
Big	Data	software	infrastructures
Institute	for Computer	Science	and	Control,	Hungarian Academy of	Sciences (MTA	SZTAKI)

Gábor	Hermann
Zoltán	Zvara
András	Benczúr
Informatics Laboratory
„Big	Data	– Momemtum”	research group

MTA	SZTAKI,	10/11/2016



2

Outline

n Motivation	for	“Big	Data”
n “Big	Data”	is	about	software	infrastructure
n Batch	and	streaming	approaches
n What	we	do	at	SZTAKI
n Solving	a	problem:	handling	dataskew



3

Some	data	about	data

n Google was guesstimated to have over	1M	machines in
2012

n Large	Hadron	Collider	(LHC)	collisions	generated	about	75	
petabytes	in	past	3 years

n Facebook	31.25	million	messages	every	minute	(2015)



4

The	Project	Triangle

n Small	machine	to	store	and	process	data:	slow
n Large	servers	are	fast	but	costly
n Distributed	computing?



5

Problem	with	distributed	data	processing

n When	failures	happen…
n Left	side will not know about
new data on right

n Immediate response from
left	side	might	give	incorrect
answer

n If	failures	can	happen
(partitioned)	we	can	either	choose	correctness	
(consistence)	or	fast	response	(availability)



6

CAP	(Fox&Brewer)	Theorem

C

A P

Theorem: You may choose two of C-A-P
Consistency
(Good)

Availability
(Fast)

Partition-resilience
(Cheap)AP: some replicas may give

erroneous answer



7

Failures	do	happen	in	distributed	data	processing!

n We	must	have	P,
need	to	choose	between	A	and	C

n Fast	response	vs.	correct	results
n Most	applications	need	fast	response
n Best	we	can	do:	eventual	consistency

(if	connection	resumes	and	data	can	be	exchanged)

n „Big	Data” today is	mostly about software	infrastructure
n Trying	to	do	the	best



8

Approach	1:	batch	processing

n Process	the	whole	dataset
n Consistent,	but	takes	time	(hours,	days)
n If	failure	happens,	wait	for	recovery	(choosing	CP)

n Apache	Hadoop
n MapReduce,	HDFS	(distributed	file	system)
n Data	in	chunks	across	many	machines,	replicated
n Bring	computation	close	to	the	data



9

Beyond	Hadoop and	MapReduce (batch)

n MapReduce has	the	first	open	source	distributed	software,	
Hadoop
n Limitations
n Join	and	more	complex	primitives
n Graphs,	machine	learning

n Alternatives
n Graph	processing:	Apache	Giraph,	Apache	HAMA,	…
n In	memory	based:	Apache	Spark
n Streaming	dataflow	engine:	Apache	Flink



10

Approach	2:	stream	processing

n Continuously	process	all	incoming	data
n Faster	response	time	(low-latency,	within	1	sec)
n If	failure:	wait	for	recovery
n Still	choosing	PC,	but	sophisticated	recovery	mechanisms	give	

lower	downtime

n Harder	to	implement	and	reason	about
n Stream	processing	frameworks
n Apache	Flink,	Apache	Storm, Apache	Spark



11

STREAMLINE	H2020

New	initiative	on	top	of	Apache	Flink
A general data processing 
framework to unify batch and stream 
processing

At SZTAKI: Machine Learning

n DFKI	(DE)
n SICS	(SE)
n Portugal	Telecom	(PT)
n Internet	Memory	(FR)
n Rovio	(FI)
n SZTAKI	(HU) B.	– Volker Markl (TU	Berlin)



12

Flink

Historic data

Kafka, RabbitMQ, ...

HDFS, JDBC, ...

ETL, Graphs,
Machine Learning
Relational, …

Low latency
windowing, 
aggregations, ...

Event logs

Real-time data 
streams

Batch	and	stream:	same execution engine
An engine that puts equal emphasis to 

streaming and batch



13

What	we	do	for	“Big	Data”	at	SZTAKI

n Developing	Apache	Flink (STREAMLINE	H2020)
n Machine	Learning	algorithms,	experimenting

n Projects	with	industrial	partners
n Using	Spark,	Flink,	Cassandra,	Hadoop etc.

n Research
n Improvements	on	current	systems
n Ongoing	project:	handling	dataskew



14

Solving	a	problem:	handling	dataskew

n We	have	developed	an	application	aggregating	telco data
n After	a	while,	on	real	dataset	it	could	become	slow	or	even	

crash
n Investigated	the	problem:	dataskew
n 80%	of	the	traffic	generated	by	20%	of	the	communication	

towers



15

The	problem

n Default	hashing	is	not	going	to	distribute	the	data	
uniformly

n Data	distribution	is	not	known	in	advance
n The	heavy	keys	might	even	change

stage
boundary 
& shuffle

even partitioning skewed data

slow task

slow task



16

Our	solution:	Dynamic	Repartitioning

n Monitoring	tasks,	repartitioning	based	on	that	data
n System	aware
n No	significant	overhead

n Can	handle	arbitrary	data	distributions
n Does	everything	on-the-fly
n Works	for	streaming	and	batch

n Pluggable
n Initially	on	Spark	batch	and	streaming
n Plugged	into	Flink streaming



17

Execution visualization of	Spark jobs



18

Future	in	handling	dataskew

n Generalizing	the	problem
n Balancing	load	in a	processing	system
n Balancing	resources	between processing	systems	on	a	

cluster	(YARN)



19

Conclusion

n We	can	tame	“Big	Data”	with	better	software
n Lot	to	do…
n Connection	between	batch	and	streaming
n Highly	scalable	machine	learning	(batch	and	online	both)
n Optimizations	(e.g.	handling	dataskew)
n Better	understanding	our	tools	(e.g.	visualization)
n ...

n Evolving	fast,	but	we	can	take	part	in	it



20

Questions?

n You	can	reach	us!
n ghermann@ilab.sztaki.hu
n zoltan.zvara@ilab.sztaki.hu
n benczur@ilab.sztaki.hu



21

References

n STREAMLINE	H2020
n https://streamline.sics.se/

n Dynamic	Repartitioning
n https://spark-summit.org/2016/events/handling-data-skew-

adaptively-in-spark-using-dynamic-repartitioning/

n Visualizations
n http://flink-forward.org/kb_sessions/advanced-visualization-of-

flink-and-spark-jobs/



22

References	(continued)

n Apache	Hadoop
n https://hadoop.apache.org/

n Apache	Flink
n https://flink.apache.org/

n Apache	Spark
n https://spark.apache.org/



23

References	(continued)

n E.	A.	Brewer.	Towards	robust	distributed	systems,	2000
n J.	Dean	and	S.	Ghemawat.	MapReduce:	Simplified	Data	

Processing	on	Large	Clusters,	2004
n N.	Marz.	How	to	beat	the	CAP	theorem,	2011
n http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html


