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On a key exchange protocol based on
Diophantine equations

Noriko Hirata-Kohno, Attila Peth̋o

Abstract—We analyze a recent key exchange protocol
proposed by H. Yosh, which is based on the hardness to
solve Diophantine equations. In this article, we analyze
the protocol and show that the public key is very large.
We suggest large families of parameters both in the
finite field and in the rational integer cases for which
the protocol can be secure.

I. I NTRODUCTION

The notion of public key cryptography started with
a key exchange protocol [12]. Various protocols have
been developed for this purpose, see for example [8],
[14]. Hard computational problems lie under these
protocols, e.g., factorization into primes of large inte-
gers, computation of discrete logarithm, determination
of the shortest vector in lattices and decoding of error
correcting codes.

D. Hilbert asked in his famous lecture at the
second International Congress of Mathematicians in
1900 whether there exists a general procedure which
determines the solvability of Diophantine equations.
The question was answered70 years later by Y.
Matijasevĭc, who proved that such an algorithm does
not exist [11]. However, the impossibility of a general
algorithm does not mean that we cannot solve special
equations. There are large classes of Diophantine
equations which are algorithmically and numerically
solvable, see e.g. [1], [20].

Despite many efforts, finding the solutions to Dio-
phantine equations is usually a hard task. Based on
this observation, Lin, Chang and Lee [13] suggested
a new public key protocol in 1995. A bit later Cusick
showed that this protocol is insecure and it can be
broken in polynomial time without solving any Dio-
phantine equations [9]. Although such observations,
especially in the case of (non-linear) Diophantine
equations of high degree, Yosh [22] proposed a key
exchange protocol whose security relies on the hard-
ness to find the solutions to the equations.
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We present here a more detailed analysis of the
protocol. We show that it can be secure both over
finite fields and in the original setting, i.e. over the
ring of rational integers. In any case there is a big
efficiency bottleneck and indeed the size of the public
key is enormous.

It might be true that the theory of cryptography
does not profit enough from the theory of Diophantine
equation of high degree and vice versa. This is the
reason to write these notes.

After the celebrated theorem of Shor [19] that
factorization and discrete logarithm can be done with
quantum algorithms in polynomial time, there is a big
demand to develop new public key protocols. These
should be based on problems, which cannot be solved
by quantum computers in polynomial time, or at least
we should have some evidence. A good overview on
such efforts is presented in [3]. We hope that these
notes might give a small step toward this direction.

II. T HE PROTOCOL OFHARRY YOSH

In this section, we describe with minor modifica-
tions and generalizations, the key exchange protocol
proposed by H. Yosh [22]. LetR be a commutative
ring with unity 1. Fix a ∈ R and b ∈ N and for
x ∈ R, consider the function

Ta,b(x) = (x + a)b.

Obviously Ta,b is a polynomial map fromR to R.
Assume thatb is chosen such thatTa,b is injective,
i.e. invertible. Letf(x1, . . . , xm), g(x1, . . . , xm) ∈
R[x1, . . . , xm].

To exchange a secret key, Alice and Bob perform
the following steps:

(i) Alice chooses a polynomialf(x1, . . . , xm) ∈
R[x1, . . . , xm] and compute a solution
(r1, . . . , rm) ∈ Rm to the Diophantine equation

f(x1, . . . , xm) = 0.

She keeps(r1, . . . , rm) secret, but makesf public.

(ii) Bob chooses a polynomialg(x1, . . . , xm) ∈
R[x1, . . . , xm] and parametersa1, . . . , an ∈ R as
well asb1, . . . , bn ∈ N such thatTaj ,bj

are invertible
for j = 1, . . . , n. He computes

H(x1, . . . , xm) =
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= Tan,bn
(. . . (Ta1,b1(g(x1, . . . , xm))) . . .)

and takes an elementh ∈ H + fR[x1, . . . , xn].
He keepsa1, . . . , an, b1, . . . , bn secret and makes
g, h public.

(iii) Knowing g, h Alice computess = g(r1, . . . , rm)
andu = h(r1, . . . , rm) and sendsu to Bob.

(iv) Bob computes T−1
a1,b1

(. . . (T−1
an,bn

(u)) . . .),
which is s, the common secret key of Alice and Bob.

For completeness we prove

Proposition 1. The protocol is correct.

Proof: Alice can computes because she knows
g andr1, . . . , rm.
As f(r1, . . . , rm) = 0 we have

u = h(r1, . . . , rm) = H(r1, . . . , rm).

Thus

s = H−1(u) = T−1
a1,b1

(. . . (T−1
an,bn

(u)) . . .)

and Bob can computes because he knows
a1, . . . , an, b1, . . . , bn and Taj ,bj , j = 1, . . . , n are
invertible.

In Yosh’ analysis, it was only considered one
possible attack. The secret key can be computed from
common solutions to the system of public equations
f = 0, h = u. Yosh pointed out that one can
choose these equations such that the determination via
Gröbner bases technique of the common solution still
remains a hard task. Unfortunately only few examples
were given in the article.

Here, we present a more detailed cryptoanalysis of
the protocol of Yosh. In Yosh’s original version, only
the caseR = Z was investigated and the finite field
case was just mentioned. We investigate two cases,
whenR = Z andR is a finite field.

Another difference is that Yosh dealt with the map
in three parameterŝTa,b,c(x) = (x + a)b + c, with
a, c ∈ R andb ∈ N. By the obvious identity

T̂ân,b̂n,ĉn
(. . . (T̂â1,b̂1,ĉ1

(x)) . . .) =

= Tan+1,bn+1(Tan,bn
(. . . (Ta1,b1(x)) . . .)),

wherea1 = â1, aj = âj + ĉj−1, j = 2 . . . , n, an+1 =
ĉn, bj = b̂j , j = 1, . . . , n and bn+1 = 1 it is enough
to work with our map in two parameters.

We point out that the most serious bottleneck is
the size of the public key, especially the size ofh. To
keep this parameter in an acceptable size, we have to
use low degree polynomials, in particularb1, . . . , bn

have to be small.
Another important observation is that the equation

f = 0 has to be hard to solve. We show in both
cases that this can be achieved with large families of
polynomials. In the case ofZ we present a concrete
example for which the protocol seems to be secure

and the public key can be computed within some
seconds.

A nice feature of the above algorithm is that the
parties are coequal during the key generation, both
have own secret, which are not known even by the
partner. In this respect it is similar to the celebrated
Diffie-Hellmann key exchange protocol [12].

III. PRELIMINARY OBSERVATIONS

Remark that in [22] there is no hints for the
secure choice of the parameters, only an example and
remarks about possible attacks are given. In these
notes we concentrate on the possibility of such a
choice of the parameters, which is computationally
feasible, but seems secure enough. In this part we
collected observations, which are independent from
the ground ringR.

To break the system, i.e. to compute the common
key, the enemy has to find the secret parameters
r1, . . . , rm or a1, . . . , an, b1, . . . , bn. The only public
information about the former is that(r1, . . . , rm) is a
solution to the system of equations

f(x1, . . . , xm) = 0 (1)

h(x1, . . . , xm) = u. (2)

To solve such equations one can use Gröbner bases
technique [5], [6], [8] or elimination theory. The latter
means that choosing one of the unknowns, sayxm,
one computes the resultantResxm(f, h − u), which
has unknowns one less than those off or h. Moreover
the first m − 1 coordinates of solutions to (1) and
(2) are zeroes of the resultant. Thusm has to be at
least three because otherwise after the elimination one
of the variables in (1) and (2), we would obtain an
equation in a univariate polynomial, which is simple
to solve.

Key exchange protocols are used several times with
the same parameters. In our casef and (r1, . . . , rm)
can be fixed. After each running the enemy learn
a new h and the correspondingu. After ` turns he
collects ` + 1 public equations for(r1, . . . , rm). If
` ≥ m − 2 then the enemy can easily compute
(r1, . . . , rm).

Proposition 2. The protocol can be used with the
same polynomialf only at mostm− 3-times.

A further observation of similar manner is the
following.

Proposition 3. If the adversary can compute many
solutions, not necessarily(r1, . . . , rm), of (1), then he
can compute the elements and break the protocol.

Proof: Indeed, assume that(α1, . . . , αm) ∈ Rm

is a solution to (1) and putβ = g(α1, . . . , αm). As

h = H + fV
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for some V ∈ R[x1, . . . , xm], we have
h(α1, . . . , αm) = H(α1, . . . , αm). Thus we get
the equation

(((β + a1)b1 + a2)b2 + . . .+ an)bn = h(α1, . . . , αm).
(3)

for a1, . . . , an, b1, . . . , bn. Knowing about2n solu-
tions of (1) we obtain about2n equations of form
(3), which determine usually the2n unknowns.

Now we investigate the possible choice of
a1, . . . , an, b1, . . . , bn. Let

t(x) = ta1,...,an,b1,...,bn
(x) =

= Tan,bn
(. . . (Ta1,b1(x)) . . .) =

= (((x + a1)b1 + a2)b2 + . . . + an)bn .

It is clear that the degree oft(x) is b1 · · · bn. On the
other hand its value at each point can be computed by
n additions and by at mostO(log b1 + . . . + log bn)
multiplications. Furthermore, it can be stored on at
most n(A + B) bits, whereA and B denote the
maximal bit length of the representations ofai and
bi, i = 1, . . . , n respectively. This means thatt admits
a very sparse representation. Since polynomials in
sparse representations are rare, we cannot expect that
h has a similar simple representation. We have to
expect that the representation ofh is dense, i.e. most
of its coefficients are non-zero.

Put di = degxi
g, i = 1, . . . ,m. Then it is clear

that
degxi

H = b1 · · · bn · di

holds for i = 1, . . . ,m. Thus H has at most(1 +
o(1))d1 · · · dm(b1 · · · bn)m terms. We obtainh in Step
(ii) by adding a suitable multiple off to H. Hence
we can control the degree of one of the variables. We
may assume that it isxm. By the argument above,
we expect that a big portion of the coefficients of the
terms ofh is non-zero, i.e. we have to store about

O(d1 · · · dm−1(b1 · · · bn)m−1) (4)

non-zero elements of R. This means that
n, m, b1, . . . , bn have to be small. To be more
specificb1, . . . , bn ≤ B and n, m ≤ N , whereB, N
are small positive integers.

IV. T HE PROTOCOL OVER FINITE FIELDS

Yosh mentioned in [22] that the protocol works
over finite fields too, but no detail is given. We
analyze this case in the present section. SetR = Fq,
where q is a prime power. In practiceq is either a
large prime or a large power of2. It is a classical
fact that x 7→ xb is bijective on F∗

q = Fq \ {0}
iff gcd(q − 1, b) = 1. Combining this fact with
the general remarks of Section III we must have
1 ≤ bi ≤ B andgcd(q − 1, bi) = 1, i = 1, . . . , n.

By Proposition 3 the equationf(x1, . . . , xm) = 0
has to be hard to solve. The next theorem, which is the

combination of Theorem 2.1. and Corollary 2.2. The
argument by Bérczes, Folláth and Pethő in [4], en-
ables us to define a large class off ∈ Fq[x1, . . . , xm]
such that if q is large then this holds with high
probability.

Theorem 1. Let

F (x1, . . . , xm) := B(x1, . . . , xm) + A(x1, . . . , xm)

∈ Fq[x1, . . . , xm]

with homogeneous polynomialsA,B satisfying
deg A < deg B = D, degxi

B = D for each
1 ≤ i ≤ m. Further, suppose that there exist indices
1 ≤ j1 < j2 ≤ n such that the binary form

B(0, . . . , 0, xj1 , 0, . . . , 0, xj2 , 0, . . . , 0) (5)

has no multiple zero.
Denote byPcoll(F, γ) the probability thatF (x) as-
sumes the valueγ ∈ F∗

q , when x runs uniformly
through the elements ofFm

q . If q > 5 ·D13/3, then

Pcoll(F, γ) ≤ 3
q
.

The following construction off is based on the
consequence of Theorem 1.

• Setq = 2127, which ensures thatgcd(q−1, p) =
1 for p = 3, 5, 7.

• Choose homogenous polynomialsA,B ∈
Fq[x1, . . . , xm] subject to the condition (5) and
such thatdeg A < deg B ∼ b1 · · · bn/3.

• Pick randomlyr1, . . . , rm ∈ Fq and setγ =
B(r1, . . . , rm) + A(r1, . . . , rm). If γ = 0 then
chooser1, . . . , rm again, otherwise setf = B +
A− γ.

Then(r1, . . . , rm) is a solution off = 0. As D ∼
b1 · · · bn/3 ∼ 7 the conditionq > 5 ·D13/3 holds too.
By Theorem 1 the chance to find(r1, . . . , rm) or a
different solution off = 0 is extremely low.

Remark that in the first stepq can be replaced by a
larger power of2 or by an odd prime of similar size.
We have to be care to the conditiongcd(q−1, p) = 1
for all primesp ≤ B. In [4] it was proved that there
exists a large class of polynomials, which satisfy the
assumptions of step 2.

We suggest that Bob choosesa1, . . . , an ∈ F∗
q

randomly. This is appropriate because in Step (iii)
of the algorithm Alice makes public the valueu =
h(r1, . . . , rm). Thus the equation

(((s + a1)b1 + a2)b2 + . . . + an)bn = u

is known for everybody, but the elements is not
known. We may assume without loss of generality
bn = 1 because one can compute small degree roots
in finite fields or inZ in probabilistic polynomial time.
Thus our equation has the form

xb + y = c,



4

where c and b are known, butx, y are unknown
elements ofFq. Thus the adversary has no chance
to find the hidden solutions.

To hide H we suggest to chooseV ∈
Fq[x1, . . . , xm] randomly of low degree, and put
h = H + fV .

Proposition 4. With the above choice the key ex-
change protocol of Yosh over finite fields is secure.

V. THE CASER = Z
The mapTa,b is injective if and only ifb is odd.
In Step (iii) of the algorithm, Alice make public

the valueu = h(r1, . . . , rm). Thus the equation

(((s + a1)b1 + a2)b2 + . . . + an)bn = u. (6)

is known for everybody, buts is not known. We
pointed out in the finite field case thatbn = 1 can be
assumed without loss of generality. Thus our equation
has the form

xb + y = c,

wherec is a known integer,b may be assumed to have
some small values andx, y are unknown integers. Let
y0 be the nearest integer toc1/b and compute the two
sided sequence(y0±k)b, k = 0, 1, . . . until c appears.
If the equation has a small solution iny, say |y| ≤
107, then with the above procedure, it will be quickly
found.

Proposition 5. We may assumebn = 1. The pa-
rametersa1, . . . , an should be sufficiently large, say
|ai| ≥ 108, i = 1, . . . , n.

Let a = max{|a1|, . . . , |an|}. We have to expect
that the absolute value most of the coefficients oft(x)
hence ofH,h are as large asab1···bn−1 , which is1072

even for the smallest possible parameter valuesn =
4, b1 = b2 = b3 = 3. By (4), we have to store and
transmit39 ·d1 . . . dm−1 integers. In the simplest case,
namely choosingg to be linear, we have to transmit
about104 coefficients of size1072. This is a very large
amount of data. Below we give a concrete example
showing this fact.

Now we come back to the choice off . By Propo-
sition 3 f has to be such that the equationf = 0
is hard to solve. We suggest to choosef a diagonal
polynomial, i.e. of formc1x

d1
1 + . . .+ cmxdm

m − cm+1

with d1, . . . , dm ≥ 2. First of all these polynomials
are very simple. It is an important aspect to compute
h and one solution of the equationf = 0.

On the other hand diagonal polynomials are
complicated enough, i.e. by careful choice of
c1, . . . , cm+1, d1, . . . , dm the adversary can hardly
find a solution of the diophantine equationc1x

d1
1 +

. . . + cmxdm
m − cm+1 = 0. Indeed, it is well known

that if at most one exponent is equal to two and we fix
the values ofm−2 variables, then the resulting single

equation in two-variables has only finitely many so-
lutions. Moreover it is usually hard to find a solution
provided the coefficients are large. If two exponents
are equal to2 then we may get equations of form
x2 − dy2 = m with infinitely many integer solutions,
but the computation of the fundamental solutions is
hard. For example, it is well known that finding a
solution of x2 − y2 = n such thatx − y 6= ±1,±n
is equivalent to finding a non-trivial factor ofn, see
e.g. [17].

Choosed1 ≤ . . . ≤ dm according to the last
paragraph and such that they are small, saydi ≤
7, i = 1, . . . ,m. Let v be a positive integer, which
we specify later. After fixingd1, . . . , dm it is not
wise to choosec1, . . . , cm and cm+1, because the
success probability for the solution of a given equa-
tion is the same for everybody. Alice has to carry
out in a different manner. She chooses a solution
and after this she searches for an equation with the
prescribed solution. To be more specific, she chooses
r1, . . . , rm, cm+1 ∈ Z randomly subject to the con-
ditions |ri|di ≤ 2v, i = 1, . . . ,m, |cm+1| ≤ 2v and
such thatgcd(r1, . . . , rm) = 1. The number of possi-

bilities is about2v
�
1+ 1

d1
+...+ 1

dm

�
. Then she computes

c1, . . . , cm by solving the linear Diophantine equation

cm+1 = c1r
d1
1 + . . . + cmrdm

m .

The assumptions are such that this equation is
solvable and that it has infinitely many solutions.
From this infinite collection we suggest to choose
c1, . . . , cm such that they have similar size. Perform-
ing this process Alice has the polynomialf and knows
a solution to (1). On the other hand, finding a solution
for other peoples (or finding another solution for
Alice) is hopeless.

It remains to specifyv. It must be so large that
a brute force attack is hopeless. This means that the
number of choices of the parameters must be large,
at least2128. This implies the inequality

v

(
1 +

1
d1

+ . . . +
1

dm

)
≥ 128.

We suggest to chooseg randomly among the
quadratic or linear polynomials.

There is no canonical choice forh ∈ H +
fZ[x1, . . . , xm], provided m > 1. One can fix a
variable, sayxm, and considerH, f as polynomials
in xm with coefficients in the ringZ[x1, . . . , xm−1].
Then one can compute the remainder ofH modulo
f . The choice of the variable considerably influences
the size ofh. We give an example below. Another
possibility for the choice ofh is that we pick a
polynomial V ∈ Z[x1, . . . , xm] randomly and put
h = H + fV .

Finally we present a concrete example, which might
satisfy the security requirements and the size of the
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public key is beyond the possibilities.1 Set m =
4, n = 3 and choose the polynomials as follows.

f = c1x
2
1 + c2x

5
2 + c3x

3
3 + c4x

7
4 + c5;

c1 = 1004439616068996251566977588899652
58647,

c2 = −349810512301185120181179486451994
47959092

c3 = 36379686253405252442775297079115999
38738364717062704444171396361954364,

c4 = −707541245602739546204021071493995
8108817512020742239926498242401,

c5 = −987654323456789876543216543205678
96543210567,

g = 3x1 + 5x2
2 + 7x1x2 + 93x3

3 + 753x4,

H = ((g + 734367)3 + 537769)5 + 56478587.

A solution of f = 0 is

x1 = 235452462352353121512, x2 = 43689743,

x3 = 43216789765432, x4 = 4567973.

We left to the readers to find a different solution.
With these parameters the computation ofh took
some seconds. It has 2107 terms and the internal
representation in MAPLE has length 800327.
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