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Abstract—We analyze a recent key exchange protocol We present here a more detailed analysis of the
proposed by H. Yosh, which is based on the hardness to protocol. We show that it can be secure both over
solve Diophantine equations. In this article, we analyze finjte fields and in the original setting, i.e. over the
the protocol and show that the public key is very large. . . . . .
We suggest large families of parameters both in the rln_g_of rational integers. _In any case there is a b'_g
finite field and in the rational integer cases for which €fficiency bottleneck and indeed the size of the public
the protocol can be secure. key is enormous.

It might be true that the theory of cryptography
does not profit enough from the theory of Diophantine
equation of high degree and vice versa. This is the

The notion of public key cryptography started withreason to write these notes.

a key exchange protocol [12]. Various protocols have After the celebrated theorem of Shor [19] that
been developed for this purpose, see for example [8hctorization and discrete logarithm can be done with
[14]. Hard computational problems lie under thesquantum algorithms in polynomial time, there is a big
protocols, e.g., factorization into primes of large intedemand to develop new public key protocols. These
gers, computation of discrete logarithm, determinatioshould be based on problems, which cannot be solved
of the shortest vector in lattices and decoding of errdry quantum computers in polynomial time, or at least
correcting codes. we should have some evidence. A good overview on

D. Hilbert asked in his famous lecture at thesuch efforts is presented in [3]. We hope that these
second International Congress of Mathematicians imotes might give a small step toward this direction.
1900 whether there exists a general procedure which
determines the solvability of Diophantine equations. Il. THE PROTOCOL OFHARRY YOSH
The question was answeret) years later by V. ) ) ) ] ) .
MatijasevE, who proved that such an algorithm does In this section, lwe_descnbe with minor modifica-
not exist [11]. However, the impossibility of a genera‘IonS and generalizations, the key exchange prptocol
algorithm does not mean that we cannot solve specRfioP0seéd by H. Yosh [22]. LeR be a commutative
equations. There are large classes of Diophantif89 With unity 1. Fix « € R andb € N and for
equations which are algorithmically and numericallyf € £+ consider the function
solvable_, see e.g. [1], [ZQ]. _ _ _ To(z) = (x + a)®.

Despite many efforts, finding the solutions to Dio-
phantine equations is usually a hard task. Based @bviously T; ; is a polynomial map fromR to R.
this observation, Lin, Chang and Lee [13] suggestedlssume that is chosen such thaf, ; is injective,

a new public key protocol in 1995. A bit later Cusicki.e. invertible. Let f(x1,...,2m), g(z1,...,Zm) €
showed that this protocol is insecure and it can bB[z1,...,Zm].

broken in polynomial time without solving any Dio- To exchange a secret key, Alice and Bob perform
phantine equations [9]. Although such observationthe following steps:

especially in the case of (non-linear) Diophantine

I. INTRODUCTION

equations of high degree, Yosh [22] proposed a kdi) Alice chooses a polynomialf (x1,...,zm,) €
exchange protocol whose security relies on the har@{x, ..., z,] and compute a  solution
ness to find the solutions to the equations. (ri,...,7m) € R™ to the Diophantine equation
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=To b0 (oo Lo by (g(z1, s 2m))) -+ ) and the public key can be computed within some
seconds.

and takes an elemete H + fR[z1, ..., onl. A nice feature of the above algorithm is that the
He keepsaq,...,an,b1,...,b, secret and makes . . .

1 public parties are coequal c_JIurlng the key generation, both
9> ' have own secret, which are not known even by the
(iiiy Knowing g,  Alice computess = g(r ) partner. In this respect it is similar to the celebrated

’ = 1y---5Tm A
andu = h(r, ..., ) and sends: to Bob. Diffie-Hellmann key exchange protocol [12].
(iv) Bob computes T;}bl(...(T;{b (w)...), [1l. PRELIMINARY OBSERVATIONS

which is s, the common secret key of Alice and Bob. _ . .
s y Remark that in [22] there is no hints for the

For completeness we prove secure choice of the parameters, only an example and
remarks about possible attacks are given. In these
notes we concentrate on the possibility of such a
Proof: Alice can computes because she knowschoice of the parameters, which is computationally
gandry, ..., Tmy. feasible, but seems secure enough. In this part we
As f(ri,...,mm) =0 we have collected observations, which are independent from
. _ the ground ringR.
w=h(rorm) = Hr o ). To break the system, i.e. to compute the common

Proposition 1. The protocol is correct.

Thus key, the enemy has to find the secret parameters
1N el -1 T1yeeoyPm OF @1, ..., 0Gn,b1,...,b,. The only public
s=H"(u)=T,,(.- (T, ®).) information about the former is thét;,...,r,,) is a
and Bob can computes because he knows solution to the system of equations
a1, ... 0n,b1,...,0, @Nd Ty, 5,7 = 1,...,n are
invertible. o N [, m) = 0 1)
In Yosh' analysis, it was only considered one h(z1,...,zm) = u. (2

possible attack. The secret key can be computed from

common solutions to the system of public equation& SOIve such equations one can use Grobner bases
f = 0,h = wu. Yosh pointed out that one cantechnique [5], [6], [8] or elimination theory. The latter
choose these equations such that the determination J#§2ns that choosing one of the unknowns, say
Grébner bases technique of the common solution sfl"® computes the resultaies,.,, (f,h — u), which
remains a hard task. Unfortunately only few exampld®S Unknowns one less than thos¢f @fr /.. Moreover
were given in the article. the firstm — 1 coordinates of solutions to (1) and

Here, we present a more detailed cryptoanalysis f) are zeroes of the resultant. Thushas to be at
the protocol of Yosh. In Yosh’s original version On|yleast three because otherwise after the elimination one

the caseR = 7 was investigated and the finite field®f the variables in (1) and (2), we would obtain an
case was just mentioned. We investigate two cas&guation in a univariate polynomial, which is simple

whenR = Z and R is a finite field. to solve.
Another difference is that Yosh dealt with the map Key exchange protocols are used several times with
in three parameterd) , .(z) = (z + a)® + ¢, with the same parameters. In our cafsand (1, Tm)
a,c € R andb € N. By the obvious identity can be fixed. After each running the enemy learn
. . a newh and the corresponding. After ¢ turns he
Ty min o (T 6 (@) ) = collects ¢ + 1 public equations for(ry, ..., 7). If
= Toror s (T o (oo (T (2)) ), frhzmrrjrmf then the enemy can easily compute

wherea; = a4, a; =0;+¢_1,]=2...,n,ap41 =
ény bj =bj,j=1,...,n andb,,, = 1 it is enough
to work with our map in two parameters.

We point out that the most serious bottleneck is A further observation of similar manner is the
the size of the public key, especially the sizehoflo  following.

keep this parameter in an acceptable size, we have to .
use low degree polynomials, in particuly, .. ., b, Proposition 3. If the adversary can compute many
have to be small. solutions, not necessarily, . .., r.,), of (1), then he

Another important observation is that the equatiof@" compute the elementand break the protocol.

f = 0 has to be hard to solve. We show in both  proof: Indeed, assume thaty, ..., o) € R™
cases that this can be achieved with large families @f 5 solution to (1) and put = g(a, . .., am). As
polynomials. In the case & we present a concrete

example for which the protocol seems to be secure h=H+ fV

Proposition 2. The protocol can be used with the
same polynomia) only at mostm — 3-times.



for some V€ R[zi,...,x,|, we have combination of Theorem 2.1. and Corollary 2.2. The

h(ag,...,m) = H(aq,...,an). Thus we get argument by Bérczes, Follath and Retim [4], en-
the equation ables us to define a large classfo€ F[z1,. .., zn]
such that if ¢ is large then this holds with high
((B4a1) +a2)?24+...+a,) = hlag,...,am). . q 9 9
3) probability.
for ai,...,an,b1,...,b,. Knowing about2n solu- Theorem 1. Let

tions of (1) we obtain abou2n equations of form

(3), which determine usually thzn unknowns. m Fe,...oom) = By, am) + Al@r, -, )

Now we investigate the possible choice of e Fylzr,. .. om)
al,...,an,bl,...,bn. Let . . ) .
with  homogeneous polynomialsd, B satisfying
t(®) = tay,anbr,. bo (T) = degA < degB = D, deg, B = D for each
1 < i < m. Further, suppose that there exist indices
=Ta, 5, (- (Tay p, () ) = = PP

1 < j1 < j2 < n such that the binary form

by b b
(@ +a) +a2)® +... 4 an). B(0,...,0,2;,,0,...,0,2;,,0,...,0) (5
It is clear that the degree ofz) is b; - - - b,,. On the )

other hand its value at each point can be computed BD9S no multiple zero. =
n additions and by at mosb(logb; + ... + logh,) De€note byFeu(F,v) the probability thatF(x) as-
multiplications. Furthermore, it can be stored on aUMmes the value, € Fg, whenx runs uniformly
most n(A + B) bits, where A and B denote the through the elements @". If ¢ > 5- D'3/3, then
maximal bit length of the representations @f and
b;,i =1,...,n respectively. This means thaadmits Peou(F,v) <
a very sparse representation. Since polynomials in . ) )
sparse representations are rare, we cannot expect that"€ following construction off is based on the
h has a similar simple representation. We have fePnsequence of Theorem 1.

expect that the representation/ofs dense, i.e. most  Setg = 2'*", which ensures thacd(q—1,p) =

QW

of its coefficients are non-zero. 1forp=3,5"7.
Putd; = deg, g,i = 1,...,m. Then it is clear ~+ Choose homogenous polynomialsl,B ¢
that Fy[z1,...,zx,] Subject to the condition (5) and
deg,, H=1by by, -d; such thatdeg A < deg B ~ by ---b,/3.

‘ « Pick randomlyry,...,r, € F, and sety =
holds fori = 1,...,m. Thus H has at _mqst(l + B(ris...,tm) + A(r1,...,rm). If 4 = 0 then
o(1))dy - - dpp(by - - - by)™ terms. We obtairk in Step choosery, ..., r, again, otherwise set = B +
(ii) by adding a suitable multiple of to H. Hence A

we can control the degree of one of the variables. We
may assume that it is,,. By the argument above,
we expect that a big portion of the coefficients of th
terms ofh is non-zero, i.e. we have to store about

Then(ry,...,r,) is a solution off = 0. As D ~
by ---bn/3 ~ 7 the conditiong > 5- D3/ holds too.
%y Theorem 1 the chance to find,...,r,,) or a
different solution off = 0 is extremely low.
O(dy - dp—1(by - by)™ 1) 4 Remark that in the first steppcan be replaced by a
. larger power of2 or by an odd prime of similar size.
non-zero elements of R. This means that We have to be care to the conditigad(q—1,p) = 1
n,m,by,....b, have to be small. To be moreg, o primesp < B. In [4] it was proved that there

specifichs,...,b, < B andn,m < N, whereB, N qyists a large class of polynomials, which satisfy the
are small positive integers. assumptions of step 2.

We suggest that Bob chooses,...,a, € i
_ _ randomly. This is appropriate because in Step (iii)
Yosh mentioned in [22] that the protocol workspf the algorithm Alice makes public the value =

IV. THE PROTOCOL OVER FINITE FIELDS

over finite fields too, but no detail is given. Wep (-, . r.). Thus the equation
analyze this case in the present section. Bet I, . ) .
where g is a prime power. In practice is either a (((s+a1)™ +a2)” +...+an)™ =u

large prime or a large power df. It is a classical
fact thatz — z® is bijective onF; = F, \ {0}
iff ged(¢ — 1,b) = 1. Combining this fact with
the general remarks of Section Ill we must havE;’f
1<b;<Bandged(g—1,0;)=1,i=1,...,n.

By Proposition 3 the equatiofi(zy,...,z,,) =0
has to be hard to solve. The next theorem, which is the P 4+y=c,

is known for everybody, but the elementis not
known. We may assume without loss of generality
= 1 because one can compute small degree roots
inite fields or inZ in probabilistic polynomial time.
Thus our equation has the form



where ¢ and b are known, butz,y are unknown equation in two-variables has only finitely many so-
elements ofF,. Thus the adversary has no chanckitions. Moreover it is usually hard to find a solution

to find the hidden solution. provided the coefficients are large. If two exponents
To hide H we suggest to choose/ € are equal to2 then we may get equations of form

F,[x1,...,2,] randomly of low degree, and putz? —dy* = m with infinitely many integer solutions,

h=H+ fV. but the computation of the fundamental solutions is

hard. For example, it is well known that finding a
Proposition 4. With the above choice the key exsolution of 2 — y2 = n such thatr — y # +1,4n

change protocol of Yosh over finite fields is secure.js equivalent to finding a non-trivial factor of, see

e.g. [17].
V. THECASER =7 Choosed; < ... < d, according to the last
The mapT, , is injective if and only ifb is odd. ~ Paragraph and such that they are small, gay=
In Step (iii) of the algorithm, Alice make public 7+¢ = 1,---,m. Let v be a positive integer, which
the valueu = h(r1, . .., ). Thus the equation we specify later. After fixingds,...,d,, it is not
wise to choosecy,...,c, and c,41, because the

(((s4+a1)" +a2)”? +...4+a,)’ =u. (6) success probability for the solution of a given equa-
) ) tion is the same for everybody. Alice has to carry
is known for everybody, bus is not known. We iy 5 gifferent manner. She chooses a solution
pointed out in the finite field case thaf =1 can be ;4 after this she searches for an equation with the

assumed without loss of generality. Thus our equatiQfiescribed solution. To be more specific, she chooses
has the form ’

b 1,y "m,Cma1 € Z randomly subject to the con-
T +y=c, ditions |r;|% < 2.0 = 1,...,m, |emer| < 2¢ and
wherec is a known integery may be assumed to haveSUch thated(ri,. .., 7,) = 1. The number of possi-

(o4 ror i)

some small values and y are unknown integers. Let bilities is about2” . Then she computes

yo be the nearest integer té/* and compute the two ¢, . . ., ¢, by solving the linear Diophantine equation
sided sequenc@y,+k)®, k = 0, 1,... until c appears.

If the equation has a small solution in say |y| < Cma1 = TP o ey,

107, then with the above procedure, it will be quickly

found. The assumptions are such that this equation is

N solvable and that it has infinitely many solutions.
Proposition 5. We may assumé, = 1. The pa- prom this infinite collection we suggest to choose

rameterssall, .-+, an should be sufficiently large, say. . . such that they have similar size. Perform-
la;| > 10%,i=1,...,n. ing this process Alice has the polynomjaand knows
Let a = max{|ay],...,|an|}. We have to expect @ Solution to (1). On the other hand, finding a solution

that the absolute value most of the coefficients(afy for other peoples (or finding another solution for
hence ofH, / are as large ag” -, which is1072  Alice) is hopeless.

even for the smallest possible parameter values It remains to specifyv. It must be so large that
4,by = by = by = 3. By (4), we have to store and@ brute force attack is hopeless. This means that the

transmit3®-d; . .. d,,_; integers. In the simplest casehumber of choices of the parameters must be large,
namely choosing; to be linear, we have to transmitat least2'>®. This implies the inequality

about10* coefficients of siz&072. This is a very large ) )

amount of data. Below we give a concrete example v (1 =+ ..+ ) > 128.

showing this fact. d1 dm

Now we come back to the choice ¢f By Propo-  We suggest to choosg randomly among the
sition 3 f has to be such that the equatign= 0 quadratic or linear polynomials.
is hard to solve. We suggest to chogéea diagonal  There is no canonical choice foh € H +
polynomial, i.e. of formle1+...+cmx%"—cm+l fZlz,...,zy], providedm > 1. One can fix a
with dy,...,d,, > 2. First of all these polynomials variable, sayz,,, and considet, f as polynomials
are very simple. It is an important aspect to compuie z,, with coefficients in the ringZ[z1, ..., Zm—_1].
h and one solution of the equatigh= 0. Then one can compute the remainderfmodulo
On the other hand diagonal polynomials arg. The choice of the variable considerably influences
complicated enough, i.e. by careful choice ofhe size ofh. We give an example below. Another
Cly-++sCmy1,d1,...,dy the adversary can hardlypossibility for the choice ofh is that we pick a
find a solution of the diophantine equatienz?* + polynomial V' € Z[zy,...,z,,] randomly and put
oot epadm — ¢, 0 = 0. Indeed, it is well known h = H + fV.
that if at most one exponent is equal to two and we fix Finally we present a concrete example, which might
the values ofn — 2 variables, then the resulting singlesatisfy the security requirements and the size of the



public key is beyond the possibilitiésSet m

4,n = 3 and choose the polynomials as follows.

€1

C2

c3

Cq

Mo

T3

clzf + chg + 0333% + C4l‘z + ¢5;
100443961606899625156697 7588899652
58647,
—349810512301185120181179486451994
47959092
36379686253405252442775297079115999
38738364717062704444171396361954364,
—707541245602739546204021071493995
8108817512020742239926498242401,
—987654323456789876543216543205678
96543210567,

321 + 5a3 + Tw120 + 9375 + 75324,

((g + 734367)% 4 537769)° + 56478587

A solution of f =0 is

235452462352353121512, 2o = 43689743,
43216789765432, x4 = 4567973.

We left to the readers to find a different solution.
With these parameters the computation /oftook

some seconds. It has 2107 terms and the internal

representation in MAPLE has length 800327.
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