

IoT in Smart Cities

Technology overview and future trends

Rolland Vida, PhD

Budapest University of Technology and Economics Smart City Group, Dept. of Telecommunications and Media Informatics IEEE Sensors Council, IEEE Communications Society

3. Magyar Jövő Internet Konferencia, 2016. november 10.

IoT definition

Traditional Internet (of People)

- Network of machines (PCs, switches, routers, servers, etc.)
- Content (mostly) generated by people web pages, e-mails, pictures, videos, etc.

Internet of Things (IoT)

People have limited time, attention and accuracy to measure the physical world

IoT in Smart Cities

- Let's use machines for that
- IoT = Network of "smart things", capable of sensing the physical world, and communicating, without human intervention
- Example: smart waste bin
 - Measures how full is the bin
 - Communicates with a central waste management system
 - Optimized routes for waste collection trucks

Brief IoT history

- Internet of Things (IoT) term first used by Kevin Ashton (MIT) in 1999
- First IoT device?
 - A Coca-Cola machine at Carnegie Mellon university (in 1982 !!)
 - cheaper with 10 cents compared to other machines
 - Many students walked to the machine through the large campus, but were upset if the machine was empty
 - Idea: let's connect it to the Internet, to be able to check its status remotely
- The term IoT became really popular only after 2012-2013

Interest over time. Web Search. Worldwide, 2004 - present.

Google

Smart IoT devices in Smart Cities Weather Cars -1) stations Traffic 3 lights Smart ((• watches Smartphones Buses 9 **G** Smart Meter Parking G 012343 sensors Smart 0123456789 5 meters **Kiosks** G Surveillance Thrash \mathbf{P}_{2} Electronic cameras

4

1111

2016. November 10.

displays

IoT in Smart Cities

And many more...

bins

Sensing technology

- Significant technological advances recently
 - Mechanical, thermal, electrical, optical, chemical sensors
 - Miniaturization MicroElectroMechanical Systems (MEMS), nanotechnology
 - MEMS devices smaller than 1 mm
 - Accelerometers, gyroscopes, microphones integrated into smartphones, digital cameras, cars, etc.

- Significant ongoing research efforts
 - IEEE Sensors Journal among the top 5 IEEE journals (out of 180) in number of papers

Wireless Sensor Networks

- Sensors should be many, small and cheap
- Limited resources memory, CPU, energy
- Should be able to operate unattended, for many years
 - Recharging the battery is too difficult or too costly

Libelium Waspmote with some integrated sensors...

and some external sensors that can be attached....

- Most of the energy is consumed by the communication
- Basic assumption (10 years ago): not possible for all sensors to send data directly to a remote control center
 - Cellular networks (3G, 4G) too resource-hungry, not suitable
- Let's build Wireless Sensor Networks

Wireless Sensor Networks

- One of the most hyped research topics 10 years ago
 - Multi-hop networks energy efficient routing, load balancing, sleep scheduling, etc.
 - Single-hop networks most of the applications at that time

- Short-range radio technologies LR-WPAN (Low Rate Wireless Personal Area Networks)
 - IEEE 802.15.4, Zigbee, Bluetooth Low Energy (Smart)
- Costly infrastructure building
 - Larger distances covered by densely deployed gateways
 - (Still) costly sensors
 - Embedded parking sensor today 60-100 USD
 - Hundreds of thousands of parking slots in Budapest

Sensor communication today

- Emerging LPWAN (Low Power Wide Area Network) technologies
 - Covering distances of up to 10-15 km, or even more
 - Extremely low energy consumption, battery lifetime of 10 years

Cellular IoT

- Licensed frequency bands
- NB-IoT, LTE-M, EC-GSM
- Under 3GPP standardization, large scale deployments in a few years only

Unlicensed LPWA

- On license-free frequencies
- Proprietary solutions
- LoRa, SIGFOX, Weightless
- Ready to use, countrywide deployments in more than 20 countries

WSN vs. loT

- WSN homogeneous network of similar sensors, deployed with a specific purpose
- **IoT** a more general term, heterogeneous network
 - Devices with limited resources parking sensors, smart meters, etc.
 - Devices with (virtually) no resource limitation cars, smart phones, coke machines
 - They communicate not for the sake of a specific application, but to provide internet access, or other services to each other
 - E.g., a car could collect data from sensors it passes by, and deliver them to the central database
- IoT devices form Low Power and Lossy Networks (LLN)
- IETF ROLL WG Routing Over Low power Lossy (2008)
 - **RPL protocol** (pronounce: Ripple) RFC 6550 (2012)

Special case of vehicular networks (in smart cities)

- Cars are more and more intelligent devices
 - Tons of sensors (engine temperature, brake temperature, tire pressure, parking radars, wheel speed, rain detection, fuel consumption, seat occupancy, etc...)
- Why not integrate them into the IoT, let them communicate?
- Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication
 - On-board Units (OBUs) and Road-side Units (RSUs)

- Different application scenarios
 - Safety-critical applications Emergency brake
 - Low data rate, but very low latency required (< 50 ms)
 - Cooperative awareness Adaptive cruise control, self-driving
 - Might be very high data rate
 - Estimations about a self-driving car in 2020 generating 4 Tbytes of data / day

Communication in vehicular networks

- IEEE 802.11p special standard developed for vehicular communication
 - 75 MHz wide spectrum at 5.9 GHz, modified IEEE 802.11a
 - Enhanced MAC, QoS support, beaconing
- Standard adopted in 2009, many field trials since then, ready to use

LTE-based V2V support

- Current versions of LTE can only address basic ITS use cases
 - No support for low latency and high mobility use cases
 - 3GPP V2x study group established in 2015
- LTE D2D Device-to-Device
 - part of Release 12, but not suitable for V2V
 - Signaling/control via the eNodeB
 - Direct data sending between the UEs
- LTE-V2x probably in release 14, 15, by the end of 2017
 - Much time ahead until large scale deployment

IEEE 802.11p vs. LTE-V2x

2016. November 10.

IoT in Smart Cities

Big Data technologies

- After the data is sensed and transmitted, it should be processed (filtered, analyzed, aggregated, etc.)
- The "3 Vs of Big Data" for IoT in smart cities

- The final goal would be personalized and context-aware services for every person
- We are still far from there
 - Example: no personalized routes in Waze, no user profiles
 - Too complex to calculate

Thank you!

vida@tmit.bme.hu

