

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar

Hálózati Rendszerek és Szolgáltatások Tanszék

 1117. Budapest, Magyar tudósok körútja 2. I. Ép. B. 121.
Telefon: 463-3261 Fax: 463-3263
URL: http://www.hit.bme.hu

DIPLOMATERV FELADAT

Székely Gábor
szigorló mérnök informatikus hallgató részére

Protokoll állapotgépek visszafejtése

Számos alkalmazási környezetben használnak zárt protokollokat, melyek specifikációja
nyilvánosan nem elérhető. Ugyanakkor biztonsági szempontból hasznos lenne ezen protokollok
üzeneteinek és működésének értelmezése, mert ez lehetővé tenné a gyanús működés és a
potenciálisan támadó jellegű üzenetek azonosítását, szűrését, és az ilyen események hatására
riasztások generálását. Röviden, a hálózati forgalom folyamatos megfigyeléséhez és
értelmezéséhez, támadások és anomáliák detektálásához általában szükséges a hálózatban
használt protokollok üzeneteinek és működésének ismerete. Többen foglalkoztak már zárt
protokollok üzenet típusainak és az egyes üzenet típusok formátumának visszafejtésével, ám
kevesebb munka található az ismeretlen protokoll állapotgépének visszafejtésével
kapcsolatban.
A hallgató feladata a protokoll állapotgép visszafejtéssel kapcsolatos irodalom áttekintése,
olyan módszer azonosítása, mely alkalmas lehet ICS/SCADA környezetben használt
protokollok állapotgépeinek visszafejtésére, az azonosított módszer vizsgálata és esetleges
továbbfejlesztése, majd a továbbfejlesztett módszer prototípus szintű implementációjával egy
olyan gyakorlatban használható rendszer kifejlesztése, mely jól támogatja a protokoll
visszafejtéssel foglalkozó szakemberek munkáját. A feladat része továbbá a javasolt módszer
értékelése, korlátainak azonosítása is. A feladat megoldása során feltételezhető, hogy az üzenet
típusok és formátumok visszafejtése már megtörtént, azaz az üzenet típusok és formátumok
valamilyen pontossággal már ismertek, és csak a protokoll állapotgép ismeretlen.

Tanszéki konzulens: Dr. Buttyán Levente, docens
Külső konzulens:

Budapest, 2020. március 10.

Dr. Imre Sándor
tanszékvezető, egyetemi tanár

Konzulensi vélemények:

Tanszéki konzulens: � Beadható, � Nem beadható, dátum: aláírás:

Külső konzulens: aláírás:

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Networked Systems and Services

Reverse engineering protocol state
machines

MSc Thesis

Author Supervisor
Gábor Székely Dr. Levente Buttyán

December 10, 2020

Contents

Abstract 4

Kivonat 5

1 Introduction 6

2 Related work 9

3 Design 12

3.1 Automata theory overview . 12

3.1.1 Basic definitions . 12

3.1.2 Chomsky hierarchy . 14

3.1.3 Finite State Machines . 15

3.1.4 Automata with output . 18

3.1.5 Inferring automata . 20

3.2 Protocol reverse engineering . 21

3.2.1 Problem statement . 21

3.2.2 Adapting the LM
+ algorithm 22

3.2.3 Multiple rounds extension . 23

3.2.4 Improving message generation/selection 25

3.2.5 Post-processing Mealy machines of protocols 27

1

4 Implementation 30

4.1 Base algorithm implementation . 30

4.1.1 Main architecture . 32

4.1.2 Implementation of the helper functions 33

4.1.3 Artificial message types . 34

4.2 Multiple round implementation . 35

4.3 Caching query results . 35

4.4 Optimizing the order of queries . 36

4.5 Parallelizing . 37

4.6 Shortening counterexamples . 38

5 Evaluation 39

5.1 Testing with a toy protocol . 39

5.2 Modbus . 41

5.3 MQTT . 42

6 Conclusion 48

Acknowledgment 49

Listings 50

Figures 51

Bibliography 54

2

HALLGATÓI NYILATKOZAT

Alulírott Gábor Székely, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg
nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat
(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,
vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a
forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar
nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan
hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső
hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem,
hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni en-
gedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után
válik hozzáférhetővé.

Budapest, December 10, 2020

Gábor Székely
hallgató

Abstract

Over the past 50 years computers became increasingly connected with the use of
various technologies, forming ever growing networks. In order computers to be able
to communicate with each other, they need to use a common language, a protocol.
With the growth of computer networks come various different protocols, many of
which do not have open specifications. This hinders the development of compatible
applications, safety and security verification and the development of network moni-
toring and protection software and policies.
When faced with one of the above tasks, one is left with the only option of reverse
engineering the protocol, which is a quite challenging task as demonstrated by the
SAMBA project that reverse engineered the SMB protocol requiring over 12 years to
complete. To solve such hard problems, many automatized tools and methods that
help with the process of reverse engineering protocols have been developed, creating
the research area of Automatic Protocol Reverse Engineering (APRE). Most of the
APRE tools aim to recover either the syntax of the messages of the protocol or pro-
tocol state machine. The protocol state machine describes how different messages in
the protocol can follow each other.
In my thesis, I present an algorithm for automatically reverse engineering the state
machine of protocols. At the core, I utilize a known algorithm, LM

+, for inferring
Mealy machines, by transforming the network messages into input and output let-
ters that the Mealy machine and LM

+ algorithm can understand. Then, to improve
coverage, a random or guided search for previously unknown messages with differ-
ent behaviour is added. An additional algorithm for simplifying the resulting Mealy
machine is presented as well. The algorithm is implemented and tested on two real
world protocols: Modbus and MQTT.

4

Kivonat

Az elmúlt 50 év során a számítógépek különböző technológiák segítségével egyre job-
ban összekötötté váltak, egyre növekvő hálózatokat alkotva. A számítógépek kom-
munikációját kommunikációs protokollok fejlesztésével tesszük lehetővé, melyek nagy
hányadának nem nyíltan elérhető a specifikációja. Ez hátráltatja a kompatibilis al-
kalmazások fejlesztését, a biztonsági tesztelést, illetve a hálózatot monitorozó és védő
szoftverek és házirendi szabályok létrehozását.
A fenti feladatok megoldásához nincs más választásunk, mint a protokollok vissza-
fejtése, mely, ahogyan a SAMBA projekt is demonstrálta egy kifejezetten nehéz
feladat. A SAMBA projekt keretében az SMB protokollt fejtették vissza mintegy 12
év munkája során. Annak érdekében, hogy felgyorsítsák és megkönnyítsék az ilyen
feladatokat, különböző automatikus protokoll visszafejtési (APRE) módszereket fej-
lesztettek, megteremtve ezzel egy új kutatási területet. A legtöbb APRE eszköz vagy
a protokoll üzeneteinek szintaxisát, vagy a protokoll állapotgépét próbálja automa-
tikusan megadni. Egy protokoll állapotgépe azt írja le, hogy hogyan követhetik a
különböző üzenetek a kommunikáció során.
A dolgozatomban egy olyan algoritmust dolgozok ki, mely képes automatikusan
visszafejteni a kommunikációs protokollok állapotgépét. Az algoritmus magja az
LM

+ algoritmust használja fel, mely egy ismert algoritmus Mealy automaták auto-
matikus tanulására. Az LM

+ a hálózati üzenetek a Mealy automata és az LM
+ algo-

ritmus által érthető be- és kimeneti betűk közötti oda- és vissza-transzformálásával
van felhasználva. Emellett, a lefedettség növelésének érdekében véletlenszerű, illetve
vezérelt keresést végzek olyan üzenetekért, amelyek még nem felfedezett működést
produkálnak. Az eredményül kapott Mealy automaták könnyebb értelmezhetősége
érdekében egy utófeldolgozási algoritmust is definiálok. Az algoritmusokat imple-
mentáltam és két valódi protokollon, a Modbuson és MQTT-n teszteltem is.

5

Chapter 1

Introduction

A communication protocol defines the format and rules of information exchange
between two entities. The entities could be various things, such as two programs
running on the same computer, or they could be on different hosts, far away from
each other, connected through a network. Other examples could be an Internet of
Things (IoT) device communication with a sensor using a serial connection, or the
IoT device then forwarding the measurement data to a central server through some
wireless connection.

Almost all programs and computing devices that are used today use some kind
of communication protocol, and it seems, that things are getting more and more
connected with internet access getting cheaper and faster and the emergence of
cheap IoT and smart devices. It directly follows, that any new application or device
will have to support some of the existing protocols, in order to be able to cooperate
with the existing infrastructure. In some cases the specifications for the protocols
are open, or can be purchased, making it possible to develop the necessary program
code for implementing the communication routines. For some widely used protocols
there are even free and open source implementations that can be reused, saving
many hours of work for the developer. In a lot of other cases though, unfortunately,
there is little to no information available to the public, making the development
of compatible software extremely difficult. There can be many reasons for this: for
example the documentation of the protocol may simply not exist, or it could be
out of date, due to scarce resources. In other cases the creators do not share the
existing specification on purpose, for example to maintain a competitive advantage
or to make interoperability harder. As a real world example, the Microsoft Server
Message Block (SMB) which is a network protocol mainly used in Windows networks
for various purposes, was a closed source, proprietary protocol for a long time,
before finally opening up the specification. The SAMBA project is an open source

6

implementation of this protocol and illustrates the difficulty of reverse engineering
protocols, as it took over 12 years to complete1.

However, there are other motivations as well for reverse engineering communication
protocols. The huge importance of networks also necessitates serious protections for
them. It is not possible to make sure that a protocol is safe, without understanding
how it works. Thus, reverse engineering the protocol allows researchers to verify that
there are no vulnerabilities in it. It also allows the development of network traffic
monitoring appliances, such as Application Level Firewalls, or Intrusion Detection
Systems (IDS). These systems monitor network traffic and parse the various pro-
tocols to extract high level information, that can help prevent or detect attacks on
the network. Knowledge of the protocol specification is necessary to construct the
parsers that make this possible. Furthermore, malicious botnets also need protocols
to communicate with members of their network and the command and control server.
These protocols are usually custom, thus making it harder for security researchers
and system administrators to detect and stop attacks launched by these botnets.
Reverse engineering these protocols allows for better insight into the activities of
such botnets.

As mentioned previously, in the SAMBA project, the SMB protocol was reverse
engineered mostly manually, although the previously linked page mentions some
automatized processes as well. Some of the methods used were the following: pub-
licly available resources – although often incomplete or inaccurate – and deducing
the meaning of messages by monitoring network traffic while executing some known
function. More automatized methods include trying to fuzz some value inside a
message and deducing information from the error messages returned from every
version; and comparing a custom implementations response to the response of orig-
inal implementation. As it became evident, that protocol reverse engineering is an
important problem, several approaches were developed, to automatize the process.
Mostly reffered to as Automatic Protocol Reverse Engineering or APRE for short,
these solutions usually aim at determining the format/syntax of protocol messages
and recovering the state machine of the protocol. The syntax describes how valid
messages are composed, and the possible values of the fields, possibly even their
meaning. In turn the state machine of the protocol describes how different messages
can follow each other in a session of the protocol. In most cases an APRE method
only targets one of these goals, so one has to either combine multiple methods, or
complement them with manual reverse engineering where necessary.

Another application, that is actually specific to APRE is verifying and comparing
1https://www.samba.org/ftp/tridge/misc/french_cafe.txt (last checked 2020.11.29)

7

https://www.samba.org/ftp/tridge/misc/french_cafe.txt

implementations of protocols. If the original specification is available, and we apply
an APRE technique, we can then compare the output of the tool on the implementa-
tions to the original specification. Similarly, even if there is no open specification, we
can compare two implementations, by evaluating them both with the same APRE
tool, and then looking for differences in the output. This can be helpful for example,
to determine whether the two implementations can cooperate.

Further dividing APRE methods, they can be static, dynamic or interactive. A
static method only uses recorded network traffic, a dynamic method requires a bi-
nary and usually analyzes it while it is running, and finally an interactive approach
has black-box access to an implementation and can interact with it to gather infor-
mation. The approach described in this work attempts to recover the state machine
of the protocol with an interactive approach. As such, it needs black-box access to
an implementation of the protocol, and in addition the message formats are also
considered to be known beforehand, at least to an extent that makes it possible to
determine the types of messages. A message type is a groups of messages that gener-
ally have the same function and only differ in parameters, counters, etc. The solution
presented builds on a well researched algorithm of automata theory, to produce a
Mealy machine that describes the protocol state machine. Assuming a server-client
protocol, the input letters would correspond to the message type of queries from the
client to the server and the corresponding output letter would be the message type
of the response of the server. Additional measures are taken to make sure all ver-
sions of each message type that produce unique outputs are discovered by extending
the original algorithm and running it multiple times with different sets of messages.
Some additional methods are explored that aim to make human comprehension of
complicated Mealy machines easier.

A publication [12] has also been made from the research presented in this thesis,
while an extended version is currently under review.
The rest of the work is structured in the following way: in chapter 2, I explore ex-
isting research in the area of APRE, in chapter 3, I detail the necessary automata
theory definitions and algorithms that are necessary for understanding the methods
used, then describe how I adapted and extended the known algorithms. In chapter
4, I present my implementation of the algorithms that were outlined in the previous
chapter, and in chapter 5, I present the results of the evaluation of the implementa-
tion. Finally in chapter 6, I summarize my results.

8

Chapter 2

Related work

Reverse engineering is a complicated, but essential process in most security related
tasks. To aid experts in this task, many automatized and assisting tools have been
developed. [13] aims to answer how proficient reverse engineers work, in order help
guide development of tools to best complement the work of experts. Although the
interviewees were practicing binary reverse engineering and not protocol reverse en-
gineering the main results may be useful for APRE tool design as well. [13] is an
observational study with 16 participants who were asked to share the process they
used recently to reverse engineer a binary, by showing and reenacting how they
completed their task. The main conclusion is that the reverse engineering process
can be modeled with three main processes: overview, subcomponent-scanning, and
focused experimentation. Each phase feeds information into the next one, and the
last two steps may be repeated multiple times, with each step refining the under-
standing of the program that is being reversed. In overview, the expert gathers
information about the program, such as how its user interface works, what features
it has, what strings does the binary contain, etc. The information gathered here
allows them to form hyptheses and questions about the program that they will need
to test. In binary reverse engineering usually the whole program does not need to
be understood completely, rather some specific questions need to be answered, such
as: Is this a malware? or How does this malware avoid detection? The information
gathered in overview allows the reverse engineer to select areas for subcomponent-
scanning, where only parts of the program are analyzed in greater detail. Through
subcomponent-scanning the initial hypotheses and questions are refined. These ques-
tion and hypotheses are then tested through focused experimentation.

In the recent years there has been extensive research into APRE. [10] divides ap-
proaches first by the targeted part of the protocol: they can either target the syntax
of the protocol, or its state machine. Syntax APRE can be further divided into net-

9

work trace based and dynamic techniques. Tools that belong to this category only
receive recorded network traffic as input and use variants and combinations of statis-
tical approaches, clustering and string alignment techniques to recover the message
formats of the target protocol. Some approaches that belong here are the following:
Discoverer [7], Biprominer [15], AutoReEngine [14], ReverX [2] and GrAMeFFSI
[9]. Dynamic techniques also utilize information about the execution of the program
that implements the target protocol. Memory is monitored to see how bytes received
are transformed and used. Tools in this category include AutoFormat [8], Dispatcher
[3] and ReFormat [17].

The other main category, protocol state machine reversing can be divided into cate-
gories similarly. First, static approaches based on captured network traffic: ReverX
[2] handles both syntax and protocol state machine reversing. This method assumes
a client-server architecture. After determining the syntax and assigning message
types based on syntax, it analyzes sessions of communication and creates partial
FSMs from them. These FSMs are then merged and simplified to produce the final
output. Another static method, Veritas [16] identifies keyword by looking for sub-
strings that reappear with a high probability. A modified Kolmogorov-Smirnov test
is used to filter out keywords that do not influence the protocol state machine. Based
on these keywords message types are assigned with a Partitioning Around Medoids
(PAM) algorithm and a probabilistic finite state machine is created by calculating
the probability of one message type transitioning to another for all message types.

The dynamic category is also present, an example from this category is Prospex [6].
Prospex clusters messages based on their format, execution similarity (system calls,
library calls and memory locations) and server impact (for example how long does
the server take to calculate the response). A PAM algorithm is used to place these
messages into groups and an FSM is constructed.

Finally, an an additional category which allows black-box access to the implemen-
tation is also present for protocol state machine reversing. [18] and [5] are such ap-
proaches, in fact [5] uses the same algorithm from automata theory as the approach
presented in this thesis, to reverse engineer the protocol of the MegaD botnet and
even find vulnerabilities in its design that could disable the network. [5] proposes op-
timizations, to speed up the inference process: caching, parallelization and predicting
the responses to queries. Another example of Angluin style Mealy machine learning
is [4], using it to reverse engineer the state machine of a smart card reader. In this
paper, a Lego robot is used to input PIN codes, and push OK or Cancel buttons on
the physical interface of the card reader, enabling automated querying. Using this
algorithm has the advantage of guaranteeing to produce the correct and minimal

10

automata. The main improvement in my approach is that instead of only using the
core algorithm a single time, while my approach completes several executions of it
to attempt to create more subgroups of messages and increase coverage.

11

Chapter 3

Design

3.1 Automata theory overview

The solution I present in this thesis relies heavily on language and automata theory.
In this section I introduce the concepts, definitions, and algorithms that are neces-
sary to understand the ideas and solutions presented here. The following definitions
and theorems are part of the Languages and Automata curriculum, and as such, the
official lecture notes1 were used as reference.

3.1.1 Basic definitions

Definition 3.1 (Alphabet). An arbitrary, non-empty set is an alphabet, usually
denoted by Σ.

Definition 3.2 (Letter). The elements of Σ are the letters or characters.

As an example, the set containing a, b, and c is an alphabet, and the individual
letter a is a letter (of course so are b and c).

Definition 3.3 (Word). A word is a finite sequence of letters. Σ∗ denotes all the
possible words that can be composed from the Σ alphabet. Note that a zero length
word is also valid, usually denoted by ε.

Continuing the previous example, any combination of the three letters can be a
word, for example, all of the following are words: a, abc or aabac.

1http://www.cs.bme.hu/~friedl/nyau/jegyzet-13.pdf and http://www.cs.bme.hu/
~Efriedl/nyau/kimenetes-uj.pdf (last visited: 2020.11.26)

12

http://www.cs.bme.hu/~friedl/nyau/jegyzet-13.pdf
http://www.cs.bme.hu/~Efriedl/nyau/kimenetes-uj.pdf
http://www.cs.bme.hu/~Efriedl/nyau/kimenetes-uj.pdf

Definition 3.4 (Formal language). A formal language L over the alphabet Σ, is a
– finite or infinite – set of words that can be composed from the letters in Σ.

A language over the previously defined alphabet, could be the set composed of the
three words in the previous example. An example for an infinite alphabet could be
the set of all the words in which the letters follow each other in alphabetical order
(denoted as Lalph from here on). This language would contain abc and aac and many
more, but ca would not be part of this language. However it is rather inconvenient
to always list all the words that belong to a language, and even impossible, if the
language has infinite words. The following tools provide a way to formally define
both finite and infinite languages.

Definition 3.5 (Formal grammar). A formal grammar G = (V,Σ, S, P) is a system,
where

• V is a finite, non-empty set, containing the variables,

• Σ is an alphabet, V ∩ Σ = ∅,

• S ∈ V is the starting variable,

• P is a finite set that contains the production rules. The elements of P are of
the form α→ β, where α and β are sequences composed of the elements of V
and Σ, and α contains at least one variable.

Definition 3.6 (Derivation). A derivation in grammar G is a

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ γn

finite sequence, where γ0 = S, γi ∈ (V ∪Σ)∗ and every γi+1 can be produced from γi

with a production rule for every i. This means, that there is a δ1, δ2, α, β ∈ (V ∪Σ)∗,
α→ β ∈ P , where γi and γi+1 can be divided into γi = δ1αδ2 and γi = δ1βδ2.

Definition 3.7 (L(G)). L(G) is the language generated by G. It consists of w ∈ Σ∗

words that can be derived in G starting from S:

S ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ w

Now we can clearly define Lalph from the previous example. Let us take the grammar
Galph = ({S,B,C}, {a, b, c}, S, P), where P = {S → aS, S → B, B → bB, B →

13

C, C → ε, C → cC}. This is often written in a shorter and easier to read form:

S → aS | B

B → bB | C

C → ε | cC

At any point in the derivation, there is at most one variable, and each variable can
only come after the previous one, we cannot go back after changing to the next
variable. This guarantees the alphabetical order. The ε production rule allows us to
produce the empty word. Thus L(Galph) = Lalph As an example, let us take a look
at how the word aac can be generated:

S → aS → aaS → aaB → aaC → aacC → aac

3.1.2 Chomsky hierarchy

By imposing additional restrictions on the production rules of a grammar, they can
be further categorised. Noam Chomsky created four classes of grammars, the higher
the class, the more the restrictions. More restrictions result in being able to describe
only simpler languages, but at the same time, the corresponding automaton that
can detect the language is also simpler.

Definition 3.8 (3. class). In a class 3 grammar, all production rules are of the form
A→ aB or A→ a, where A,B ∈ V and a ∈ Σ are arbitrary. In addition the S → ε

rule is allowed for the starting variable, if S is not present on the right side of any
rule.

Definition 3.9 (2. class). In a class 2 grammar, all production rules are of the form
A → α, where A ∈ V and α ∈ (V ∪ Σ)∗ are arbitrary as long as α is at least one
in length. In addition the S → ε rule is allowed for the starting variable, if S is not
present on the right side of any rule.

Definition 3.10 (1. class). In a class 1 grammar, all production rules are of the
form βAγ → βαγ, where A ∈ V and α, β, γ ∈ (V ∪Σ)∗ are arbitrary as long as α is
at least one in length. In addition the S → ε rule is allowed for the starting variable,
if S is not present on the right side of any rule.

Definition 3.11 (0. class). In a class 0 grammar the only restriction is that on the
left side of the rules have to contain at least one variable.

14

A class 3 grammar is usually called regular grammar, Lalph can also be described
with a regular grammar:

S → ε | a | b | c | aA | aB | aC | bB | bC | cC

A → a | aA | aB | aC

B → b | bB | bC

C → c | cC

A class 2 grammar is usually called a context free (CF) grammar, an example that
cannot be described with a regular grammar but is possible with CF grammar is
the language that has the same amount of each letter and the letters in the words
are in alphabetical order, over the alphabet {a, b} (this can be denoted as anbn):

S → ε | ab | aPb

P → ab | aPb

A class 1 grammar is usually called a context sensitive (CS) grammar, an example
that cannot be described with a CF grammar but is possible with CS grammar is
the same language as before, but over the alphabet {a, b, c} (this can be denoted as
anbncn):

S → ε | abc | aPbc

P → abC | aPbC

Cb → bC

Cc → cc

3.1.3 Finite State Machines

Definition 3.12 (Finite State Machine). A Finite State Machine (FSM) is an
M = (Q,Σ, δ, q0, F) tuple, where:

• Q is a finite, non-empty set, it contains the states of the automaton,

• Σ is a finite, non-empty set, the alphabet of the automaton,

• δ : Q× Σ→ Q is the state transition function of the automaton,

15

A

a
B

b

C
c

b

c
F

a

c
a,b

a,b,c

Figure 3.1. Malph in graph representation

• q0 ∈ Q is the starting state,

• F ⊆ Q is the set of accepting states.

An r0, r1, . . . , rn(ri ∈ Q) state sequence is the calculation executed on the word w =

a1a2 . . . an ∈ Σ∗, if r0 = q0 and ri = δ(ri−1, ai), for every i = 1 . . . n. M accepts w if
rn ∈ F . L(M), the language accepted by M , is the set of words accepted by M .

Definition 3.13 (Regular Languages). L ⊆ Σ∗ is a regular language if there exists
M FSM, for which L(M) = L.

Theorem 3.1. There exists a class 3 grammar for L if, and only if L is regular.

The proof is based around two algorithms that can transform between FSM and
grammar, thus proving the equivalence. For example, using this algorithm, we can
transform the example language Lalph that was used in subsection 3.1.2: Malph =

({A,B,C, F}, {a, b, c}, δ, A, {A,B,C}), where δ is: δ(A, a) = A, δ(A, b) = B, δ(A, c) =

C, δ(B, a) = F, δ(B, b) = B, δ(B, c) = C, δ(C, a) = F, δ(C, b) = F, δ(C, c) =

C, δ(F, a) = F, δ(F, b) = F, δ(F, c) = F .
FSMs can be drawn as graphs, which form is often used, as it is easier to understand
if the machine is not too complicated. This form can be seen in Figure 3.1.

An important consequence of this theorem is that there are certain constructs that
FSMs just cannot describe. Mealy machines, the machines my solution is based on
are very similar to FSMs, thus this restriction in expression carries on to the results.
For example, it is impossible to model anbn with them, so if there is no upper limit
to the counting, a Mealy machine will not be enough. However the simplicity of
regular languages makes it possible to infer them very well, and for many protocols
they are good enough.

16

A

a
B

b

Cc

b

c
c

Figure 3.2. Minc in graph representation

Definition 3.14 (Incomplete FSM). An Incomplete FSM is an FSM in which δ

is not defined for all combination of states and input letters. If an undefined state
transition would be taken, the word is rejected.

Using an incomplete FSM can be useful to present an FSM in an easier to com-
prehend form. For example, an incomplete FSM for detecting Lalph can be seen in
Figure 3.2.

Fully defined and incomplete FSMs are equivalent, because an incomplete FSM can
always be converted into a complete FSM, such that the two FSMs detect the same
language. Algorithm 3.1 accomplishes this task.

Algorithm 3.1 (Fully defining an FSM). First, we add a new state qFAIL to Q,
such that qFAIL /∈ F . Then, for every q ∈ Q, a ∈ Σ, where δ(q, a) is not defined
(including the new state), we define it as δ(q, a) = qFAIL.

In some cases, it is easier to define an FSM, if the state transitions can be undeter-
ministic, i.e., it is possible to transition into more than one new state from a certain
state for a certain input letter. FSMs where this is allowed are called undeterministic
FSMs. Same as with incomplete FSMs, deterministic and undeterministic FSMs are
equivalent, if an M undeterministic machine exists such that L(M) = L, then there
is an M ′ deterministic machine such that L(M ′) = L. Formally, undeterministic
FSMs work as defined below:

Definition 3.15 (Undeterministic FSM). The definition is identical to Definition
3.12, except for δ, which is now defined as δ(q, a) ⊆ Q, where q ∈ Q and a ∈ Σ∪{ε}.

Definition 3.16 (Undeterministic FSM calculation). An r0, r1, . . . , rm(ri ∈ Q) state
sequence is the calculation for the w = a1, a2, . . . , an word, if

17

1. r0 = q0,

2. at any point, after reading a0, a1, . . . , aj word, and being in state ri, then ri ∈
δ(ri−1, ε) ∪ δ(ri−1, ai) (the automaton either gets to a new state by reading a
letter and taking a transition with that letter as the input, or does not read
anything and takes a transition with ε),

3. the whole word has been read, when the automaton is in the state rm (there
may have been ε transitions before rm and after reading the whole word as
well).

The undeterministic FSM accepts w, if there exists a calculation for it, in which
rm ∈ F . Otherwise it rejects it.

There is an algorithm for determinizing an undeterministic FSM, that creates an
equivalent deterministic FSM, by following all possible calculations. Basically, for
every case, where the new state can be more than one state, a new combined state
is created, which represents the possibility of being in either of the states. Then,
outgoing transitions for the new state are created by combining all the transitions
of the original states. All composite states that contain accepting states (states that
are in F) will be accepting as well. The main downside to determinizing a machine
is the increased number of states, which can be exponential.

The determinized FSM may contain more states than necessary, i.e., there might be
an FSM that has fewer states than the one generated by the algorithm, but they
detect the same language. Fortunately there is an algorithm for finding such FSMs.

Definition 3.17 (Minimal FSM). The minimal FSM for the L language is an M

fully defined, deterministic FSM, such that L(M) = L, and there is no M ′ fully
defined, deterministic FSM, such that L(M ′) = L and the number of states in M ′ is
smaller than in M .

Theorem 3.2. If there is an FSM for a language, there is a minimal FSM as well
for it, and it is unequivocal.

The proof for the theorem contains the algorithm for generating the minimal FSM
from an FSM.

3.1.4 Automata with output

Mealy and Moore machines are a lot like FSMs, however instead of either accepting
or rejecting words, they produce output. Many algorithms that work with FSMs

18

A

a/0 Bb/1

Cc/1
a/-1

b/0

c/1

a/-1

b/-1

c/0

Figure 3.3. Malph in graph representation

can be used on Mealy and Moore machines with minimal adjustments. Another
similarity is that the two types are interchangeable, so it is possible to convert
a Mealy-machine to a Moore machine and vice versa, all the while not changing
their functionality. Because of this, since Mealy machines are better for representing
protocol state machines, I only detail them.

Definition 3.18 (Mealy machine). A Mealy machine is a M = (Q,Σ,∆, δ, λ, q0),
where:

• Q is a finite, non-empty set, containing the states of the machine,

• Σ is a finite, non-empty set, the input alphabet of the machine,

• ∆ is a finite, non-empty set, the output alphabet of the machine,

• δ : Q× Σ→ Q, is the state transition function,

• λ : Q× Σ→ ∆, is the output function,

• q0 is the starting state.

The Mealy machine works very similarly to a simple FSM, except for every state
transition an output letter is produced, so by the end an output the same length
as the input is generated. Mealy machines are usually displayed in graph form as
well, with the input and output letters separated by a / character on the edges. An
example can be seen in Figure 3.3, a Mealy machine Malph that has Σ = {a, b, c} for
input alphabet and ∆ = {−1, 0, 1} as output alphabet, and produces 0 output, if
the input letter is the same as the previous letter, −1 if it is alphabetically earlier
then the previous and 1 if larger. For the first input letter it acts as if an a was read
before it.

19

3.1.5 Inferring automata

Apart from categorizing and translating words FSMs and Mealy machines are very
good for modeling the behaviour of black-box systems as well. There has been ex-
tensive research into inferring or learning automata based on their behaviour or the
words they accept/produce. In the setting first proposed by Angluin [1] the learner
infers an FSM with the help of a teacher through queries and counterexamples. The
teacher knows the FSM, and can answer two types of questions for the learner. First,
the learner may ask membership queries from the teacher: the teacher will answer
whether the FSM would accept the queried word. Second, the learner can present
conjectures, which are FSMs that the learner thinks are the correct solution. The
teacher either confirms the conjecture, or responds with a counterexample.

Angluin presents an efficient algorithm L∗ for handling the problem, that outputs
the minimal FSM that detects the same language as the one the teacher is trying
to teach. L∗ works by systematically querying the teacher for words and building a
table from the results, which will directly generate the FSM. Each cell in the table
represents whether the FSM would accept the word we get by concatenating the
letters in the row and column header. The table is expanded with rows and columns
to meet certain criteria (and the new cells are always filled based on membership
queries), and when it does, a conjecture is produced from it. If the teacher responds
with a counterexample, the table is expanded based on it and new membership
queries until a new conjecture can be made. The algorithm stops when the teacher
accepts the conjecture. For a complete description of the algorithm please refer to
the original paper.

This version of the algorithm requires the teacher to know the FSM that the learner
is trying to learn in order to be able to answer conjecture queries. However, in many
applications this is not realistic. [1] proposes a solution for this: the teacher can
check conjectures against a black-box FSM, that answers membership queries by
generating a sufficiently large number of membership queries and comparing the
output of the conjecture and the real FSM. It presents formula for determining the
number of necessary queries given a desired confidence and accuracy level. This way
the conjecture query of the teacher can be constructed using membership queries.

This learner-teacher model and Angluin’s algorithm has since been thoroughly re-
searched resulting in various improvements and adaptation to other types of au-
tomata, including Mealy machines. The algorithm LM

+ that is applied in this thesis
was published in [11], which includes some algorithmic improvements that reduce
the number of membership queries necessary and an adoption for Mealy machines
as well. The main difference in adapting the algorithm for Mealy machines is that

20

in this case we use output queries that return the output of the Mealy machine for
a certain word instead of membership queries ; and the cells of the table contain the
output of the FSM instead of a binary rejected/accepted information.

3.2 Protocol reverse engineering

3.2.1 Problem statement

A protocol specification can be divided into defining the protocols message formats
and the protocol state machine. The message format defines what byte sequences
are valid messages and possibly the meaning of the fields in a message. The protocol
state machine defines how an interaction using the protocol can go: which messages
come after which; what are valid and invalid sequences of messages and possibly
what was done in the session. In my thesis, the general goal was recovering the
protocol state machine, which I modeled with Mealy machines, where Σ is the set
of possible query messages and ∆ is the set of possible responses. The developed
method generally assumes a client-server setup, where the client makes queries and
the server responds to them, however cases where the server does not respond to
certain queries or responds with multiple messages are also handled. Unprompted
messages from the server are more problematic, but can also be handled.

There are different approaches to APRE of protocol state machines, such as static
APRE, where only captured traffic is used, dynamic APRE, where various debug
and control flow information is observed in addition while the implementation of
the protocol is running, and interactive APRE, where various adaptively chosen
messages are sent to host that is running an implementation of the protocol to
deduce further information. Since my solution employs the LM

+ algorithm at its
core, it needs to be interactive. Two more capabilities are necessary because of the
use of LM

+ it is required to be able to reset the state of the server that is being
queried and the environment needs to be deterministic. This is not to be confused
with deterministic and undeterministic state machines, which are equivalent: it only
means, that if a certain message sequence is sent to a freshly started server, it will
always respond with with the same messages. Message formats are also necessary to
be known beforehand at least to an extent, that allows categorization of messages.
And lastly, although not strictly necessary, access to recorded network traffic can be
used to improve the efficiency of the proposed algorithm.

The output of the algorithm is a Mealy machine, that can be used in an IDS to detect
invalid flows of a protocol, or aid human comprehension and reverse engineering of

21

the protocol, for which some post processing methods are also proposed, in order to
produce cleaner and easier to understand Mealy machines.

3.2.2 Adapting the LM
+ algorithm

The aim is to create a Mealy machine that represents how the protocol we are
trying to reverse engineer works. It follows that input alphabet and the output
should consist of the list of possible messages. Let us denote the set of possible
messages in a protocol with Smessages. However simply filling the alphabets with all
of the possible messages would be impractical: if a message contains even a single
unrestricted integer field, for example to hold a measurement value returned by the
server or to specify a request parameter sent to the server, such as setting some
value, it would mean that |Σ| >= 232 and |∆| >= 232. This would result in ugly,
unmanageable Mealy machines, not to mention very long running times of LM

+

execution. To bring the sizes of alphabets to a manageable size, I define message
type as follows.

Definition 3.19 (Message type). A message type is a set of messages in a proto-
col, that serves the same purpose and the individual messages only differ in their
parameters. Let Smtype denote the set of all message types in a protocol.

Now the alphabets can be a lot smaller: Σ ⊆ Smtype and ∆ ⊆ Smtype. It is necessary
to know the syntax of the messages to an extent that allows us to create these
message types. However, the better our understanding of the message syntax the
better the precision of the result will be.

Three more helper functions are necessary to adapt the LM
+ algorithm for learning

protocols. The first is the message classifier: fclass : Smessages → Smtype. It is necessary
in order to be able to translate the response sent by the server after making an
output query. The second is the generator function: fgen : Smtype → Smessages. fgen
may be a random function, meaning that calling it with the same message type can
result in different messages being generated. Note that if recorded network traffic is
available, it is possible to construct fgen using fclass by classifying all the messages in
the recording and randomly selecting one with the correct message type. The third
is the updater function: fupd : m0,m1, . . . ,mi → m′i, it takes all the messages that
have been sent in the current session and the current message that is about to be
sent and updates it so counters and challenges are correctly matched.

With all the above functions given the LM
+ algorithm can now be applied by creating

a teacher that is able to answer a generic learner’s queries. The learner needs to

22

know Σ, so that is determined first, for example if a network trace is available by
classifying the messages in it with fclass and initializing Σ to the set of message
types that appeared as queries. Then we call fgen for every element of Σ and store
the results, which we will use inside the teacher to translate between message types
and actual messages. This is necessary, because if we did not save the results, a
random generator function may cause problems if it generated messages that may
have different parameters resulting in different responses throughout the run of the
algorithm. For example an integer parameter set below a certain value may result
in an OK response, but if set above it, it could generate an error. Every time an
output query is asked by the learner, the teacher resets the system under test (SUT),
translates between the message types and the real messages using the saved values,
uses fupd to update the messages, sends them to the SUT, classifies the responses
with fclass and returns the message types to the learner. The conjecture query can
be constructed as described in subsection 3.1.5.

3.2.3 Multiple rounds extension

The results that the base adaptation of the LM
+ algorithm as described in subsection

3.2.2 (from here on referred to as base algorithm) produces are heavily dependent
on the quality of the message type categorization. For example, if there is a mistake
in the categorization and two different message types are handled as one and the
same, then only the one that was generated with fgen at the start will appear in the
output. But even if the message types are created perfectly, the output may still
be incomplete because of the fixed messages: the server may respond differently to
messages from the same message type if their parameters differ. For example, if a
read command has a valid address the response will have the value, otherwise it can
be an error message. In order to capture behaviour like that, the base algorithm
needs to be extended further. First of all, we need to define what we want to detect:

Definition 3.20 (Message subtype). A message subtype is a set of messages that
belong to the same message type and produce the same responses from the server as
each other. Let Smsubtype denote the set of every message subtype of a protocol.

So in the previous example the read command message type would be divided into
two subtypes: the ones with valid target addresses and the ones with invalid target
addresses.

Since message subtyes can only be distinguished based on their behaviour, the base
algorithm is executed with multiple messages from every message type. The aim is to

23

distinguish subtypes by analyzing the output of the base algorithm. At the start of
each run, fgen is called a number of times, to expand Σ. For this to work, fgen needs
to be a random function, otherwise only the same message would be generated for
each message type over and over again. At the start of each base algorithm run, it is
assumed, that each message in Σ belongs to a different subtype, so in this version of
the algorithm the input alphabet will be Σ ⊆ Smsubtype, while the output alphabet
will remain ∆ ⊆ Smtype. The base algorithm is run without any major changes, and
the resulting Mealy machine is deduplicated, which I define as follows:

Definition 3.21 (Protocol state machine deduplication). When a Mealy machine
is deduplicated, messages in Σ that belong to the same message type and produce the
same behaviour are removed one by one, until no pair with the same message type
and behaviour remains, meaning that each message subtype will only be represented
by one message in Σ after performing deduplication. Same behaviour means, that the
two input letters (a and b) are interchangeable: δ(q, a) = δ(q, b) and λ(q, a) = λ(q, b)

for every q ∈ Q.

Deduplication can be seen as a way to merge messages in Σ that belong to the
same subtype into a single input letter. After deduplication, the assumption made
at the beginning holds true. These steps – new message generation, base algorithm
and deduplication – can be repeated as many times as necessary. Different types of
criteria for stopping can be made, for example if there is no new subtypes found in
a number of consecutive runs (the size of Σ after deduplication does not increase),
the algorithm may stop. The number of new messages generated at the start of each
round is also an adjustable parameter. The greater the number, the more messages
are tested at the same time, however the greater |Σ| is the more queries the LM

+

will take to finish.

Using the base algorithm over and over again the subtypes can be gradually discov-
ered by random search, without having to grow the size Σ to a too large value. It
is important to note, that even though subtypes may be discovered, no function is
created for classifying messages into subtypes. This is not a very big disadvantage
in many cases, since the list of messages that belong to certain subtypes is often
not specific to the protocol, rather it depends on the configuration of the server: the
valid read addresses obviously depend on server settings, or a sign-in message can be
divided into subtypes based on whether the credentials are correct or not. It is not a
goal to map out valid address ranges or correct credentials, however this technique
makes the different possible responses to message types such as these visible without
the environment appearing to be undeterministic.

24

3.2.4 Improving message generation/selection

Choosing the number of new messages added at each round is an important decision:
ideally, it should be kept as low as possible, but deciding on a too low number has
its downsides as well. The first problem arises from the random nature of fgen. If the
distribution of the message subtype of the generated messages is uniform, i.e., the
probability of the new message being a certain subtype is the same for all subtypes,
then there is no problem. However if this is not the case, the algorithm may take
many rounds to find the subtypes that have lower probability of being generated, or
in a worst case scenario not find some subtypes at all before reaching the stopping
criteria. If no care is taken to ensure a uniform distribution, fgen is likely to have
non-uniform distribution with regards to message subtypes. For example, the fgen
outlined in section 3.2.2 can be like this as well: assuming the previously outlined
read value message and a well functioning system as an environment for the network
trace, there would be a lot more messages with valid addresses, so fgen would be
more likely to return messages from the subtype with correct addresses. Using an
fgen function that just randomly fills out parameter fields would result in similarly
unbalanced results if the number of valid and invalid addresses are not the same, not
to mention the overwhelmingly more messages with valid credentials in the other
example case.

The other problem with only adding a few new messages each round randomly: some
parts of the protocol state machine may only become observable by using multiple
messages from the same type but different subtypes. Take the Mealy machine in
Figure 3.4, where A1, A2 and A3 are the same message type but different subtype.
If we only add one new message of each type per round, the algorithm would never
be able to find any of the states except for q0. This is because the only way to
differentiate states is by the response for B, which only changes if all three subtypes
of A are present. However after each run, only one A type message is left, because
they appear to be identical in behaviour, so one of the two is removed, and only one
is added next turn, ensuring no three subtypes are present in the same run. Even
if we configure the algorithm to add two new messages per round, we have to get
lucky to get the correct messages in the same turn.

To handle situations like these, the fgen function needs to be improved. The improved
version, ffbgen, takes as input recorded network traffic, the Mealy machine produced
in the previous round, fclass and produces a set of messages that should be added
to Σ for the next round. At a high level, the function analyzes the network trace,
and tries to identify flows that the Mealy machine would not be able to reproduce,
then the messages in the flow which is not covered will be returned.

25

q0

A2/ok
A3/ok
B/err

q1A1/ok

A1/ok
A3/ok
B/err

q2A2/ok

A1/ok
A2/ok
B/err

q3A3/ok

A1/ok
A2/ok
A3/ok
B/ok

Figure 3.4. Example Mealy machine MMpws, to demonstrate problems
with random message generation

Definition 3.22 (Message flow). A message flow is an (m0, d0), (m1, d1), . . . , (mn, dn)

sequence, where mi ∈ Smtype and di ∈ {request, response}. The sequence corre-
sponds to a recorded session of communication, with mi specifying the message type,
and di specifying the direction of the message.

First, the flows are extracted from the recorded network traffic by parsing and
classifying them with fclass. Then, the Mealy machine is transformed into an FSM
that accepts a message flow if the original Mealy machine could have produced it,
and rejects it if it could not have. First off, the input alphabet of the FSM will
be ΣFSM = Smtype × Smtype, so it will read a request and a response at the same
time in each step from the message flow. The FSM can be produced from the Mealy
machine through a few steps. First of all, the states of the FSM are initialized to be
the same as the Mealy machine QFSM = QMM , the starting state is also the same
in both machines, and all of these states will be accepting states. The transition
function of the FSM is defined as δFSM

(
q,
[
fgentype(m), λMM(q,m)

])
= δMM(q,m),

for all q ∈ QMM and m ∈ Smsubtype, where δMM and λMM are the transition and
output function of the Mealy machine, while fgentype : Smsubtype → Smtype returns the
message type a certain subtype belongs to. This basically means that the transitions
of the Mealy machine are converted into the transitions of the FSM, by generalizing
the input letter (which is a subtype in the Mealy machine) into a message type
and merging the input and output letter. Turning subtypes into types is necessary,
because the message flow has message types, since we cannot classify messages into
subtypes. This way every message sequence, that the Mealy machine could have
produced will be accepted, while if a certain sequence cannot be produced by the
Mealy machine, the FSM will get stuck and reject it, because the input letter in
question will not be defined in the given state. Notice, that by generalizing the
subtypes into message types, we lose information, but as previously mentioned, this
is unavoidable, and the resulting FSM in most cases still finds uncovered flows (i.e.,
flows that it rejects). Also, the resulting FSM is undeterministic and incomplete,

26

a0

A/0 a1A/1

A/1

a2

A/2

A/0

A/2

Figure 3.5. MA Mealy machine

b0

B/0
b2B/2

b1B/0

B/1
B/1

B/2

Figure 3.6. MB Mealy machine

so it is usually a good idea to use the algorithms mentioned in Section 3.1 to fully
define, determinize and minimize the FSM.

The ffbgen function may also be used as a stopping criteria: as long as ffbgen finds
uncovered flows and returns new messages to be added, the algorithm continues,
and once it does not find anything, the algorithm terminates.

3.2.5 Post-processing Mealy machines of protocols

Mealy machines can get very complicated in certain cases, which can make human
analysis hard. One of the particular cases, where Mealy machines do not perform
well, is handling cases where multiple, independent state spaces have to be tracked.
Let us demonstrate this with an example: Let Mcomp be the composite of two other
Mealy machines: MA and MB, in Figure 3.5 and 3.6. If an input letter A is received
the output letter should be produced using MA, otherwise MB should be used. The
resulting Mcomp machine can be seen in Figure 3.7.

As the example illustrates, Mcomb becomes rather complicated, and it is not very
straight forward to figure out what it does. The number of states in the combined
machine is the product of the number of states in the machines that are being
combined, since there has to be a new state for every combination of states. To find
such independent component machines in Mealy machines and aid human analysis,
let us define a projection of a Mealy as follows:

27

a0b0

A/0
B/0

a1b0

A/1

a0b2

B/2

A/1
B/0

a2b0

A/2
a1b2

B/2

A/0

A/2
B/0

a2b2
B/2

a0b1

B/0

A/0
B/1

a1b1

A/1

B/0

A/1
B/1

a2b1

A/2

B/0
A/0

A/2
B/1

B/1
A/0
B/2

A/1
B/1

A/1
B/2

A/2

B/1

A/0

A/2
B/2

Figure 3.7. Mcomp Mealy machine

Definition 3.23 (Projection). A projection of Mealy machineM = (Q,Σ,∆, δ, λ, q0)

on the set Sp ⊆ Σ, is an M ′ =
(
Q,Σ,∆∪ {ldontcare}, δ, λ′, q0

)
Mealy machine that is

equivalent to M in every aspect, except for the output function, which is redefined
as λ′(q, a) = ldontcare for every a ∈ Σ \ Sp and λ′(q, a) = λ(q, a) for every a ∈ Sp.

M ′ may not be minimal, since the output functions were changed to produce less in-
formation, so it should be minimized, which is what will actually reduce the number
of states and make it easier to understand.

Using projections, we will create an algorithm, that takes a Mealy machine as input,
and produces a number of Mealy machines, that together can produce the same
output as the original. By using them together, I mean the following: every Mealy
machine receives every input letter, and will produce some output. Some of these
will be the ldontcare letter, and the rest will be the same letter, the letter that the
original Mealy machine would have produced.

A trivial version of the algorithm is taking the projection for every letter in Σ, so
the number of new Mealy machines would be |Σ|, each having an Sp = {l} where
l ∈ Σ. In fact, as long as every input letter in Σ is present in at least one of the Sp of
the projections, the result of the algorithm is correct, since there will be always at
least one Mealy machine, that can return the correct output for the input letter and
not a ldontcare. However, our goal is to aid comprehension and reduce complexity, so
it is favourable to have as few Mealy machines in the output as possible, and with
as few states as possible. To attempt this, we start out from the trivial version, and
improve its results. For every projection, we try to add new input letters to Sp. If the
new projection has the same amount of states as previously, we keep the new letter,

28

otherwise we remove it. This way the number of input letters covered by a single
projection increases, but the number of states do not. After trying every letter, we
throw away any duplicate projections (so no pair of projections remain, for which
Spi = Spj), and return the rest.

29

Chapter 4

Implementation

4.1 Base algorithm implementation

I created an implementation of the algorithms described in chapter 3 using the
Python programming language. Python was chosen because it is well suited for fast
prototyping, which was needed to validate my understanding of the LM

+ algorithm
and to be able to quickly test my own algorithms. One of the shortcoming of Python
is that it is an interpreted language, which means that it performs slower than
compiled languages do, but most of the time in the base algorithm is spent waiting
on network communication, so that does not have too big an impact. Thanks to its
popularity, Python also has a wide variety of libraries, both for academic purposes
and practical applications. The following are the main dependencies that were used
in the implementation:

• NetworkX1 is a package for handling graphs, and includes multiple algorithms
for working with and transforming graphs. In this implementation, it is used
for representing Mealy machines and FSMs with directed graphs.

• fpdf2 is a package that makes it possible to manipulate and create PDF files
with Python. It is used for easing the debugging of the algorithms, by gener-
ating PDF files that contain the inner state of the algorithm at certain points
of the run and the outputs.

• pyshark3 is a wrapper around tshark, a command line version of the wireshark
packet analyzer. It makes it possible to use the parsers and dissectors in wire-

1https://networkx.org/ (last visited: 2020.11.30.)
2https://pyfpdf.readthedocs.io/en/latest/ (last visited: 2020.11.30.)
3https://kiminewt.github.io/pyshark/ (last visited: 2020.11.30.)

30

https://networkx.org/
https://pyfpdf.readthedocs.io/en/latest/
https://kiminewt.github.io/pyshark/

shark through python. In this implementation its mainly used to load PCAP
files.

• docker MQTT4 provides an API in python for accessing and manipulating the
docker daemon. Docker containers are used for holding servers of the protocol
under test, and this API makes it more straight forward to handle them.

• paho-mqtt5 is a client implementation of the MQTT protocol, which was used
to generate traffic for the algorithms as input.

Figure 4.1. Architecture of base algorithm implementation

4https://pypi.org/project/docker/ (last visited: 2020.11.30.)
5https://pypi.org/project/paho-mqtt/ (last visited: 2020.11.30.)

31

https://pypi.org/project/docker/
https://pypi.org/project/paho-mqtt/

+-------+---+---+-----+-------+
| | b | a | a.a | b.a.a |
+-------+---+---+-----+-------+
*	x	x	x.y	x.x.x
a	x	y	y.y	x.x.x
b	x	x	x.x	x.x.y
a.b	x	x	x.x	x.x.x
a.a	x	y	y.y	x.x.x
b.b	x	x	x.y	x.x.x
b.a	x	x	x.y	x.x.x
a.b.b	x	x	x.x	x.x.y
a.b.a	x	x	x.x	x.x.y
+-------+---+---+-----+-------+

Listing 4.1. Inner state of LM
+

4.1.1 Main architecture

The base algorithm is implemented based on [11], the class diagram of the base
algorithm is in Figure 4.1. The two main components of the implementation are a
Learner and a Teacher object. The learner contains the LM

+implementation and
uses the teacher to get information and storing the results of queries in a table made
up of OTrows. The teacher implements the required capabilities, such as output
queries (membership), conjecture checking and querying the input alphabet. These
are made available to the learner through function calls, and realized by calls to
a generator object which generates random output queries for conjecture checking
and by calls to an object with a MealyMachineInterface for output queries. This
interface implements all functions that a Mealy machine needs to have, the main
ones being stepping the machine, resetting the state, and listing the possible input
letters. A simple output query is done, by sending a reset, and then stepping the
machine with the requested input letters. The object implementing this interface
can be a real Mealy machine, which was the case in early stages of the coding,
where I needed to verify my implementation of the LM

+algorithm. For testing, the
program generates PDF files, which contain the inner state of the algorithm at
various points, each page in the PDF corresponding to a snapshot of the inner state.
The pages contain the table that holds the results of the queries, and the conjectured
Mealy machine if applicable. The last page of a run, where the Mealy machine that
is being learned is the one that is used in [11] as an example. The contents of the last
page can be seen on Listing 4.1 and Figure 4.2. The implementation always names
the starting state *, and the rest of the names of the states are taken from the first
column of the table.

After the LM
+implementation has been suffieciently tested, the Mealy machine was

switched out to a MealyProxy that makes a real SUT appear as a Mealy machine
to the teacher, by managing the state of the SUT and implementing and using the

32

*

a

a/x

b

b/x

a/y

a|b

b/x a/x
b/x

a/x
b/x

Figure 4.2. Result Mealy for LM
+testing

three helper functions (fclass, fgen and fupd) defined in section 3.2.2 to query it. This
is practical, because for targeting different protocols for APRE, one only needs to
modify the proxy and the rest of the implementation can be left unchanged, allowing
it to be handled by anyone as a black box, even if they do not understand how the
algorithm or the implementation work, as long as they fulfil the requirement of being
deterministic.

4.1.2 Implementation of the helper functions

All the protocols that were targeted were TCP based, so the fupd function was
essentially implemented by using standard TCP sockets, which take care of sequence
numbers and other low level synchronisation. fclass was also simple, only a few bytes
needed to be checked, as the protocols contained fields which explicitly defined the
message type of the packet. A few more bytes were parsed that defined the length of
the massage, allowing us to separate multiple messages, if sent in the same IP packet.
Lastly, fgen was constructed using fclass and recorded network traffic, as described in
section 3.2.2. For this purpose, the recorded traffic is preprocessed with a separate
script and stored in a JSON file, called flows.json. The script loads a PCAP file, and
extracts the information that is needed by the base algorithm: the TCP payload is
extracted from each packet in the capture, and given a unique ID. This way, if a
payload is sent many times, it only has to be stored once, and can be referred to by
its ID. Using pyshark, the TCP sessions in the capture are identified, and extracted:

33

{
"flows": {

"0": [
[1337 ,"0"] ,
[323232 ,"1"] ,
[1337 ,"0"] ,
[323232 ,"2"]

],
"1": [

[1337 ,"1"] ,
[323232 ,"2"]

]
},
"payloads ": {

"0": "aGVsbG8gdGhlcmU =",
"1": "Z2VuZXJhbCBrZW5vYmk =",
"2": "eW91IGFyZSBhIGJvbGQgb25l"

}
}

Listing 4.2. Example flows.json file

for every message in the flow, the ID of the payload and the destination port is
recorded. This can be used to tell apart queries and responses, because servers and
clients usually use different ports for communication, with the server usually having
a fix port. An example output can be seen on listing 4.2, where there are three unique
payloads (stored in base64 encoded form), from two TCP sessions, between the ports
1337 and 323232. Using this intermediate file allows us to keep the base algorithm
free of TCP or other carrier specific code and saves storage space by deduplicating
payloads.

4.1.3 Artificial message types

There is one last functionality that is fulfilled by the MealyProxy: to be able to model
TCP based (and many other) protocols, some non-existent, artificial message types
need to be defined. First, sometimes the server might silently accept a message and
not respond. However, the algorithm should not just get stuck when this happens, so
after some set timeout some kind of output must be defined for the Mealy machine.
For cases like this, the no response message type is used, denoted as noresp. Second,
TCP communication requires an established session, which can be torn down by
either party with, or without signaling this. No communication will be possible, until
a session is created, so the message type sockconn is used to direct the MealyProxy
to initiate a new connection (and throw away the previous one, if there was any).
The MealyProxy will always respond to sockconn with the same message type. When
there is no valid socket, the proxy resonds with noresp. Additional, protocol specific
artificial message types may be defined and implemented in MealyProxy if necessary.

34

4.2 Multiple round implementation

The extended version of the algorithm can be easily created by calling the base
algorithm multiple times. The caller only has to manage the input alphabet: before
every call, it requests new message subtypes from the MealyProxy and inserts them
into the input alphabet. After each call returns with the result Mealy machine it
needs to perform subtype deduplication on it and remove the unnecessary messages
from the input alphabet. This is done by comparing pairs of message subtypes inside
a message type one by one, and if their output function and transition function match
for every state, one of them is removed. After this is done for every pair of message,
only one of each subtype will remain.

These steps are repeated until the stopping createria is fulfilled. The simplest criteria
is choosing a number after which many calls to the learning function without change
in the size of the input alphabet the loop will exit, since the fact that the input
alphabet is not growing means that only new members of the same subtypes are
found and no new subtypes.

4.3 Caching query results

The biggest factor in the speed of the algorithm is the number of output queries
made during the whole execution. This is because we have to set a timeout for
how long we are willing to wait for bytes, which is the minimum time one query
takes to finish, since we always want to receive all bytes sent, so even if the server
instantly responds, we have to make sure it does not want to send any more data.
Since the environment needs to be deterministic, we can store the result of previous
queries and use them to answer without actually sending and receiving anything.
Repeated queries for the same input can happen for various reasons: having multiple
runs of the LM

+algorithm with the same target, even if with slightly different input
alphabets, the start of the run will contain overlaps where queries can be reused.
But even within the same run, if two queries are made where the first starts with
the second (for example the first is aab and the second is aa), the second can be
answered by taking the first part of the output of the first query (with the previous
example that would be the first two output letters). Using a cache like this presents a
nice opportunity to double check the implementation for errors and the environment
for inconsistent or undeterministic behaviour. To continue the previous example, if
the same two requests are made, but in reverse order, it can be now checked if the
SUT responds the same way to the first part of the query.

35

a/0

b/1

a/0

b/?

b/0
root

a/0

b/0

Figure 4.3. Example query cache

The cache functionality is implemented inside the teacher output query, so every-
thing that makes queries to the SUT will benefit from the caching automatically
(including the conjecture checking). A tree structure is used for the implementation,
each node in the tree holds the output letter corresponding to the input letter, if the
input letters along the route to the root of the tree were input previously. On the
example in Figure 4.3 the edges are labeled with the corresponding input letter and
output letter to that path and the dotted edges represent queries that have not been
made yet. So if an output query came for ab, it could be answered from cache, as
01, but if a query for aab came, the whole query would have to be executed against
the SUT, but the outputs for aa along the existing nodes could be verified and the
new output would be inserted as a new node.

4.4 Optimizing the order of queries

As a result of how the LM
+ algorithm works, output queries are made in bulk, then

based on the results of those queries, either more queries are made (also in bulk),
or a conjecture is formed. With the way the cache is implemented, as described in
section 4.3, it is favourable to make longer queries first, to make it more likely to
have cache hits. The solution is sorting queries in descending order by length, before
passing them one by one to the teacher.

36

4.5 Parallelizing

As already mentioned in section 4.3, a very big part of the runtime of the algorithm
is taken up entirely by waiting for network replies. This makes parallelization a
very good way to increase the efficiency of the implementation: if we can wait for
more than one query at the same moment, a lot of time can be saved. Multithreaded
programs are not always the best idea to implement in Python, because of the global
interpreter lock (GIL), which prevents multiple threads of Python code to run at the
same time, ensuring thread safety. As a result there is usually no performance gain
when parallelizing algorithms implemented in Python, as all the code will just run
on the same CPU/thread anyways. However, in this case, when the recv function
of a socket is waiting for input, that thread will just go to sleep, and allow other
threads to execute, allowing us to reach the timeout, while also working on other
operations and not wasting as much time. Depending on the number of available
server implementations that can be queried at the same time, there may be several
threads with sockets waiting for timeout at the same time. And as a bonus, the GIL
saves me from most of the headaches concerning race conditions and deadlocks that
are associated with multithreaded implementations.

To allow for parallel execution, the input query function of the teacher can be
called in either blocking or non-blocking mode. In non-blocking mode, if the query
is already cached, it will be immediately answered, if it is not, an available worker
is assigned to it (making it unavailable). A thread is created that will perform the
query, and an entry will be made into the cache, to signal that it is already being
worked on and by which thread and a placeholder value is returned. If there is no
worker available, the call will block until one becomes available. Once the thread is
finished with the query, it switches out the placeholder values for the real output
letters in the cache, releases the worker and terminates. Other than avoiding starting
multiple threads for the same output queries, having the handle of the thread in the
cache is useful, because it allows whoever needs the value that will be written there
(for example the blocking version of the output query) to efficiently wait for the
query to be finished by waiting for the thread to terminate.

So now whenever a bulk of output queries need to be made, the caller can call the
function with every query in non-blocking mode first, and then in blocking mode.
The MealyProxy does have to handle the workers, by having an extra parameter for
the worker ID in its functions and forwarding the messages to the appropriate SUT.
A simple concurrent queue for holding which workers are currently not assigned to
any task is also necessary. Whenever a free worker is needed, it is popped off from
the head of the queue, and when one is released it is put back into the end.

37

4.6 Shortening counterexamples

Counterexamples are found by randomly generated input sequences, which can result
in very long counterexamples. This directly influences the number of messages that
the base algorithm has to send, the longer the counterexamples, the more time is
spent waiting for replies. These randomly generated counterexamples could in some
cases be shortened: for example if at any point during the sequence both the real and
the (falsely) conjectured Mealy machine returns to their respective starting state,
the part up to that point can be safely discarded from the sequence and it will still
remain a counterexample. Other cases can also be possible where the counterexample
can be shortened. To find the shortest version of a counterexample, starting from
the end of the sequence increasing in length each subsequence of the original is
tested, and the first time that the SUT and the conjecture give different results, we
have found the shortened version. To execute the search faster, a binary searching
approach can be taken: first the start of the sequence is moved to the middle of the
original sequence and tested. If it remains a counterexample the start is moved to
the right into the middle, otherwise to the left, and so on, until the exact point is
found where the sequence starts being a counterexample. Unfortunately, this version
is not guaranteed to always find the shortest version, however if there is a message
that takes both machines to the same state (a one length homing sequence), it can
work really well. In most cases, sockconn is like that, which is why I implemented
the binary search version.

38

Chapter 5

Evaluation

5.1 Testing with a toy protocol

To test the viability of running the base algorithm multiple times while expanding
and deduplicating the input alphabet, a simple toy protocol was created. The read
and write message types have two subtypes each: one with valid target address (get
and write) and one with bad target address (bad_get and bad_write). The valid get
messages can be used both in BASE and WRITE mode, but the write message can
only be used in WRITE mode. The full state machine of the toy protocol can be
seen in Figure 5.1.

Figure 5.1. Mealy machine of the toy protocol

In this test, no network communication was involved, the protocol was implemented
entirely in the MealyProxy, the goal being the verification of the implementation of

39

the multiple round extentions. fgen was implemented simply by making a random
choice of whether the generated get and write is valid or not. Each round, one new
message from each subtype was generated. The output after the first round can
be seen in Figure 5.2. Since only one message is present from each message type,
deduplication has no effect. Both the generated get and write commands happened
to come with invalid target addresses, so only two states are discovered, since the
bad versions always return with an error, there is no way to tell the BASE and
WRITE states apart.

Figure 5.2. Output for toy protocol after the first round

After the second run, enough valid messages get generated to differentiate all three
states of the protocol. In Figure 5.3 the output before deduplication can be seen,
while Figure 5.3 shows it after deduplication. Before deduplication, there are two
messages from each message type, but after deduplication only the get type remains
duplicated, so we found the two get subtypes.

Figure 5.3. Output for toy protocol after
the second round before deduplication

Figure 5.4. Output for toy protocol after
the second round with deduplication

And finally, after the third round all subtypes are found, as shown in Figures 5.5 and

40

5.6. The deduplicated machine is equivalent to the original protocol state machine.
A number of rounds were run after this, but nothing changed, and the algorithm
stopped as the stopping criteria was fulfilled.

Figure 5.5. Output for toy protocol after
the third round before deduplication

Figure 5.6. Output for toy protocol after
the third round with deduplication

5.2 Modbus

Modbus is a widely known protocol, mainly used in industrial settings, to read and
write values from and to programmable logic controllers (PLC). It is a fairly simple
protocol, and the specifications are open and freely available. These properties make
it ideal for evaluating my implementation. For generating traffic for recording and
serving as a SUT, a custom implementation of the Modbus protocol (both client and
server) was used, created by Gergő Ládi at CrySyS laboratory. In addition to the
normal messages in Modbus, an additional message was added that allows resetting
the state of the server remotely.

Traffic was generated by using the client and recorded into a PCAP file, which
converted into flows using the script described in section 4.1.2. Every Modbus packet
starts with a fix 8 byte header, which makes parsing easy: the fclass function uses
only one byte for determining the message type, and uses the a few more bytes to
determine the length of the packet. fgen was realized by using fclass and selecting
from the messages in the captured flows, as described in section 3.2.2. No special
care needed to be taken regarding fupd, except correctly using socket communication.
The artificial message types noresp and sockconn were also used. The output of the
algorithm for Modbus can be seen in Figure 5.7. The input letters are of the form

41

messagetype-messageid, where the message types are simply the eighth byte of the
message. The result is that Modbus has a rather simple state machine, with only
two states, that correspond to whether the client is connected or not.

Figure 5.7. Modbus protocol state machine generated by the algorithm

5.3 MQTT

MQTT is a relatively simple, publish-subscribe based protocol, where clients can
subscribe to channels, and messages published by clients to channels will be sent
to all clients that are subscribed to that channel. It is mainly used in industrial
and IoT settings, thanks to its simplicity and open specifications. In addition, three
Quality of Service (QoS) levels can be set: at QoS 0, messages are simply sent and
nothing else is done, while on QoS level 1 and 2 increasingly complex handshakes
are completed to publish messages. This is useful for setting the balance in resource
constrained systems between error correction and message length and implementa-
tion complexity. For APRE it is nice to have settings with different complexity levels
so the algorithm can be tested at different complexity levels.

MQTT also has a wide open source software support, which made it easy to set up
a SUT environment. For the server implementation Eclipse Mosquitto1 was used,
and for the client side the Eclipse Paho™ MQTT Python Client2 library was used to
generate sample traffic in a custom Python script. To ease installation and later be
able to easily instantiate multiple servers at the same time and easily reset them, the
Mosquitto server was used inside a docker container, with the eclipse-mosquitto im-
age3 from Dockerhub. The Python script performs a sequence of randomly generated

1https://github.com/eclipse/mosquitto (last visited: 2020.11.30)
2https://github.com/eclipse/paho.mqtt.python (last visited: 2020.11.30)
3https://hub.docker.com/_/eclipse-mosquitto (last visited: 2020.11.30)

42

https://github.com/eclipse/mosquitto
https://github.com/eclipse/paho.mqtt.python
https://hub.docker.com/_/eclipse-mosquitto

actions available through the API of the Paho MQTT library, and the generated
traffic is recorded. Unfortunately, if the commands are called too quickly in suc-
cession more than one message might be sent in a single IP packet, which makes
converting into flows near impossible, so sleep commands are placed between them,
but sometimes even this is not enough. This is because the Linux kernel contains
optimizations for sending TCP traffic, using Nagle’s algorithm, which bundles mul-
tiple messages into the same packet, so the overhead of the various IP and TCP
headers does not decrease efficiency too much. To counteract this, I set an artificial
latency on localhost communications and enabled low latency mode TCP with the
commands on Listing 5.1:
sudo bash -c "echo 1 > /proc/sys/net/ipv4/tcp_low_latency" # enable low latency TCP
sudo tc qdisc add dev lo root handle 1:0 netem delay 10msec # localhost latency

Listing 5.1. Commands for ensuring no packets are merged

With network traces available, fgen can be constructed the usual way, and ffbgen

can also be used. In addition, the QoS level used to generate the sample traffic
will influence what QoS the protocol will be analyzed with. fclass uses the first four
bits in the constant header of the MQTT messages to categorize messages, since
according to the documentation these bits determine the packet type. The names of
the various packet types were also included in the classifier, so the produced Mealy
machines are easier to understand. A few more bytes are also parsed to determine
the length of the messages. fupd is handled in the same way as with Modbus, using
simple sockets takes care of communication synchronization.

Docker allows for easily resetting the state of the mosquitto server, by simply restart-
ing the whole container. To avoid any state being stored on disk, the container is
configured to have read-only storage. The docker containers of mosquitto are han-
dled by the MealyProxy through the docker Python SDK. Multiple instances of the
container are started with the servers listening port forwarded to different ports, and
each container is assigned to a worker to allow multithreaded execution. In order
to simulate other clients, a third artificial message type is defined alongside sock-
conn and noresp: this message type (pubtrigger) was created in order to simulate
message publications made by other clients connected to the same server. When the
MealyProxy receives such a message, it publishes a message to a certain channel
using the Paho MQTT library, and listens for any messages on the socket currently
defined in the proxy (if there is one).

The tests that were executed were configured by the different setups that the sample
network traffic was generated with. In every setup, the server was configured with
a few users, and anonymous connections (ones, where passwords are not necessary)

43

Figure 5.8. Result Mealy machine for MQTT with a single channel and QoS 0

were disabled. There were always a number of channels, messages and QoS levels
that the client script could randomly choose from, to subscribe and publish. The
simplest test involved only a single channel and only QoS 0. The result is in Figure
5.8, where it is clearly visible, how the server stores that state of the client: when the
client subscribes, it moves to a state where publish messages are sent to the client,
when it unsubscribes it moves to one, where they are not sent. The only message
type where subtypes are found is CONNECT, where CONNECT-0 is the one with
invalid credentials and CONNECT-141 is the one with correct credentials. Another
interesting detail that can be read from the figure, is that the CONNECT message
has to be sent exactly after establishing the TCP session, if anything else is sent
first, or if a CONNECT message is sent later in the session, the server instantly
tears down the connection without sending any error messages.

In the next test, two channels were used, and as one would expect, there is a state
for every combination subscriptions of channels in Figure 5.9. This way, we have in
two more states resulting in a total of four (= 2 ∗ 2) states used for managing sub-
scription state. In this run we also have subtypes for SUBSCRIBE, UNSUBSCRIBE
and PUBLISH as well. With a bit of analysis it can be deduced that the triplet of
SUBSCRIBE-176, UNSUBSCRIBE-132, PUBLISH-10 target one of the channels
and SUBSCRIBE-129, UNSUBSCRIBE-153, PUBLISH-21 target the other. In ad-
dition, the second trio belongs to the same channel as the one where pubtrigger
publishes.

With three channels the number of states needed to handle subscriptions increases
to eight, where the general formulat is 2n for the number of states needed, where n
is the number of channels. As the number of channels increase the Mealy machine is

44

Figure 5.9. Result Mealy machine for MQTT with two channels and QoS 0

increasingly complicated, however subscriptions to various channels are completely
independent. Mealy machine projections defined in section 3.2.5 are meant to sim-
plify Mealy machines like this. The result of the algorithm with three channels and
automatic projection after is in Figure 5.10. Just by looking at the shapes, it is easy
to see that the bottom three Mealy machines serve the same function, and after
realizing that they are responsible for handling subscriptions they can be used to
easily collect which PUBLISH, SUBSCRIBE and UNSUBSCRIBE messages belong
to the same channel. It can also be seen on the Mealy machine with three states, that
if we do not care about the responses to PUBLISH messages, then the responses to
the rest of the messages can be predicted with only three states. Likewise two states
is enough if we only care about CONNECT, DISCONNECT and sockconn queries;
and finally the responses for DISCONNECT and sockconn queries are completely
independent of the state of the protocol state machine.

Tests with QoS 1 did not yield that much different results, the only change was, that
for PUBLISH messages, there was always a PUBACK response, which means when
the client is also subscribed to the correct channel, two messages come as a response
to one. To be able to work with this, new message types are defined dynamically that
represent that those two messages (in this case PUBACK and PUBLISH) were both
received as a response. This is possible, because only the input alphabet is required
to be known beforehand by LM

+ so the output alphabet can easily be expanded at
any time.

45

On the other hand, QoS 2 produced bigger and more complicated Mealy machines,
and unfortunately simple projections were not very effective at simplifying them.
Because of this human analysis was not successful either, so more post-processing
techniques will be needed in the future to be able to work with QoS 2.

46

Figure 5.10. Projections of the Mealy machine of MQTT with three channels

47

Chapter 6

Conclusion

In this thesis a model for representing the state machine of a protocol with Mealy
machines is introduced. Assuming some prior, at least partial knowledge of the syn-
tax of the messages in the protocol and recorded communication, an application and
extension of the LM

+algorithm is created with multiple optimizations to automat-
ically reverse engineer the state machine of the protocol. An implementation was
created and successfully evaluated on a test protocol and two real world protocols:
MODBUS and MQTT.
All results except the highest level QoS MQTT test were evaluated, and by my
understanding correctly represented the protocol that was being reversed. A post-
processing algorithm was also created, aiming to simplify the result Mealy machine
and ease understanding of the generated models. The effectivity of this method is
demonstrated through a test with MQTT on QoS 0 with three channels, where it
simplified the representation of the logic of handling subscriptions. Unfortunately
this method was not effective at simplifying the result Mealy machines for QoS 2,
and as a result I was not able to manually verify.
Although the model presented in [13] is not exactly for protocols, assuming a sim-
ilar process for APRE, I believe the toolset presented here is suitable for the steps
overview and focused experimentation through the manipulation of the granularity
of message types, and the set of messages in the captured traffic.
As future work, other automata decomposition techniques should be explored, to
allow simplification of more complex Mealy machines. This would make it possible
to understand more complicated Mealy machines and the protocols corresponding
to these Mealy machines.

48

Acknowledgment

I would like to thank my thesis advisor Dr. Levente Buttyán and everyone else who
helped me over the years in the CrySyS laboratory at the Budapest University of
Technology and Economics, and my colleagues from Ukatemi Technologies. They
provided me with valuable advice, guidance and encouragement.

49

Listings

4.1 Inner state of LM
+ . 32

4.2 Example flows.json file . 34

5.1 Commands for ensuring no packets are merged 43

50

List of Figures

3.1 Malph in graph representation . 16

3.2 Minc in graph representation . 17

3.3 Malph in graph representation . 19

3.4 Example Mealy machine MMpws, to demonstrate problems with ran-
dom message generation . 26

3.5 MA Mealy machine . 27

3.6 MB Mealy machine . 27

3.7 Mcomp Mealy machine . 28

4.1 Architecture of base algorithm implementation 31

4.2 Result Mealy for LM
+testing . 33

4.3 Example query cache . 36

5.1 Mealy machine of the toy protocol . 39

5.2 Output for toy protocol after the first round 40

5.3 Output for toy protocol after the second round before deduplication . 40

5.4 Output for toy protocol after the second round with deduplication . . 40

5.5 Output for toy protocol after the third round before deduplication . . 41

5.6 Output for toy protocol after the third round with deduplication . . . 41

5.7 Modbus protocol state machine generated by the algorithm 42

5.8 Result Mealy machine for MQTT with a single channel and QoS 0 . . 44

5.9 Result Mealy machine for MQTT with two channels and QoS 0 . . . 45

5.10 Projections of the Mealy machine of MQTT with three channels . . . 47

51

Acronyms

APRE Automatic Protocol Reverse Engineering. 4, 5, 7–9, 21, 33, 48

FSM Finite State Machine. 15–21, 26, 27, 30

GIL Global Interpreter Lock. 37

IDS Intrusion Detection Systems. 7

IoT Internet of Things. 6, 42

JSON JavaScript Object Notation. 33

MQTT Message Queuing Telemetry Transport. 2, 4, 5, 31, 42–45, 47, 48, 51

PAM Partitioning Around Medoids. 10

PCAP Packet Capture. 31, 33, 41

PDF Portable Document Format. 30, 32

PLC Programmable Logic Controller. 41

QoS Quality of Service. 42–46, 48, 51

SMB Microsoft Server Message Block. 6, 7

SUT System Under Test. 23, 32, 35–38, 41, 42

52

Bibliography

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and Computation, 75(2):87–106, Nov 1987.

[2] João Antunes, Nuno Ferreira Neves, and Paulo Verissimo. ReverX: Reverse
engineering of protocols. 12th International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies (PDCAT), 2011.

[3] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. Dis-
patcher: Enabling active botnet infiltration using automatic protocol reverse-
engineering. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 621–634, 2009.

[4] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri De Ruiter. Auto-
mated reverse engineering using Lego®. In 8th USENIX Workshop on Offen-
sive Technologies (WOOT 14), 2014.

[5] Chia Yuan Cho, Domagoj Babi ć, Eui Chul Richard Shin, and Dawn Song. In-
ference and analysis of formal models of botnet command and control protocols.
In Proceedings of the 17th ACM conference on Computer and communications
security, pages 426–439, 2010.

[6] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. Prospex: Protocol specification extraction. 30th IEEE Symposium on
Security and Privacy, pages 110–125, 2009.

[7] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang. Discoverer: Auto-
matic protocol reverse engineering from network traces. SS’07 Proceedings of
16th USENIX Security Symposium on USENIX Security Symposium, 2007.

[8] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. Automatic pro-
tocol format reverse engineering through context-aware monitored execution.
In NDSS, volume 8, pages 1–15, 2008.

53

[9] Gergő Ládi, Levente Buttyán, and Tamás Holczer. GrAMeFFSI: Graph anal-
ysis based message format and field semantics inference for binary protocols
using recorded network traffic. Infocommunications Journal, 12(2):25–33, Au-
gust 2020.

[10] John Narayan, Sandeep K. Shukla, and T. Charles Clancy. A survey of auto-
matic protocol reverse engineering tools. 48(3), December 2015.

[11] Muzammil Shahbaz and Roland Groz. Inferring Mealy Machines. In Interna-
tional Symposium on Formal Methods, pages 207–222. Springer, 2009.

[12] Gábor Székely, Gergõ Ládi, Tamas Holczer, and Levente Buttyán. Towards
reverse engineering protocol state machines. In The 12th Conference of PhD
Students in Computer Science - Volume of short papers, pages 70–73, 2020.

[13] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster, and
Michelle L Mazurek. An observational investigation of reverse engineers’ pro-
cesses. In 29th USENIX Security Symposium (USENIX Security 20), pages
1875–1892, 2020.

[14] Y. Wang, Xiaochun Yun, M. Z. Shafiq, L. Wang, A. X. Liu, Z. Zhang, D. Yao,
Y. Zhang, and L. Guo. A semantics aware approach to automated reverse en-
gineering unknown protocols. 20th IEEE International Conference on Network
Protocols (ICNP), pages 1–10, 2012.

[15] Yipeng Wang, Xingjian Li, Jiao Meng, Yong Zhao, Zhibin Zhang, and Li Guo.
Biprominer: Automatic mining of binary protocol features. 12th International
Conference on Parallel and Distributed Computing, Applications and Technolo-
gies (PDCAT), pages 179–184, 2011.

[16] Yipeng Wang, Zhibin Zhang, Danfeng Yao, Buyun Qu, and Li Guo. Inferring
protocol state machine from network traces: A probabilistic approach. ACNS
2011: Applied Cryptography and Network Security, pages 1–18, 2011.

[17] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace. Re-
format: Automatic reverse engineering of encrypted messages. In European
Symposium on Research in Computer Security, pages 200–215. Springer, 2009.

[18] Z. Zhang, Q. Wen, and W. Tang. Mining protocol state machines by inter-
active grammar inference. In 2012 Third International Conference on Digital
Manufacturing Automation, pages 524–527, 2012.

54

