal to 𝑇𝑂𝐹2 . Any difference 

between them is due to the relative timing error between the two nodes. 

Based on the difference between the two ToF measurements, the relative time 

error between Node1 and Node2 clock can be determined, see Equation (11-13) 

TDOA measurement impairments caused by this relative timing error can be 

compensated by subtracting the observed rTE value from the measured TDOA, see 

Equation (13).  

𝑻𝑶𝑭𝟏 = 𝟒𝟎𝒏𝒔 − 𝟐𝟎𝒏𝒔 = 𝟐𝟎𝒏𝒔       𝑻𝑶𝑭𝟐 = 𝟗𝟎𝒏𝒔 − 𝟓𝟎𝒏𝒔 = 𝟒𝟎𝒏𝒔 (11) 

𝒓𝑻𝑬𝟏𝟐 = 𝑻𝑶𝑭𝟏 − 𝑻𝑶𝑭𝟐 = 20ns (12) 

𝑻𝑫𝑶𝑨𝟏𝟐(𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅) = 𝑻𝑫𝑶𝑨𝟏𝟐(𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅) − 𝒓𝑻𝑬𝟏𝟐 (13) 

Using these corrected TDOA measurements in the position estimation enables 

better positioning accuracy.  
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2.5 Indoor propagation environment 

In this chapter I introduce some results of measurement studies, to better 

understand why is indoor propagation environment so challenging from a positioning 

point of view. After that, I give a short description of how to use channel modeling in 

multipath propagation simulations. 

2.5.1 Multipath propagation 

Indoor environments are very complex compared to outdoor propagation 

environments. Walls and other obstacles result in direct path (DP) blockage, and the wide 

variety of materials, especially good reflectors like metal objects and flat surfaces lead to 

multipath signal propagation. Both of these incidents affect the link between transmitter 

and receiver antennas, therefore they contribute to errors in the TOA measurements, and 

thus the TDOA measurements. In Figure 7 I provide an overview of one possible link 

classification, and the TOA error sources related to different types of links. 

 

Figure 7. Radio link classification, and the related TOA error sources (based on [17]) 

For designing an effective NLOS mitigation algorithm, it is important to have a 

concept about how radio signals behave in indoor environments. Exhaustive 

measurement campaign results with good illustrations and datasets are presented in the 

following studies: [18] [19] [20]. I include a short extract of them below. 
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Typical NLOS anomalies can be observed in Figure 8. TX5 and the lower receiver 

antenna present NLOS-DP propagation: the LOS is blocked by the wall, but the DP is 

still dominant over other NDPs. This type of NLOS propagation causes only small errors 

in the TOA measurements. 

 

Figure 8: Illustration of NLOS-DP and NLOS-NDP propagation (figure source: [18]) 

On the other hand, TX6 and the upper receiver antenna show an NLOS-NDP 

propagation: the reflected path has a stronger received power than the DP attenuated by 

the wall. This is very harmful to the TOA measurements: the TOF increased significantly 

compared to the DP TOF because the reflected path is almost 3 times longer than the DP. 

From a positioning point of view, this introduces a large error to the calculations, as 

explained earlier in Figure 2 and Figure 3. 

Another source of errors in TOA measurement is caused by multipath fading [21]. 

This anomaly occurs in LOS and NLOS propagation as well. Good reflectors like metal 

objects and very flat surfaces (whiteboards, floor tiles, etc.) can reflect the radio signals 

almost perfectly, with a very small loss. This might be problematic because these strong 

reflected waves reach the receiver, and make it hard to determine the exact reception time 

of the real LOS signal. The TOA error caused by multipath fading is usually smaller than 
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the NDP error, but it is the dominant propagation factor for LOS radio links operating at 

frequencies below 10GHz [22].  

2.5.2 Channel modeling 

Channel modeling is a statistical approach to describe physical propagation 

channel properties. It is frequently used in radio simulations for system designing or 

algorithm testing. [19] Channel models can be constructed based on real-life 

measurements [23], or raytracing [24]. Deterministic channel models are consistent in 

space, time, and frequency. They have different types, for example, LOS probability 

models, fast-fading models, penetration models, and multipath models [25]. 

There are many detailed studies and standards about channel models [19] for 

different propagation environments both outdoor and indoor. In this thesis, the latter type 

is relevant, especially LOS probability and multipath channel models.  

An exhaustive, 11-step channel coefficient generation procedure is described in 

[25]. This is considered as the state-of-the-art documentation for 5G channel modeling 

and is widely used for 5G positioning simulations (see Figure 10 and Figure 11 later in 

2.7.2). Distance- and frequency-dependent pathloss models and NLOS probability 

models are given here for both indoor and outdoor scenarios. 

2.6 Multipath mitigation methods 

As I explained earlier, the NLOS propagation and the multipath fading can 

significantly increase positioning error in TOA and TDOA-based positioning methods. 

This damaging effect can be reduced by different multipath mitigation methods, which 

can be divided into two main categories. The other group of NLOS mitigation techniques 

overcomes the NLOS error in one step, without identifying the NLOS links.  

2.6.1 NLOS link identification and compensation 

The first category includes methods, where NLOS mitigation is carried out in two 

steps: NLOS link identification and NLOS effect suppression. Successfully identified 

NLOS links can be discarded from the position estimation process if there are enough 

LOS links to calculate the position estimate. However, correcting NLOS induced errors 

might be a better option. 
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2.6.1.1 CIR-based NLOS identification 

NLOS link detection can be performed before the position estimation process, 

based on the received Power Delay Profile (PDP), also called the Channel Impulse 

Response (CIR) in signal processing.  

CIR features, like kurtosis, root-mean-square delay spread, rise time, normalized 

strongest path energy, and total energy can be used as metrics in link classification, as 

proposed in [12] and [26]. The advantage of these methods is that they are completely 

environment independent, and proved to work well even in harsh environments. A further 

advantage is that the analysis of CIR features can tell not only the LOS/NLOS 

classification, but it can indicate how serious the NLOS error is [26].  

Therefore CIR-based NLOS identification is a promising approach, especially 

with the recent advancements applying Machine Learning methods [27] [28]. 

2.6.1.2 Location-based NLOS identification 

Another option is to perform the LOS/NLOS classification after calculating the 

position estimate. A common technique is to calculate candidate estimates based on 

different subsets of Antenna Reference Points and looking for clusters among the 

preliminary estimated positions because those estimates were presumably produced by 

LOS links [10]. The limitation of this method is that it only works properly if there are 

redundant LOS reference nodes available. 

2.6.1.3 NLOS compensation 

If a radio link was classified as NLOS by one of the previously mentioned 

methods, the TOA measurement on that link contains a portion of error due to NLOS 

propagation. The magnitude of this error can be determined either based on a propagation 

model [29] or from the residuals based on a preliminary position estimate [30]. 

2.6.2 Direct NLOS mitigation 

2.6.2.1 Fingerprinting 

The fingerprint-based positioning method [31] consists of two stages: the offline 

measurement collection phase, and the online positioning phase. In the offline phase, 

on-site measurement samples are collected and stored in a so-called fingerprint 

database. In the online phase, the archived measurements can be used to compare to the 
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real-time measurements, and based on similarity, the actual target position can be 

estimated. 

Fingerprint-based positioning provides good accuracy in the online phase and it 

can handle static NLOS errors well. However, the measurement collection in the offline 

phase is a long and costly process, which is hard to automate in indoor environments. 

2.6.2.2 Filtering 

Particle [32] and Kalman [33] filters can be utilized in position estimation if the 

target device with the unknown location is moving. These methods make use of the fact, 

that during movement, the variance of TOA measurements over an NLOS link is 

significantly higher than LOS links. This is caused by the multipath components (MPCs) 

fast-changing nature, which means, they can greatly vary by small spatial difference. 

2.6.2.3 Robust estimators 

Linear regression methods (like WLS) are sensitive to outliers in the data. A 

robust WLS algorithm has been proposed in [34], where an iterative reweighted least 

squares regression of the bi-square cost function is applied. 

Another robust estimator was proposed in [26] where an equality constraint is 

defined to the optimization problem which makes this method resilient even to a large 

number of NLOS affected observations. 

2.6.2.4 Map-based NLOS mitigation 

There is another NLOS mitigation method proposed in [35] [36] that applies to 

buildings with many closed rooms, like hospitals, schools, and traditional closed offices. 

In such venues, wall attenuation is a common source of errors in TOA measurements. In 

a closed room, there is usually not a single LOS link available, which is troublesome for 

methods that rely on LOS-NLOS classification. 

Given the assumption that the relative permittivity is approximately the same for 

all walls, and that room-level location accuracy is achievable through-the-wall (TTW) 

bias can be estimated and compensated as described in [35] [36]. The drawback of this 

method is, that it requires a 2-dimensional floor map of the building, including the walls. 
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2.7 User Equipment positioning in 4G and 5G mobile networks 

2.7.1 4G standards and UE positioning solutions 

User Equipment (UE) positioning is a long-known functionality provided by the 

cellular mobile network. Until 4G it was almost exclusively used for localizing 

emergency calls, so the accuracy requirements were determined by the Federal 

Communications Commission of the United States (FCC). 

However, this trend started to change in 4G, because the achievable positioning 

accuracy reached a level that is sufficient for other use-cases.  In the 3rd Generation 

Partnership Project (3GPP) Release 13 a new study item has been completed about indoor 

positioning enhancements for LTE [37], which is a major milestone in indoor positioning 

over the cellular network. 

In [38] a simulation study is presented about indoor positioning, based on the key 

scenarios defined in the aforementioned 3GPP release. One of these scenarios includes 

microcells installed inside the building. With this improvement, the horizontal accuracy 

of positioning increased significantly, compared to other indoor positioning scenarios 

utilizing only the outdoor macrocell network for position estimation. It is worth noting, 

that the results shown in Figure 9 were achieved by only installing 4 small cells inside a 

50m×120m building. As suggested by [39], increasing the number of Antenna Reference 

Points improves positioning accuracy. 

Scenario Method 50% error 

[m] 

70% error 90% error 

Indoor OTDOA 6 m 9 m 16 m 

Indoor CID 15 m 20 m 31 m 

Figure 9. Indoor positioning accuracy in LTE,  

based on scenarios recommended in Release 13 study (source: [38]) 

Another experimental indoor positioning system was constructed and tested in 

[40]. They installed 11 indoor base stations inside a 30m×40m office area and managed 

to present an average localization error of around 3m. This was achieved with a 

fingerprint-based positioning algorithm. 
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2.7.2 5G standards and UE positioning solutions 

5G will be a huge leap in mobile communication technology, and mobile network 

positioning is also going through important changes. These changes are driven by the 

increasing demand for UE location estimation in a wide range of industrial and 

commercial use cases [41].  

In the latest official 3GPP release (Release 16) the LTE positioning feature is 

extended with new techniques which are favorable for 5G positioning [42], such as 

wideband signals, higher frequencies, and flexible architecture. 

Another fundamental feature is the support of a massive number of antenna 

elements for both transmission and reception, enabling massive MIMO (multiple-input, 

multiple-output) and advanced beamforming functionalities [43]. Massive MIMO 

antenna systems can provide enhanced accuracy by utilizing angular properties of 

propagation combined with time measurements [11]. Beamforming can be used in 

positioning as well, and it can greatly reduce the harmful effect of multipath components. 

In 4G, the number of reference symbol signals for performing RSTD (received 

signal time difference, basically the same as TDOA) measurements was limited [44]. In 

5G, this issue is resolved by the repeated transmission of PRS resources, since it allows 

a much denser measurement collection, as explained in [42]. The increased number of 

measurements improves the timing and position estimations. 

At the time of writing this thesis, not many 5G indoor positioning systems were 

available. Huawei claims to be the first to verify a 5G indoor positioning on a live network 

[45]. Very little information was shared about the deployment setup, only the positioning 

precision was stated in 3 to 5 m in 90% of the test area. 

Apart from that, simulations are available to 5G positioning, for both indoor and 

outdoor scenarios. A 3GPP study was made about the simulation results [11], which can 

be considered as a reference for 5G positioning systems. Many different cases were 

investigated, so I have selected some of them, that have similar parameters to the 

prototype network I was working on in the latter part of my Thesis work. The most 

important parameters are summarized in Figure 10. 
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Parameter Case 1 Case 2 Case 3 Case 4 

Number of ARPs 12 12 12 12 

Simulation area 120m×50m 120m×50m 120m×50m 120m×50m 

Inter gNB distance 20m 20m 20m 20m 

Carrier frequency 4GHz 4GHz 2GHz 2GHz 

PRS bandwidth 100MHz 50MHz 50MHz 5MHz 

Figure 10. Most important simulation parameters for indoor office 5G positioning simulations [11] 

The position estimates were determined with the Gauss-Newton algorithm, and 

the achieved positioning accuracy is shown in Figure 11. Cases 1-3 show significantly 

better precision, compared to the 4G indoor positioning methods demonstrated in the 

previous section. However, Case 4 simulation results are not better than 4G OTDOA with 

only 4 indoor ARPs, so 5G does not automatically mean higher accuracy. It depends on 

the deployment characteristics and the position estimator algorithm. 

 

Figure 11. Positioning error CDFs for indoor 5G positioning [11] 
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3 Solution Architecture 

The purpose of the design and development work I’ve carried out in this thesis is 

to create a software component, which provides a location estimate of a target device with 

an unknown position in a 5G network. In other words, the component takes measurements 

and network-related information as input and performs processing and calculations to 

determine the UE position. It is essential, that the final solution fits well into the 5G 

system, utilizes the strengths, and compensates the weaknesses to achieve the expected 

performance. 

In this chapter, I give an overview of the mobile network environment, which 

serves as a frame to the planned solution, and sets up limitations for it as well. After that, 

I elaborate on the task specification and describe the actions that are part of the workflow 

to create a positioning estimator component. I also specify the most important 

requirements the solution must meet, and finally, I explain the solution plan I’ve been 

following through the implementation process. 

3.1 Overview 

The position estimation will happen over the 5G mobile network. More 

specifically, it is intended to be used in Ericsson’s indoor 5G microcell network, the Radio 

Dot System (RDS) [46]. In RDS, the Radio Access Network (RAN) nodes are called 

Radio Dots (RDs, see Figure 12), and 8 of them are connected to an Indoor Radio Unit 

(IRU). This is a strict boundary for the number of Dots per deployment because adding 

more IRU’s to a system is not practical from a network coverage point of view, and the 

main purpose of the Radio Dot System is to provide conventional cellular network 

functionality. On top of that, a new feature is under development, which will enable 

device-agnostic high precision indoor localization over RDS. 

 

Figure 12. Radio Dot, mounted on the ceiling (source: [46]) 
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Building up a solution like this consists of multiple development phases. The 

protocols and standards must be worked out, which define the functions and roles of the 

different network components and the message flow between them. Apart from that, the 

measurement technique must be implemented in the RAN, to gather information about 

the UE and provide it as input for the UE position estimator algorithm. And of course, the 

positioning method itself must be developed. For companies like Ericsson, it is important 

to bring the end-to-end (E2E) solution to the market as soon as possible, therefore the 

different development processes are usually overlapped in time. It is also common 

practice to build prototypes first, as a “proof of concept”, to get an insight into the 

expected performance and characteristics of the new feature.  

The UE positioning system prototype consists of the following components: 

 

Figure 13: End-to-End solution prototype block diagram 

The signal processing unit, implemented in the IRU is responsible for making 

TDOA measurements, and also contributes to synchronization between Dots. The 

measured TDOA values and timing corrections are forwarded via Ethernet port. The UE 

location estimate is calculated by the Positioning Estimator (PE) component, which is a 

prototype implementing the functionality of the Location Management Function (LMF).  

The Radio DOTs (RDs) also have their computation unit, which is taking part in 

the time synchronization process. RDs are omnidirectional 5G microcells. They are 

transmitting on 1800MHz carrier frequency, with a bandwidth of 20MHz. 

The mobile equipment with an unknown position can be any standard 5G mobile 

device. 



 

23 

3.2 Task specification 

The focal point of my thesis work is implementing a Position Estimator 

Component (PEC) which fits into the system described in 3.1, and optimizing it in terms 

of positioning accuracy. The component takes network measurements as input and 

provides the estimated UE position and the confidence indicator of the estimate on the 

output. This component is expected to overcome the challenges of indoor propagation 

summarized in  Chapter 120, and it is expected to work environment-independently, so 

robustness tests to parameter changes are an essential part of the development process as 

well.  

Apart from the position estimator algorithm implementation and verification, 

realistic simulation of TDOA and RSRP measurements must be performed, including the 

impairments, which affect the accuracy, like multipath propagation and time 

synchronization error. There are multiple reasons behind this decision. The first one is, 

that the real network measurements were not available yet, when I began the formulation 

of the location estimation process, so I had to work with simulated measurements in the 

beginning. According to the plans, the simulated measurements will be replaced with real 

measurements as soon as the network deployment is ready. But the ability of simulation 

will be useful even after reaching this major milestone because extensive measurement 

collection is costly in terms of time and resources, so testing algorithm improvements is 

more effective through simulations. 

The result of the development carried out in this thesis work is not only the 

position estimator component implementation but the overall understanding of the factors 

that contribute to the accuracy of the final estimate. A functional prototype is expected, 

and the conclusions about what areas of it need further improvements in the future, to 

achieve the accuracy goals are summarized in 3.3. 

The following questions should be answered based on simulations: 

• What is the expected positioning error in the planned system? 

• Is the developed position estimation robust to changes in the environment 

or the system? 

• What improvements are needed in the future to achieve sub-meter 

accuracy? 
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When I started my thesis work which includes the development of a position 

estimator algorithm, the 3rd Generation Partnership Project (3GPP) Release 16 containing 

5G standards was completed, and the measurement collection implementation in the RAN 

was almost finalized. I had to make research to build up knowledge first, and I began the 

implementation parallel with the measurement process verification. 

3.3 Requirements 

The requirements for 5G positioning use-cases are summarized in the following  

3GPP Technical reviews [41] [11]. Our long-term goal is to implement a positioning 

system that meets these requirements, so it is important to keep them in mind during the 

development.  

My task was the implementation of the position estimation process, so the 

accuracy requirements are the most relevant for this thesis work. Update rate and latency 

are primarily determined by the network setup, but the positioning algorithm should not 

take too long to compute the location estimate. I’ve collected the most popular indoor 

use-cases, and their requirements in Figure 14. 

Use-case Horizontal 

accuracy 

Vertical 

accuracy 

Latency Availability 

Wearables 2 m 1-3 m 1 s 90-99% 

Advertisement push 3 m  3 m 60 s  90% 

Medical equipment 3 m 2 m 60 s 99% 

Industrial equipment 0.5 m 1-3m 20 ms 99% 

First responders (emergency) 1 m 2 m 1 s 95% 

Figure 14. Requirements for indoor 5G positioning use-cases [41]   

 Since the system is just in the prototype phase, the positioning estimation is not 

expected to satisfy all of the listed requirements right now. However, we need to make a 

plan to eventually getting there in the future, so it is important to ramp up knowledge and 

develop an understanding of the factors that are required to make it feasible. 

3.4 Solution plan 

For implementing the position estimator component with the functionality 

described in previous sections, I used the MATLAB platform. This was a straightforward 
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choice because the rest of the End-to-End prototype was written in MATLAB as well, 

and it is the long-established development environment for research and innovative 

prototype implementation within the company. 

The development work consists of 3 phases: 

1. Input measurement simulation 

2. Basic position estimation 

3. Multipath mitigation 

The first two steps build up a test environment for the third step. Based on research 

I made in the first part of this thesis, multipath-related errors cause the biggest degradation 

in indoor positioning accuracy, therefore this issue is foreseen as the greatest obstacle on 

the way to sub-meter accuracy. 

Multipath mitigation is planned to be carried out in multiple improvement cycles 

because coming up with the optimal solution at once is unrealistic in case of such a 

complex problem. A more feasible approach is to start with a crude solution, see how it 

works, evaluate the strengths and weaknesses. Meanwhile, I can gain experience about 

the issue and improve the method step-by-step accordingly. 

The developed solution will be used in a real system, robustness analysis is a 

meaningful part of the workflow. It is not enough to find a solution that works well with 

a specific setup, testing the solution’s sensitivity to changes in the network environment 

is also very important because we want to build a system that works well in any indoor 

deployment scenario. 
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4 Positioning estimator component implementation 

The positioning estimator component is a core part of the E2E system which 

enables UE position estimation over the 5G network. It is a software component, running 

on a server, receiving radio measurement data on their input, and providing the estimated 

UE location on their output interface. 

4.1 Simulation workflow 

I refer to the positioning algorithm and the input measurement simulation as the 

TDOA positioning simulator, because together they enable the simulation of the complete 

TDOA-based positioning estimation process. This is a favorable workflow for prototype 

development because this way I could go on with the positioning algorithm research and 

development without depending on the availability of real-life measurements. 

 In this chapter, I introduce the simulation workflow of positioning estimation step 

by step. I begin with the options and input parameters I have added to the code to make 

the TDOA simulator customizable and I show how the network deployment can be 

defined. After that, I describe how the position estimates are calculated, and how the 

results are displayed to help the algorithm development. 

4.1.1 Input parameters 

In Figure 10 I summarize the input parameters that can be specified by the user 

for setting up the desired simulation options. 

Measurement simulation parameters 

flag_NDP_propagation true, false NDP propagation error on/off 

flag_multipath_fading true, false multipath fading error on/off 

flag_TDOA_observation_error true, false TDOA obs. error on/off 

flag_rTE_error true, false relative timing error on/off 

flag_Dot_coordinate_error true, false Dot coord. error on/off 

simulation_mode local, overall (see 4.1.2) 

DOT_number 3…8 number of Dots 

DOT_coordinates - (xi,yi,zi) coordinates for each Dot 

UE_position_envelope - (xcenter,ycenter,range) 

trial_number - number of trials executed 
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Position estimation parameters 

positioning_dimensions 2, 3 dimension of pos. estimate 

flag_RANSAC true, false RANSAC method on/off 

flag_IDC true, false IDC method on/off 

flag_combined true, false Combined method on/off 

Figure 15. Most important parameters in the TDOA simulator 

Only the most important parameters were listed above, there are other parameters 

for activating or deactivating different methods I tried during the algorithm development 

and some parameters related to displaying output graphs. 

4.1.2 Measurement error simulation 

There are two types of simulation modes to choose from: overall and local. 

The main difference between the two modes is in the measurement error simulation.  

In the local mode, one specific measurement input is evaluated in one specific 

UE location, thus the measurement error is generated in the setup part, and the same errors 

are used in every location estimation cycle, just a small variation is added to the errors in 

every iteration. In this case, a small UE envelope is chosen (fixed to 50cm×50cm) 

because it is a reasonable area to assume that the measurement error is stable.  

On the other hand, in the overall mode, the measurement errors are re-

generated for every positioning estimation loop, and typically a bigger UE envelope is 

chosen. 

TDOA and SINR measurements are being simulated. Simulation is implemented 

by a statistical approach, where random errors are described with probability 

distributions. Details about the different error types and distribution parameters are 

explained later, in 4.2. 

4.1.3 Position estimation 

The position estimation process consists of a setup part and a looping part, where 

a given number of position estimation cycles (shortly called trials) are executed with the 

parameter setup defined in the setup part. 

The purpose of the overall mode is to an overall image of the position 

estimator algorithm’s expected accuracy. On the other hand and local mode is useful 



 

28 

for low-level algorithm debugging. In this Thesis, I only show results generated by 

overall mode, but I used the local mode during the development phase several times 

to investigate anomalies. 

 

Figure 16. Output graph for the two simulation modes (left: local, right: overall) 

4.1.4 Result evaluation 

In every trial loop, the calculated position estimate is stored in an array, along 

with other information related to the position estimation process, and they are evaluated 

as the final step of the simulation workflow. Different kinds of output graphs and plots 

are used, depending on the relevant information the user wants to investigate: CDFs, 

PDFs, heatmaps, graphs, etc. 

The typical visual outputs in the two different modes are shown in Figure 16. In 

local mode, the Dot placement is illustrated by stars, the UE’s true locations, and 

estimated locations are shown with colorful point clouds, and the hyperbolas illustrating 

the TDOA measurements are plotted as well. In overall mode, the positioning error is 

plotted on a heatmap. 

4.2 Input measurement simulation 

The end-to-end prototype was not functional yet when I began to implement the 

position estimator component, so real radio measurements were not yet available. That is 

why simulating the input measurements was an essential part of my work. The planned 

measurement input consists of the following data: 

• Time difference of arrival (TDOA) measurements 
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• Received signal strength (RSRP) measurements 

• and the complete power delay profile (PDP) 

These measurements are used for calculating the position estimate. The planned 

positioning method is primarily based on TDOA measurements so this is the input I spent 

the most time on modeling and verifying. I also performed RSRP measurement 

simulation, although it is more of a complementary input. The CIR was not simulated, 

because it would have been more difficult to carry out, and it does not worth the effort, 

details are described in Chapter 4.2.4. 

Assuming free-space propagation, TOA and RSRP measurements are the function 

of the distance between transmitter and receiver (in our case Radio Dot-Mobile 

Equipment), because radio signals travel on the shortest path, with the speed of light. 

However, in indoor environments, there are different sources of impairments to be 

considered. In the next sections, I identify these error sources and determine statistical 

distributions to describe their nominal values in our specific system. 

4.2.1 TDOA simulation 

The TDOA simulation is carried out as the difference of two simulated TOA 

measurements because a TOA measurement is the function of RD-UE distance, so a base 

value can be easily calculated with the following equation. 

𝑇𝑂𝐴𝑖 = √(𝑅𝐷𝑥𝑖 − 𝑈𝐸𝑥)2+(𝑅𝐷𝑦𝑖 − 𝑈𝐸𝑦)
2

∗ 𝑐 (14) 

Where c is the speed of light, and TOD is assumed to be 0s for all Dots. The 

different errors, caused by the non-ideal conditions in the system, are added to this 

equation. First I had to identify the relevant error sources, affecting TOA measurements. 

The next step was finding random variable distributions, which are a realistic 

representation of the expected error. For completing this task, I relied partially on signal 

propagation properties introduced in chapter 2.5, and I also took into consideration the 

measurement errors we experienced while verifying the synchronization requirements for 

positioning. Based on these, I found 4 error sources to consider in TDOA simulation: 

1. Radio Dot (RD) coordinate error 

2. Relative Time Error (rTE) 

3. TDOA observation error 
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4. TOF error due to NLOS and multipath propagation 

4.2.1.1 Radio Dot coordinate error 

Before installing Radio Dots into a building, a detailed deployment plan is made 

with Ericsson Indoor Planner software. This plan includes the recommended placement 

of Dots, but it can’t be straightforwardly used as ground truth for positioning algorithms 

for multiple reasons. 

Some Dots might be moved away from the planned location, because of the 

infrastructural boundaries (for example lamps, or wires), or other reasons. Even if the Dot 

is mounted according to the plan, the placement is usually measured by hand, which 

brings some uncertainty to the x and y coordinates. Z plane error is considered negligible 

since these devices are mostly ceiling mounted, and the height of the ceiling is known. 

This uncertainty in the x and y coordinates is characterized by two independent, 

normally distributed random variable, with the following parameters: 

• Standard deviation: 0.1m 

• Expected value: 0 m 

4.2.1.2 Relative time error 

Time synchronization between Radio Dots is essential for accurate TDOA-based 

positioning, as explained in Chapter 2.4. The End-to-End prototype developed in this 

project includes innovative solutions to minimize synchronization error, but the Dot 

clocks can’t be synchronized perfectly. There is still some residual time error to deal with, 

which I simulated with a standard normal distribution with parameters based on 

preliminary timing measurements in our system: 

• Standard deviation: in the order of 10ns 

• Expected value: 0ns 

4.2.1.3 TDOA observation error 

A high-level description of the TDOA measurement technique was given in 2.3. 

Such a correlation method is implemented in Radio Dot’s processing unit, but the 

technique is still under development. Unfortunately, we experienced a quite significant 

TDOA observation error, falling in the range of 10ns. It is suspected to be caused by a 

miscalculation and expected to be reduced in the order of 1ns shortly. 
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According to the current state, I modeled this error source with a uniformly 

distributed random variable in the order of 10ns. 

4.2.1.4 TOF error due to model 

The most obvious and the most challenging error source in an indoor radio 

environment is the multipath propagation, which includes reflection, refraction, 

diffraction of the transmitted signal, and results in excess values to the TOA 

measurements compared to a free space propagation. 

One way to produce realistic simulations to this complex error type is raytracing. 

The drawback of this method is that it requires a precise 3D model of the environment, 

which is difficult to produce. Apart from that, it might not be the best way to rely on just 

one site’s information, when developing location estimation algorithms. 

Although the error value strongly depends on the actual environment, it is possible 

to construct statistical multipath models which describe the general features of different 

buildings and hence can be used for simulations easily and effectively. The advantage of 

this approach is that such models can be modified and changed quickly, which gives a lot 

of freedom in the development process to test the sensitivity and robustness of the location 

estimation algorithm to different models. 

The question is: how to construct such a multipath model? I proposed a simple 

solution, the details in Chapter 4.2.2. 

4.2.2 Multipath modeling 

Multipath modeling is a method used in radio network planning and simulation. 

Multiple standards include different multipath model recommendations for different 

mobile network deployment scenarios, like urban, suburban, rural, or indoor. 

Most of these models follow the recommendations given in [25] about channel 

modeling. This model is complex and would have taken too much time to implement 

every aspect of it in the TDOA simulator. So instead of that, I made a simplified model, 

containing only the most important parts to simulate additional pathloss and excess TOA 

in a multipath environment. Based on [25], both of these values depend on the BS-UE 

distance. 
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4.2.2.1 Dataset 

I received an indoor measurement dataset, which was taken in a similar radio 

system to RDS, in an office environment [20]. The dataset included 35 measurement 

points across the building, which was a modern semi-open office (similarly to Ericsson 

House Budapest) area with a wide variety of materials. 

 

Figure 17. Indoor propagation measurement setup, with 35 RX points (source: [20]) 

4.2.2.2 Data processing steps 

The data was given to me in a form of 35 Power Delay Profiles (PDPs). The TX 

and RX coordinates, and hence the TX-RX distances were known as well. I wrote a 

MATLAB script which is processing the PDPs through the following steps. 

First, it is extracting the 5 strongest multipath components, their reception times, 

and the received powers. Then it determines the theoretical “LOS” reception time, based 

on TX and RX distance. After that, it calculates the excess TOA value on the top of  

“LOS” TOA with the following equation. 

𝑇𝑂𝐴𝑒𝑥𝑐𝑒𝑠𝑠 =  𝑇𝑂𝐴𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛 − 𝑇𝑂𝐴𝐿𝑂𝑆 (15) 

At this point, I have 5 excess TOA values and 5 received powers per measurement 

point. In the next step, I determined the probability of a dominant NLOS path with the 

following method. I calculated the empirical mean and standard deviation of the received 

powers, but I linearized them before doing so. I calculated the mean and standard 

deviation of the excess TOA values as well. Now I have all the information I used to 

construct the multipath model. 
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Figure 18: Power Delay Profile (PDP) in measurement location 15 (TX-RX distance is 15m) 

Based on the 3GPP study about channel models [25], NLOS probability increases 

proportionally with the Dot-UE distance, so I created the following distance categories: 

• DOT-UE distance below 3m: the UE is right under the Dot, or very close to it, so 

no NLOS propagation is expected. 

• DOT-UE distance between 3m and 8m (or 10m): this is the estimated distance of 

open areas in the office, so a smaller value on NLOS probability is expected. It is 

around half of the ISD. 

• DOT-UE distance between 8m and 25m: this is a distance, where I expect a couple 

of walls between the Dot and the UE. It is around the ISD. 

• DOT-UE distance above 25m: this distance is usually above ISD, so if the UE is 

this far away from one DOT, it is presumably close to another one, so the 

probability of NLOS propagation path from the further DOT increases drastically. 

I classified every measurement point into these regions, and I took the average of 

the values in the same region. This way, I was able to define one standard deviation per 

distance zone, which I used to simulate the expected excess TOA values. 

To calculate the dominant NLOS path probability I used the following technique. 

Based on the expected value and standard deviation of the linearized power values, I 

generated a probability density function (PDF), as shown in Figure 19.  Finally, I used 

this PDF to calculate the NLOS probability by determining the place of LOS power, and 

the probability of the power is higher than that is the probability of a dominant NLOS 
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component. Visually, it is the area under the normal distributions Gauss-curve, from the 

LOS power to infinity, see Figure 19.  

 

Figure 19: Normal distribution of linearized received powers for 5 strongest multipath components 

in one measurement point 

4.2.2.3 Constructed multipath models 

After the data processing steps, the following NLOS model came out as a result. 

This model accounts only for TOA errors caused by a dominant NPD propagation,  

doesn’t include multipath fading errors occurring when the data processing unit can’t 

identify the strongest signal reception time precisely.  

RD-UE distance 
Excess TOA value due to a 

dominant NDP path [m] 

Probability of 

dominant NDP path 

0-3m - 0% 

3-8m 𝜇 = 3.8𝑚, 𝜎=3.2m 12.3% 

8-25m 𝜇 = 5.1𝑚, 𝜎=2m 20% 

>25m 𝜇 = 10.6𝑚, 𝜎=2.4m 71.2% 

Figure 20: Model for excess ToF due to NDP propagation 

I constructed another model for simulating the influence of multipath fading on 

TDOA positioning, which is independent of the previous model, and as shown in Figure 

21. It is worth noting, that multipath fading can add a negative impairment to the TDOA 

measurements because of constructive interference. 
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RD-UE distance Multipath fading bias [m] 
Probability of 

dominant NDP path 

0-2m 𝜇 = 0𝑚, 𝜎 = 1𝑚 10% 

>2m 𝜇 = 0𝑚, 𝜎 = 1𝑚 50% 

Figure 21. Model for multipath fading 

The values in Figure 21 were determined based on studies [21] [47]about 

multipath fading, because of lack of real measurements. The values in Figure 20 were 

calculated from real measurement data, and they align with the studies and standards 

introduced in 2.5.1.  

It is important to keep in mind, that the dataset I used for building up the models 

was limited. I plan to refine them in the future, as soon as real-life TDOA measurements 

will be available in our system. The MATLAB script I have written for model 

construction is prepared for handling any size of the input dataset, so I will be able to 

generate refinements quickly by using the same script. 

4.2.3 RSRP simulation 

Although the developed position estimator method is based on TDOA 

measurements, it is still worth including received power, and signal to interference-plus-

noise-ratio (SINR) measurements into the location estimation process, because they are 

tightly correlated to NLOS errors [25], and thus provide additional information which 

could be used to further improve accuracy. For example, the measured SINR values can 

be used for weighting the TDOA measurements in the location estimation process, 

because lower SINR indicates that the given TDOA measurement is less reliable, which 

is often caused by direct path blockage. Considering these measurements with less weight 

in the position estimate calculation results in robustness to TDOA errors, although it 

doesn’t eliminate the errors completely. 

For simulating RSRP measurements, and SINR values I made the following 

assumptions. The received power can be calculated as the sum of transmitted power and 

pathloss. Assuming free-space propagation, the pathloss value depends only on the 

transmitter-receiver distance. In an indoor environment, additional pathloss occurs due to 

the obstacles in the propagation path, so the simulated received power can be described 

by the following equations [48]: 
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𝑷𝑳𝒇𝒓𝒆𝒆−𝒔𝒑𝒂𝒄𝒆 = 𝟐𝟎 ∗ 𝒍𝒐𝒈 (
𝟒𝝅𝒅

𝝀
) 

(16) 

𝑷𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅 = 𝑷𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕𝒕𝒆𝒅 − 𝑷𝑳𝒇𝒓𝒆𝒆−𝒔𝒑𝒂𝒄𝒆 − 𝑷𝑳𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍−𝑵𝑳𝑶𝑺 (17) 

where the powers and path losses are given in dBm, d stands for the transmitter-

receiver (or Dot-UE) distance and 𝜆 is the wavelength of the signal. 

I constructed a similar distance-dependent model as in Figure 20, with the same 

distance regions. I determined the expected values and standard deviations of the 

additional pathloss based on the same measurement dataset, that I used for excess TOA 

values (see 4.2.2).  I calculated the LOS probability based on an indoor LOS probability 

model that was presented in [25]: 
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(18) 

𝑷𝒓𝑵𝑳𝑶𝑺 = 𝟏 − 𝑷𝒓𝑳𝑶𝑺 (19) 

The LOS probability is the function of the 2-dimensional BS-UE distance (d2-indoor), so 

instead of defining a fixed probability for a  distance region, the probability can be 

calculated individually, for every measurement simulation. 

RD-UE distance 
Additional pathloss due to NLOS 

propagation [dB] 

Probability of 

dominant NDP path 

0-3m - according to (19) 

3-8m 𝜇 = 8𝑑𝐵, 𝜎 = 2𝑑𝐵 according to (19) 

8-25m 𝜇 = 15𝑑𝐵, 𝜎 = 5𝑑𝐵 according to (19) 

>25m 𝜇 = 22𝑑𝐵, 𝜎 = 5𝑑𝐵 according to (19) 

 Figure 22: Additional pathloss due to NLOS propagation model used in received power 

simulations 

To calculate the SINR based on the received signal strength, I had to determine 

the noise floor and the interference level. The noise floor is determined by Equation (20). 

Interference could possibly occur due to the outdoor macro-cells, but that is not relevant 

to our system, so the interference level is negligible. 
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(20) 

𝑺𝑰𝑵𝑹𝒅𝑩𝒎 = 𝑷𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅,𝒅𝑩𝒎 −  𝑵𝒐𝒊𝒔𝒆 𝒇𝒍𝒐𝒐𝒓𝒅𝑩𝒎 − 𝑷𝒊𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆,𝒅𝑩𝒎  (21) 

4.2.4 CIR simulation 

The CIR is intended to be used in the multipath component evaluation and 

multipath error mitigation, but simulating complete realistic channel impulse responses 

would have been required a ray-tracing approach, which is a significant development 

effort. I decided not to do it because the CIR-based link classification method 

implementation was scheduled later when there will be real measurements available. 

4.3 Position estimation algorithms 

The UE’s estimated position can be determined with different algorithms, as I 

introduced earlier in 2.2. At the beginning of the development process, I opted for 

including multiple position estimators, because I wanted to make a comparison in terms 

of accuracy and computation complexity. This led to having 3 different solvers 

implemented in the positioning component: 

1. Linearized Least Squares (called LLS) 

2. Weighed Least Squares (called WLS) 

3. Robust Weighted Least Squares (called RWLS) 

4.3.1 LLS positioning 

This is a quick and simple closed-form solution for the TDOA localization 

problem, which is perfect to calculate a rough position estimate to be used as an initial 

position in iterative methods, like the WLS and RWLS. The disadvantage of this 

mechanism is the sensitivity to NLOS and other error sources, see Figure 23. The 

achievable accuracy in nonideal environments is much lower than the other two methods, 

as shown later in the comparison. The solution was implemented based on [6]. 

4.3.2 WLS positioning 

Ericsson has a 4G legacy OTDOA positioning algorithm, which I have 

reconstructed based on the functional specification to fit into this new system. This is an 

iterative optimal solver, using the SINR measurements as weights.  
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4.3.3 Robust WLS positioning 

At a later stage of development an improved, robust WLS solver was implemented 

and handed over for me to integrate into my TDOA positioning simulator as a third 

position estimator algorithm. 

The robustness of this method comes from the iterative reweighting, and the 

application of a bi-square cost function, which assigns a smaller weight to those 

measurements that are separated from other measurements, thus assumed to be outliers. 

 My task was to integrate this new solution as a third option into the simulator and 

compare it to the previous two methods with different network setups and error values, 

to find out which one gives the best positioning accuracy. 

Integration work I carried out included aligning the simulator’s output interface 

to the algorithm’s input interface and verifying functionality. For verification, the 

positioning algorithm was given different inputs, and the position estimate was calculated 

and visualized from different aspects: positioning error CDF, positioning error and Dot 

layout, the spatial distribution of position estimates in different locations. 

4.3.4 Comparison 

The difference between the three positioning estimator algorithms does not really 

appear under ideal conditions, assuming free-space propagation and no multipath errors. 

However, after I constructed the multipath model and rTE and TDOA error 

models, and I included these errors in the TDOA measurement simulations, it became 

clear, that RWLS is more resistant to this kind of impairment than the other methods. 

After comparing the errors of position estimates, I decided to discard WLS, because 

RWLS has significantly better accuracy in nonideal propagation conditions (see Figure 

4). 
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 Figure 23. Comparison of the 3 different position estimator algorithms positioning error CDfs.  

(3 different error setup was simulated: no error, rTE+TDOA error, rTE+TDOA+NLOS error) 

4.4 Multipath mitigation algorithms 

As shown in Chapter 2.5, the indoor radio environment is strongly affected by 

NLOS-NDP propagation and multipath fading. This results in the degradation of 

positioning accuracy, see  Figure 23. It is important to know and separate the factors that 

are causing error in the position estimate, to be able to mitigate them effectively. In 

Chapter 4.2.1 I introduced the development of the TDOA error model. 

The listed impairments add to the location error, and they can be mitigated with 

different methods. Timing and measurement errors are handled by the RAN (Radio 

Access Network), and Dot coordinate error is negligible compared to the other errors. 

The positioning errors caused by multipath propagation can be handled in the Position 

Estimator component, and there are several ways to do it, as described in Chapter 2.6. 

In this chapter, I summarize the development steps I made in the PE component 

to reduce multipath errors. 

4.4.1 Multipath error assessment 

First, I had to choose what kind of algorithm I would like to use for multipath 

mitigation. I have collected a lot of different approaches in 2.6.  To make a good decision, 

it was essential, that I know the Radio Dot System’s characteristics and limitations. The 

following factors were considered in my decision: the time for implementation, the 
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complexity of the solution, the number and characteristics of base stations (DOTs), indoor 

propagation properties.  

Before I have seen any real-life measurement, I assumed, that in a typical office 

building the number of Line-of-Sight DOTs will be very low, since the Radio Dot System 

is constructed in a way, where typically 8 Dots are installed on a floor, so ISD is in order 

of 20m or more. This means a very sparse deployment, compared to other TDOA-based 

positioning systems, like UWB or Bluetooth. 

But after evaluating the real PDP measurements and constructing the multipath 

models based on the results (see details in 4.2.2), it turned out, that having obstacles or 

even thin walls between the transmitter and receiver not necessarily results in big excess 

TOA values. This was surprising to me, although the propagation studies introduced in 

2.5.1 were showing the same outcome, see Figure 8, where the signal received through 

the wall was attenuated, but still the strongest multipath component. The conclusion is: 

TOA (and TDOA) measurement are somewhat robust to LOS path blockage. This results 

in an increased number of DOTs, where the measured TDOA value is not biased by a 

large NLOS error, meaning that the measurement error is in the order of LOS 

measurements. 

This is an important consequence since the number of LOS DOTs is essential in 

TDOA-based positioning: having 3 good quality LOS TOA measurements is enough for 

accurate position estimation in 2D. For the 3D position estimate, 4 LOS TOA 

measurements are required. In the so-called Office scenario, all the DOTs are ceiling 

mounted, so a 2-dimensional location estimate of the UE is determined. 

My simulations showed, that if the channel models constructed in 4.2.2 are not far 

from reality, at least 3 “LOS” DOTs will be available over 80% of the coverage area. 
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Figure 24: Expected number of LOS DOTs  

(on the left: distribution, on the right: spatial characteristics of the number of LOS Dots based on 

10,000 measurement simulations) 

Based on this result, I assumed that detecting TDOA measurements with a large 

error, and simply throwing them away will improve the location estimation accuracy 

significantly. This mechanism is called outlier detection, and there are several algorithms 

for performing it. 

4.4.2 Outlier detection with RANSAC algorithm 

RANSAC is a widely used outlier detection technique. It works the best with a 

high number of samples, but in our system, there are only 7 or 8 samples available because 

of the limited number of DOTs, but I still decided to try the RANSAC algorithm in this 

case, because I received an internal Ericsson implementation for it, which I could 

integrate into my position estimator component. The integration itself was fairly 

straightforward, but it took quite some effort for me to figure out the best parameters to 

use for RANSAC algorithm. Doing the parameter tuning, I also wanted to make sure that 

I am not over-optimizing the solution, so I monitored the robustness to different error 

sources and scenarios. 

4.4.2.1 Candidate solution calculation 

In the RANSAC algorithm, multiple candidate solutions are processed, and the 

best candidate solution is selected as the final solution. Different scoring methods can be 

used to assign metrics to how good a candidate solution is, as explained in 4.4.2.2. 
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In the internal RANSAC implementation I used in my positioning component, the 

solution candidates are determined based on Dot-triplets: position estimates are calculated 

for all possible triplets. This means (7
3
) = 35 or (8

3
) = 56 candidates. 3 Dots give 2 

TDOA measurements, and the analytic solution of the localization problem can be 

visualized as intersections of two hyperbolas, so there might be 0,1 or 2 solutions for 

every candidate. These solutions go through a sanity check, and the irrealistic ones are 

discarded. The surviving position estimates are used to calculate the TOA residuals for 

every measurement. A residual equals the difference between the measured TOA and the 

theoretical TOA which can be calculated from the estimated Dot-UE distance. 

It is worth mentioning here, that this RANSAC implementation was originally 

developed for TOA measurements, but it can be applied to TDOA measurements without 

modifications, based on the following considerations. The “TOA model with unknown 

UE-network time offset” (7) and the “TDOA model with a dummy variable extension” 

(8,9) are actually the same models in the structure.  

𝑻𝑶𝑨𝒊 =  
√(𝒙𝒊 − �̂�)𝟐 + (𝒚𝒊 − �̂�)𝟐

𝒄
+ 𝑻𝑶𝑫 

(22) 

𝑻𝑫𝑶𝑨𝒊 =   
√(𝒙𝒊 − �̂�)𝟐 + (𝒚𝒊 − �̂�)𝟐

𝒄
+  𝒎 

(23) 

𝒎 =  − 
√(𝒙𝟏 − �̂�)𝟐 + (𝒚𝟏 − �̂�)𝟐

𝒄
 

(24) 

Where (xi, yi) are the Dot coordinates, i=1 is the reference Dot in TDOA 

measurements, (�̂�, �̂�) are the UE estimated coordinates and c is the speed of light. The 

only difference is that with TOA measurements, the UE-network offset (TOD, time of 

departure) can be estimated by RANSAC. For TDOA measurements a dummy variable 

(m) is estimated instead, which will be thrown away. 

4.4.2.2 Different scoring methods 

The RANSAC implementation I used contains two different score modes: a 

simple threshold-based scoring, and a more advanced probability-based scoring. The 

former one uses only a threshold value for LOS TOA residuals, and every measurement 

that has a residual above this threshold is classified as NLOS. This method is problematic 

because it can’t differentiate between candidates with the same number of LOS Dots: it 

simply chooses the first candidate in the array, which has the highest number of inliers. 
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The advanced scoring mechanism makes use of the a-priori knowledge about LOS 

and NLOS error distributions. Methods requiring a-priori knowledge are generally not 

preferred, because the given knowledge might be too specific, and what works well in 

one setup, might be much worse on another site. In other words, the method should not 

be sensitive to the chosen LOS and NLOS distributions, as long as they are reasonable.  

I performed a profound sensitivity analysis to investigate this concern. First I 

calculated the excess TOA value distribution for LOS and NLOS Dots, based on the 

simulated TDOA measurements, to see what would the “ideal” distributions look like in 

this deployment. Then I tried different distributions and checked the positioning errors 

with simulations. Based on the results I confirmed, that the score mode is not sensitive to 

the given distributions, assuming that they align with the general characteristics of LOS 

and NLOS TOA excess values, namely that the LOS TOA excess values yield a zero-

mean Gaussian distribution, and the NLOS TOA excess values yield a distribution which 

is shifted towards the positive range and has a lognormal form. 

  

Figure 25. Simulation results for RANSAC outlier detection method: CDF compared to basic 

RWLS on the left, and positioning accuracy heatmap on the right.  

4.4.2.3 LOS-NLOS classification reliability 

Although RANSAC decreased the overall positioning error mean by 0.5m, which 

is a significant improvement, I noticed that in around 35% of trials the positioning error 

actually increased, compared to the position estimate calculated without RANSAC given 

the same TDOA input measurements. In other words, in roughly one-third of the 

positioning records, turning on RANSAC makes more harm, than good. 
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To find out the reason behind the accuracy degradation in those cases, I inspected 

the LOS-NLOS classification determined by the RANSAC algorithm, because a faulty 

classification might be damaging to the position estimation error. RANSAC multipath 

mitigation discards the measurements of Dots that were classified as NLOS, so if a LOS 

link is falsely detected as NLOS, that has a negative impact on the accuracy, especially 

when there are not enough correctly detected LOS Dots to calculate a good 2D position 

estimate.  

On the other hand, an NLOS link classified as LOS by RANSAC is also harmful, 

because it means that an NLOS measurement with a possibly big error is included in the 

position estimation process. However, as shown in Figure 24 histogram, around 15% of 

the measurement contains less than 3 LOS links, but RANSAC always gives back at least 

3 Dots classified as inliers because of the algorithm’s underlying logic explained in 

4.4.2.1. So in these cases, it is unavoidable to have at least one “false positive” LOS 

indication in the classification output, which might not be favorable. I will come back to 

the corner case of less than 3 LOS measurements later. 

Comparing Figure 24 and Figure 25 it is clear, that big positioning errors are 

correlated to the low number of LOS Dots, especially when there are less than 3 of them. 

In those cases, positioning error often goes above 10 meters, and such a position estimate 

is considered as an outlier. That is why the number of outliers is so large with RANSAC. 

Considering Figure 23. with the positioning error heatmap of estimates provided by 

standalone RWLS, it is reasonable to say, that it would be better not to run RANSAC at 

all when there are less than 3 LOS Dots available, because the RWLS generally gives a 

better position estimate in these cases, with much quicker computation time. 

The problem is, the number of real LOS Dots is unknown, it is just because of the 

simulated measurement input, that I have an insight into this aspect. Link classification is 

viable based on the PDP, as suggested in 2.6.1.1 but at the time I don’t have that available 

as an option. As an alternative, I thought about calculating a confidence indicator that 

could reveal when the outcome of RANSAC is less reliable. Then a threshold value could 

be determined, when it is better to fall back to a simple RWLS position estimation, 

without RANSAC. 

There is another factor to be considered when talking about position estimates 

produced by a limited set of Dots, because of RANSAC: the Geometric Dilution of 

Precision. [13] GDOP is an indicator of the goodness of Dot placement from a positioning 
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point of view: the smaller GDOP is, the better the spatial distribution is. RANSAC 

necessarily introduces GDOP problems in some cases, when it throws away some 

measurements completely. To phase out this effect, it might be favorable not completely 

discarding the NLOS measurements from the location estimation, but incorporating them 

with a small weight instead.  

 

Figure 26. Illustration of GDOP effect with the different geometrical placement of 4 Dots  

(NLOS error was deactivated for these simulations, other errors were active) 

4.4.2.4 Confidence indication 

The idea of a confidence indicator came up in the previous section first, where I 

intended to use this indicator for filtering out measurements with too few LOS links for 

RANSAC to be efficient, and applying a fallback positioning method to them instead. 

The question is, how to implement such a confidence indicator in the RANSAC 

algorithm? 

Knowing the principle working mechanism of this internal RANSAC 

implementation (explained in 4.4.2.1), it is reasonable to assume that such a confidence 

indicator should be able to be determined: I assumed that such a non-ideal condition, like 

not enough LOS measurements, should appear in candidate solutions, residuals or scores. 

I planned to evaluate these details in connection with poor positioning accuracy, and find 

the analogy between them. I came up with 4 ideas in the beginning and investigated each 

one of them. Unfortunately, none of them showed correlation with the number of NLOS 

Dots in itself, so they can’t be used as a confidence indicator alone. 
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1. Number of detected LOS Dots as a confidence indicator 

A very simple confidence indicator could be the number of detected LOS Dots 

according to RANSAC. I noticed that there is a correlation between the number of Dots 

classified as LOS and positioning accuracy, see Figure 27. On the right picture, from the 

separated CDFs it is clear, that measurements with 3 and 4 assumed LOS Dots have a 

worse accuracy than those with 5 or 6. 

 

Figure 27. Number of Dots classified as LOS (inliers) by RANSAC on the left. Positioning error 

CDFs, separated by the number of LOS Dots detected by RANSAC 

So the number of detected LOS Dots might be useful as a rough accuracy 

indicator,  however, it doesn’t provide enough information to be useful for fallback 

method triggering. I tried throwing away all RANSAC estimates with 3 and 4 detected 

LOS Dots and using the basic RWLS algorithm to calculate UE position instead. It turned 

out not to be an effective way for improving positioning accuracy because it ignores a lot 

of good estimates as well. It should be possible to differentiate between “good quality” 

and “bad quality” estimates, and therefore a refinement is needed in the confidence 

indication mechanism. 

2. Candidate solutions and scores as a confidence indicator 

I had another idea, that a more sophisticated confidence indicator could be 

developed based on the scoring system in RANSAC. I assumed, that the scoring of 

candidate solutions might be correlated to the reliability of outlier detection and the 

overall measurement quality. 
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Under measurement quality, I understand the errors in the elements of a TDOA 

measurement set, and thus the number of Dots with relatively small error, which can be 

labeled as LOS. 

To prove my impression, I examined the scores of candidate solutions thoroughly. 

As I mentioned earlier, the baseline RANSAC implementation only chooses the candidate 

with the highest score as the final solution and doesn't care about the rest of the scores. I 

had the impression, that this is a potential field for improvement: and I examined the 

scores based on the following properties. 

• Value of the highest and lowest score. 

• Score distribution, score clusters. (By a cluster, I mean score values that 

are very close to each other, and well-separated from other scores not 

belonging to the specific cluster.) 

But it turned out, that these values are not indicative of the quality (and accuracy) 

of position estimates calculated with RANSAC. 

3. Sum of residuals as a confidence indicator 

I supposed that when a candidate position estimate is calculated from a triplet, 

which includes 2 LOS and 1 NLOS measurement, the sum of residuals will be 

significantly larger than for a triplet which includes 3 LOS measurements. Based on this 

assumption, I thought I will be able to identify measurements with only 2 LOS Dots. 

Unfortunately, my simulations proved that this approach doesn’t work as I 

expected: I found no correlation between the sum of residuals and the number of Dots 

with NDP propagation. This means, that the sum of residuals in itself is not suitable for 

confidence indication. 

4. GDOP of detected LOS Dots as a confidence indicator 

My fourth idea was to consider the GDOP factor in the confidence indication. To 

confirm this approach, I checked if there is any correlation between bad GDOP and bad 

position estimates, but according to my simulations, I couldn’t find any. There were very 

bad estimates with good GDOP and very good estimates with bad GDOP. My conclusion 

based on these results is that GDOP’s impact on the positioning error is minimal, 

compared to other factors like LOD Dot number, and TDOA measurement error.  
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4.4.3 Excess delay compensation 

Another way to mitigate the NLOS effect on the UE localization is to compensate 

for the excess TOA values caused by elongated propagation paths. One simple way to do 

this was proposed in [30]. I adopted this mechanism in my implementation, but I used the 

RWLS method instead of the Newton algorithm to calculate an initial position estimate. 

This initial estimate has an important role in excess delay compensation because the TOA 

corrections are determined accordingly, and the more accurate the position estimate is, 

the better the delay compensation will be. 

The core of the proposed method is to correct the errors gradually, starting with 

the biggest ones, instead of correcting every measurement at once. The latter would affect 

not only the NLOS but also the LOS measurements, which is undesirable and would 

damage the accuracy. 

To implement such an iterative compensation, a delay compensation function 

(DCF) was defined in [30] which applies a reference value as follows. 

𝐷𝑖
𝑐𝑜𝑚𝑝 = 𝐷𝑖 − 𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (12) 

Di is the residual error, calculated as the difference between the measured and estimated 

TOA (or TDOA) value. Negative 𝐷𝑖
𝑐𝑜𝑚𝑝

 compensation values are discarded, so authors 

of [30] recommend choosing a 𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 close to the maximal residual error in the first 

iterations to only compensate for the large errors in the beginning. In later iterations 

𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 can be decreased, so that smaller errors will be compensated as well. 

Adding another iterative method to the position estimation process might raise 

concerns regarding computation complexity. The authors of [30] concluded that keeping 

the number of iterations around 5 was optimal in their setup, so I used the same value as 

a starting point in my implementation. 

My simulation results show, that iterative delay compensation (IDC) can improve 

the positioning errors to the same level as RANSAC, but achieves this with fewer outliers 

(see Figure 25 for comparison), and less computation time: 10 000 trials took only 74s 

for IDC, and 102s for RANSAC. 
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Figure 28: Simulation results for IDC method: CDF compared to basic RWLS on the left, and 

positioning accuracy heatmap on the right. 

4.4.4 Combined multipath mitigation algorithm 

After evaluating the results of outlier detection, and delay compensation, I came 

to the conclusion that a thoughtful combination of the two approaches might lead to 

improved positioning accuracy. 

Based on my simulation results, RANSAC is very effective in eliminating NLOS 

errors when the number of Dots classified as LOS exceeds 4. However, the NLOS 

mitigation, and thus the positioning accuracy is not as good otherwise, as I showed in 

Figure 27 CDFs. 

To further improve the positioning accuracy, I came up with the following 

combined logic. First, I calculate the position estimate with RWLS and with 

RWLS+RANSAC as well. Then I examine the classification output of the RANSAC 

algorithm. If the number of LOS Dots is 5 or more, the final position estimate is the one 

that was calculated by RANSAC, because based on Figure 27 CDFs, it is presumably a 

good estimate, with a small error. 

Otherwise, in case less than 5 Dots were classified as LOS according to RANSAC, 

I apply the iterative delay compensation method, but with a slightly modified approach 

to make use of the RANSAC classification output. I use this output as a filter in the IDC 

method: the TDOA values that belong to a seemingly LOS Dot, are fixed. Corrections are 

only applied to the NLOS Dots. This is beneficial because this way, the risk of 

unintentionally “correcting” the LOS measurements is eliminated. 
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The iterative delay compensation method needs an initial position estimate as well 

to calculate the corrections. Here I use the estimate that was calculated by standalone 

RWLS, without RANSAC, because it is generally more reliable, as it can be seen on  

Figure 23 it is more homogenous compared to Figure 25, where the positioning errors are 

from a wide variety, with a noticeable number of very bad ones. 

With the aforementioned technique, I was able to get an overall positioning 

accuracy, which is slightly better than RANSAC or IDC applied separately: the mean of 

positioning errors improved by 25cm. 

 

Figure 29. Simulation results for the combined multipath mitigation method: CDF compared to 

basic RWLS on the left, and positioning accuracy heatmap on the right. 

Comparing Figure 28 and Figure 29 it is noticeable that the accuracy improved 

significantly in the problematic outer areas, where the number of LOS Dots is typically 

low, so this is a remarkable result. On the other hand, the overall accuracy got a bit worse 

in the inner areas, so apparently, there is some space to further refinements in the 

multipath mitigation algorithm. 
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5 Positioning performance evaluation 

Looking back at the results presented in Chapters 4.4.2, 4.4.3, and 4.4.4, it is clear 

that even with the most effective multipath method, the accuracy requirements defined in 

Chapter 3.3 were not met: the positioning error is in the range of 4 meters for 80% of the 

positioning trials, instead of 1 meter. 

So with the current system properties and positioning algorithms, sub-meter 

accuracy is not feasible. In this chapter, I explain what needs to be improved to reach our 

accuracy goal. As a part of this, I evaluate the performance of the developed positioning 

algorithm from different aspects. 

5.1 Evaluation of the propagation environment 

Positioning performance strongly depends on the actual propagation environment. 

The same position estimator algorithm might provide very different overall accuracy on 

different sites. Therefore, it is important to examine the robustness of the developed 

algorithm to changes in the channel model. The dataset I used for the model construction 

in 4.2.2 was limited. I believe that this model is not far from reality, assuming an open-

office environment, but this needs to be verified with real measurements. 

In other environments, like an industry hall or a theatre, this model is presumably 

not applicable. Anyways, the positioning method was created to be resilient to these 

changes, unless they are extreme. In Chapter 4 I used the same channel models (see Figure 

20 and Figure 21) for all the simulations performed. In this section, I try 4 different 

modifications of these models, to prove that the developed method is resilient to 

reasonable changes in the propagation environment. 

RD-UE 

Distance 

Default 

(Figure 20) 

Case 1 

(𝜇, 𝜎, 𝑝) 

Case 2 

(𝜇, 𝜎, 𝑝) 

Case 3 

(𝜇, 𝜎, 𝑝) 

Case 4 

(𝜇, 𝜎, 𝑝) 

0-3m 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

3-8m 3.8,3.2,12 3.8,3.2,20 3.8,3.2,5 8,4,12 2,1,12 

8-25m 5.1,2,20 5.1,2,50 5.1,2,10 10,5,20 3,1,20 

>25m 10.6,2.4,71.2 10.6,2.4,90 10.6,2.4,50 20,5,71.2 5,2,71.2 

Figure 30. Modifications in the excess TOA model for positioning algorithm robustness test 

(modified values are highlighted, red means worse, green means better than default) 



 

52 

I choose these four modifications based on the following logic: I changed the 

normal distribution parameters (𝜇, 𝜎) in two of them while leaving the p probabilities 

untouched. I tried a more optimistic and a more pessimistic situation, compared to the 

default one. Then I did the same for the other two cases, but I changed the probabilities 

this time. 

I have run simulations with the 5 different excess TOA models, with all three 

multipath mitigation algorithms (RANSAC, IDC, and Combined). In 4.4, with the default 

model, the Combined method came out as the best one in terms of positioning accuracy, 

and it remained to be the best in the other 4 cases as well. The positioning error did not 

change much, as illustrated by CDFs in Figure 31. This indicates, that the proposed 

combined multipath mitigation method is insensitive to changes in the propagation 

environment. 

 

Figure 31. Comparison of positioning errors assuming different models for excess TOA value due 

to dominant NLOS propagation 

I have tested the other model that I have created for simulating the multipath 

fading (Figure 21) effect on the TOA measurements similarly. In Chapter 4 I used the 

same 𝜎 = 1𝑚 standard deviation, so this time I tried 3 modified values: 𝜎 =

0.5𝑚, 0.2𝑚, 0.1𝑚, while keeping the probability of fading the same. 
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I have run simulations with the 3 different multipath mitigation algorithms given 

the above standard deviation values for multipath fading, but the positioning error results 

stayed exactly the same as with 𝜎 = 1𝑚. Two conclusions can be drawn based on these 

simulation results: all methods are resilient to multipath fading, and other error sources 

(e. g. rTE, TDOA observation error) are dominant over the multipath fading error. 

5.2 Evaluation of Radio Dot System properties 

The features of the Radio Dot System also have an impact on the position 

estimation accuracy, including the number and placement of Radio Dots, and the TDOA 

and rTE measurement technique and errors. I used 7 Dots and the experienced TDOA and 

rTE error values (defined in 4.2.1.2 and 4.2.1.3) for all the simulations in Chapter 4. These 

errors are planned to be reduced by the improvements made to the measurement 

technique. If I run simulations with the optimistic, reduced TDOA observation error and 

relative timing error, the mean of the positioning error is reduced to 2m with the combined 

multipath mitigation approach. We could have added an extra Dot, but according to my 

simulation results, it would not bring a significant improvement in positioning accuracy. 

5.3 Evaluation of the position estimator algorithm 

Since I had limited time for positioning estimation and multipath mitigation 

algorithm development, I couldn’t include any kind of filtering in the UE position 

calculation process. PDP-based link classification was also not included, and I was not 

able to find a proper method for RANSAC confidence indication yet. These techniques 

would presumably improve the positioning accuracy, but they require significant effort 

to implement. 

5.4 Evaluation of the computation complexity 

During the algorithm development, I had to pay attention, that computation times 

don’t get too long for any algorithm because there is a stringent latency requirement for 

5G indoor positioning use cases.  I did the performance analysis on my company 

notebook, so the results were slightly influenced by other applications running on my 

machine and taking resources like RAM and CPU. 

I investigated the computation complexity for 10 000 trials, and it turned out that 

RANSAC, IDC, and the combined multipath mitigation method cause significant 
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overhead in the processing time, compared to the case when no multipath mitigation is 

carried out. The increased computation times are still well under the feasibility limit for 

5G latency requirements, so that is not an issue: even with the combined mechanism, the 

execution time for 10 000 trials stays below 150s, which means roughly 15ms per position 

estimation. 
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6 Summary 

6.1 Completed tasks 

As a part of my Thesis work, I ramped up knowledge about different aspects of 

indoor 5G TDOA positioning to better understand the problem. I investigated indoor 

propagation properties by examining real measurement datasets and channel models, to 

find out how the position estimation process is affected by them. I collected many 

different multipath mitigation algorithms. 

I have implemented a stochastic, system-level TDOA positioning simulator, 

including measurement error simulation. I created my customized channel model based 

on real measurement data and successfully applied this channel model in positioning 

algorithm development. 

I thoroughly evaluated the performance of the RANSAC outlier detection 

algorithm: I analyzed the reliability of NLOS detection under various conditions, found 

the weaknesses of RANSAC, and came up with solution plans to overcome them. I tried 

to create a confidence indicator based on RANSAC algorithm details, but I did not find a 

solution to this problem yet. 

I have chosen and implemented another NLOS mitigation algorithm, which 

enables compensating measurement errors, thus it is a good extension to RANSAC, and 

I proved that an improved positioning performance can be achieved by a thoughtful 

combination of the two methods. 

I tested the robustness of the proposed combined multipath mitigation algorithm 

with multiple simulations and showed that it is insensitive to changes in the channel 

model, therefore it is a good candidate positioning solution for a prototype system. 

Unfortunately, the RDS 5G system deployment was delayed a bit, so I didn’t have 

the chance to verify my customized channel model and positioning algorithm with real 

measurement data from RDS yet. The positioning component I have implemented is 

ready to receive real measurements instead of simulated ones, so the verification can start 

instantly, as soon as data will be available. On top of that, I made a lot of different 

simulations, so I have concepts about what can go wrong in the positioning process, thus 

hopefully I will be able to find the problems more quickly. 
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6.2 Conclusions 

While completing my MSc Thesis, I gained insights into the prototype 

development aspects of 5G technology and experienced what the first steps of deploying 

a completely new positioning method look like in production. I learned how to adapt to 

the changing plans and expectations, how to prioritize tasks to help the collaboration 

between different aspects of the development, and get the assigned tasks done until the 

due date at the same time. Participating in this prototype development collaboration and 

writing this thesis about it was the most challenging work I’ve done so far. It was 

especially hard in the beginning because there are so many aspects of such an end-to-end 

system. There is still so much left to learn and improve, and I am looking forward to it. 

6.3 Future work 

The positioning estimator algorithm I have implemented is planned to be used in 

the prototype system, as soon as it is functional. When real measurement data will be 

available in our system, I will verify the channel models I have created, and refine them 

when needed. 

Another important step will be verifying the complete positioning method by real 

measurements. Real and simulated positioning results will be compared, and hopefully, 

the difference between the two will be minimal.  

The positioning accuracy must be further improved in the future to meet 5G 

requirements, and my simulator is a useful tool for quickly implementing, testing, and 

comparing different positioning method improvements.  Including some kind of filtering 

algorithm in the position estimation method would be certainly beneficial for accuracy. 

PDP-based link classification should be implemented and included as well since the 

studies about this topic show very encouraging results. 
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