

New Technologies for the Information Society Research Center University of West Bohemia in Pilsen

# Convolutional Neural Network in the Task of Speaker Change Detection

Ing. Marek Hrúz Ph.D. Ing. Marie Kunešová





## Motivation

- Overall goal: Audio-visual model
- Such model will use both modalities for recognition/identification



# Motivation

- Overall goal: Audio-visual model
- Such model will use both modalities for recognition/identification





# Motivation

- Overall goal: Audio-visual model
- Such model will use both modalities for recognition/identification
- Generally, there can be more modalities
- For the purpose of Human Computer Interfaces:
  - Facial expression
  - Body movement, hand gestures
  - Prosodic analysis of speech



# Speaker change detection

- The role of SCD in the big scope is to find segments of A/V data where there is only one speaker present
- SCD can be done on both modalities





# Types of speaker change

- Every time the audio source changes a change occurs
- Spk1-Spk2; Spk1-SIL; Spk1-{Spk1+Spk2}

| spk01  |  |  |  |  |
|--------|--|--|--|--|
| spk02  |  |  |  |  |
| change |  |  |  |  |



### Speaker Change Detection in the Past

• Most of the past research is based on comparing features extracted from speech segments using a sliding window



- LFCC are modelled as a Gaussian distribution
- The Gaussians are compared via Bayesian Informational Criterion



# **Convolutional Neural Network**

• Because of the success of CNNs in classification and regression we want to test them in the task of SCD





• The input of the CNN is a spectrogram covering 1.4 seconds of audio



tract segments of one exclusive speaker

- This is a segment with one audio source
- The fundamental frequency is almost the same
- The shapes of the "wrinkles" are consistent



- The input of the CNN is a spectrogram covering 1.4 seconds of audio
- The goal is to extract se
  - In this segment a speaker change is present
  - The fundamental frequency changes



isive speaker

• The shape characteristics of the "wrinkles" changes



- The input of the CNN is a spectrogram covering 1.4 seconds of audio
- The goal is to extract segments of one exclusive s<sub>1</sub>
  - This segment depicts an overlapped speech
  - There are a lot of non-harmonic frequencies
  - The shapes are chaotic





• The input of the CNN is a spectrogram covering 1.4 seconds of audio





- The precision of the border of the segment is "noisy"
- The labels should reflect that instead of one instance it is an interval





#### CNN architecture

• The shapes of the kernels in the first layer are chosen with the shapes of the high energy wrinkles in mind



**Table 1.** Summary of the architecture of the CNN.

| Layer           | Kernels | Size      | $\mathbf{Shift}$ |
|-----------------|---------|-----------|------------------|
| Convolution     | 50      | 16 x 8    | $2 \ge 2$        |
| Max pooling     |         | $2 \ge 2$ | $2 \ge 2$        |
| Batch Norm      |         |           |                  |
| Convolution     | 200     | 4 x 4     | 1 x 1            |
| Max pooling     |         | $2 \ge 2$ | $2 \ge 2$        |
| Batch Norm      |         |           |                  |
| Convolution     | 300     | 3 x 3     | 1 x 1            |
| Max pooling     |         | $2 \ge 2$ | $2 \ge 2$        |
| Batch Norm      |         |           |                  |
| Fully Connected | 4000    |           |                  |
| Fully Connected | 1       |           |                  |





# **CNN** Training

- Using Keras with Theano backend
- Stochastic Gradient Descent
- Batch size 64
- Step-size learning rate
- Nesterov momentum
- In later stages RMSProp for fine-tuning
- Initialization: K. He, X. Zhang, S. Ren, and J. Sun, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", Feb 2015.





#### Experiment

- CallHome corpus 8 kHz, telephone, wild speech, annotated
- We compare CNN to the baseline BIC method
- Each segment of 1.4 seconds is regressed to the interval <0;</li>
  1>
- Comparison according to DET curves (with linear axes)
- Training data 5 hr 48 min 35 conversations

Testing data – 11 hr 20 min – unheard speakers – 77



## Speaker change detection -Results

- BIC baseline system
- 20 LFCC + delta

**Table 2.** EER values for different systems.

| System | BIC 0.7 | BIC 2.0 | BIC 5.0 | CNN    |
|--------|---------|---------|---------|--------|
| EER    | 0.3229  | 0.3679  | 0.3704  | 0.2482 |

- CNN binary labelling
- Another type of labelling?



+NTIS

#### Fuzzy labelling





# Fuzzy labelling results

- Even better results
- EER = 0.1405

| Table | 2. | EER | values | for | different | systems. |
|-------|----|-----|--------|-----|-----------|----------|
|-------|----|-----|--------|-----|-----------|----------|

| System | BIC 0.7 | BIC 2.0 | BIC 5.0 | CNN    |
|--------|---------|---------|---------|--------|
| EER    | 0.3229  | 0.3679  | 0.3704  | 0.2482 |





#### Czech language data

• EER = 0.1908 (male – female) EER = 0.2166 (male – 100 (10)





# THANK YOU FOR YOUR ATTENTION

