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Kivonat

A mély neurális hálózatok kiemelkedő figyelemben részesültek az elmúlt években.
Segítségükkel számtalan különféle alkalmazási területen sikerült minden korábbinál
jobb eredményeket elérni: például képfelismerési, objektumdetekciós, beszédfelisme-
rési és -generálási, természetes nyelvfeldolgozási vagy idősorelemzési feladatokban is
kiemelkedőnek bizonyultak. Ezek a modellek sok esetben még az embernél is pon-
tosabban oldják meg a számukra kijelölt feladatot.

A mély megerősítéses tanulás a gépi tanulási algoritmusok azon csoportját fog-
lalja magába, amelyekben egy ágens neurális hálózatok használatával képes megta-
nulni egy környezetben egy bizonyos cél elérését a megfelelő akciók végrehajtásával.
Ezzel a módszerrel vált lehetővé, hogy számítógépes algoritmusok legyőzzék a világ-
bajnokokat különféle tábla- és számítógépes játékokban, például a Go-ban vagy a
StarCraft II-ben.

Azonban a mély megerősítéses tanulás használata nagyobb kihívást jelent olyan
feladatokban, amelyekben például valós robotokat vagy járműveket szeretnénk ve-
zérelni. Ilyen feladatoknál jellemzően az ágenseket egy szimulátorban tanítják, majd
a kész modellt "átültetik" a valós eszközre. A megerősítéses tanulás alkalmazása ön-
vezető járművek esetében már szimulátorban is egy nehéz kihívás, hiszen ezek az
algoritmusok jellemzően instabilak, és nem rendelkeznek kellően megalapozott ma-
tematikai háttérrel. Továbbá a szimulátorban tanított ágensekre jellemző, hogy a
valós környezetben történő használatkor jelentősen romlik a teljesítményük.

Dolgozatomban egy olyan mély megerősítéses tanulás alapú eljárást dolgoztam
ki, amellyel lehetséges önvezető ágenseket tanítani szimulátor segítségével, és ezeket
sikeresen át lehet ültetni valós járművekre is. Az ágensek a valós környezetben, valódi
járműveken futtatva is hasonló pontosságot nyújtanak - a valós környezetből vett
tanító minták nélkül.

A dolgozatban két ágenst ismertetek, melyeket különböző algoritmusok segítsé-
gével tanítottam. A módszerek ismertetése után összehasonlítom és kiértékelem az
ágensek teljesítményét mindkét környezetben. Az eredményeket egy demonstrációs
videóban is bemutatom, amelyre a hivatkozás megtalálható a dolgozatban.
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Abstract

Deep neural networks have received great attention in recent years. These models
have been successfully used to reach state-of-the-art results in many application
scenarios: for example, image recognition, object localization, speech recognition
and synthesis, natural language processing, time series analysis, etc. These models
can often solve their specific tasks more accurately than an average human does.

Deep Reinforcement Learning (DRL) is a field of machine learning which enables
software agents using neural networks to reach their goal in a virtual environment
by taking the best possible actions. This technique has been successfully used to
beat world champions in different board and computer games, for example, Go or
StartCraft II.

However, solving tasks involving real-world machines, e.g. robots or autonomous
vehicles, with DRL seems to be a more difficult challenge. The desired approach
would be to use a simulator to train the agent in a virtual environment and transfer
it to the real world. Training agents in an autonomous driving simulator is already
a challenging task, as most DRL methods still lack mathematical fundamentals and
are unstable. Furthermore, models trained in a simulator tend to suffer from severe
performance degradation when transferred to the real-world environment due to the
differences.

In this work, I propose a novel method for training autonomous driving agents in a
simulator and transferring them to real-world vehicles. As a result, the agents are
able to drive autonomously in the real-world environment with a similar performance
without further training on real-world data.

Two agents are presented in this thesis, which were trained using different DRL
algorithms. After describing the method, I analyze and compare the performance of
the agents in both environments. The results are also presented in a demonstration
video, which is referred to in the document.
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Chapter 1

Introduction

Artificial intelligence has undergone tremendous development in recent years. Its
methods are used in countless application scenarios to help our everyday life. For
example, personal assistants, translators, online stores’ recommendation systems,
or even mobile phones’ cameras all use such algorithms to provide more valuable
services.

Among its areas, deep learning has become a very actively researched area recently.
Thanks to the recent advances in the development of GPUs (Graphical Processing
Units), the computing power available via cloud services, and the (often public)
availability of enormous databases, training deep neural networks has become pos-
sible and efficient. They have been successfully used to reach state-of-the-art results
in several application scenarios: for example, image recognition [1] [2], speech recog-
nition and synthesis [3], natural language processing [4], reinforcement learning [5],
and robotics [6]. The performance of these networks is often comparable to or even
better than the average human’s accuracy.

Deep learning has an important role in the automotive industry. Using the recent
image processing algorithms, it became possible to understand the camera images
of the cars [7], which is an important milestone in self-driving car development.
However, the problem of autonomous driving is far from being completely solved,
thus it is under very active research nowadays.

Deep Reinforcement Learning (DRL) is an exciting area of deep learning, where in-
stead of using huge labeled or unlabeled datasets, an agent interacts with a dynamic
environment and tries to learn an optimal control policy by taking a sequence of ac-
tions. The agent receives feedback from the environment, which describes how good
its actions have been. It tries is to reach its goal by finding the appropriate sequence
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of actions among different circumstances. DRL algorithms have been successfully
used recently to overcome human players in complex board games, such as Go [5],
or computer games, such as StarCraft II [8].

Nonetheless, using DRL algorithms to solve real-world robotics control or au-
tonomous driving tasks seems to be a more challenging scenario. The desired ap-
proach would be to train an agent in a simulator and then use it in the real world.
Using a simulated environment has several advantages: it is much safer, it makes
collecting an unlimited amount of labeled data possible, and is a lot cheaper than
using real devices. However, when models trained in a simulator are transferred to
the real world, they tend to have serious degradation in their performance due to the
differences and simplifications between the simulator and the real world. Besides,
while the simulator makes it possible to evaluate slower methods, algorithms used
on real robots need to be designed carefully such that they can be run in real-time
with very little latency. Sim2Real refers to the concept of transferring robotics skills
learned in a simulator to real devices. Currently, there are no Sim2Real methods
that generally work for various robotics applications, thus it is of great importance
to examine the possibilities of existing techniques and develop new methods for
autonomous driving.

This thesis discovers the challenges and examines the possibilities of performing lane
following in a miniaturized urbanized autonomous driving environment, focusing on
transferring agents from the simulator to the real vehicles.

The problem is formalized to fit a Markov Decision Process (MDP). In each time
step, the vehicle’s sensors provide raw multidimensional sensory data in the form of a
D-dimensional tensor St ∈ Rd0,0×d0,1×···×d0,D . This input can be, for example, a cam-
era image of shape Rh×w×c, or a point cloud measured by a LIDAR sensor. The ve-
hicle is controlled in a C-dimensional continuous control space, i.e. in each time step
it is controlled by providing a control command At ∈ RC . With this formalization,
the desired control function has to realize a mapping fc : Rd0,0×d0,1×···×d0,D → RC

which enables the vehicle for lane following. For training, an autonomous driving
simulator is used. The performance of the method is evaluated both in the simulated
and the real-world environment. Therefore, the method has to be able to cope with
the differences between the two environments.

I develop a complete pipeline for training an agent for autonomous lane following.
I propose a deep reinforcement learning-based algorithm to train a vehicle to per-
form lane following in an autonomous driving simulator, which provides a simplified
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version of the real-world environment. I analyze and develop Sim2Real methods to
make it possible to transfer the model trained in the simulator to the real robot. I
design and compare two agents, which are trained with different DRL algorithms.
My method is designed such that it can be run in real-time on a computer with
limited hardware resources.

The method is implemented and tested in the Duckietown environment [9]. It is
an educational and research platform where small three-wheeled vehicles can be
used to perform autonomous driving tasks, for example, lane following, or collision
avoidance. The environment is open, inexpensive, and highly flexible. The vehicles’
only sensor is a monocular camera with a fish-eye lens.

The key challenges that are addressed in this problem are:

• Training two agents in an autonomous driving simulator to perform lane fol-
lowing using deep reinforcement learning

• Transferring the trained agents into the real world

• Running the method in real-time with limited hardware resources

The rest of this thesis is organized as follows. Chapter 2 introduces the theoretical
background and the relevant methods of deep learning, reinforcement learning, and
sim-to-real transfer. Chapter 3 introduces the proposed method. Chapter 4 gives
an overview of autonomous driving environments. Chapter 5 describes how the pro-
posed method was implemented and how the agents were trained in the Duckietown
environment. The evaluation method along with the results is presented in chapter
6. Finally, conclusions are drawn in chapter 7.
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Chapter 2

Background

In this section, I present the most important papers and results related to my work.
I begin by giving a brief overview of deep learning and especially its aspect on image
processing; then I introduce the reinforcement learning paradigm and present the
main results of this field from recent years. Finally, the difficulties and the methods
of transforming RL agents from the simulator to the real world are introduced.

2.1 Deep learning

Machine Learning (ML) is the concept of algorithms that can generate knowledge
from data. For example, given a large dataset and target values for each data point,
these algorithms can be trained to predict the target values based on the similarities
of the elements of the dataset. Machine learning algorithms build an inner math-
ematical model based on the training data, and can automatically extract useful
information from the data and make decisions or create predictions without ex-
plicitly being programmed to do so. If these algorithms are trained well and with
an appropriate, diverse dataset, they can create correct predictions on previously
unseen data points. Machine learning algorithms can be used with different kinds
of datasets (e.g. images, sound recordings, or tabular data) and thus can be used
in countless application scenarios. For example, they can identify objects on pic-
tures, recognize and imitate human speech, recommend new movies or products
from a webshop based on our interests, create financial forecasts, analyze chemical
molecules, or even play computer games.

Machine learning techniques can be categorized into three different approaches. In
the case of supervised learning, the algorithm is presented with both training data
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and labels, and the goal is to create a function that predicts correct labels both
for the training data and previously unseen examples. Unsupervised learning means
that no target labels are available for the data; in this scenario, the algorithms have
to find deeper structures in the data and, for example, identify anomalies or cluster it
based on similarities. In the case of reinforcement learning, an agent interacts with a
dynamic environment to learn an optimal control sequence to reach a specified goal.
The agent can take one of some possible actions in each step and receives feedback
(called reward) from the environment which describes how good its action was in
the current state. The agent tries to learn an optimal policy that determines which
action to take in each step to reach the goal. Reinforcement learning is widely used,
for example, to train agents to play computer games or board games.

Deep learning refers to a family of machine learning algorithms that use deep neu-
ral networks. These networks consist of multiple layers, where each layer performs
a mathematical operation on its input, which can be a matrix or a multidimen-
sional tensor. Such operations can be, for example, matrix multiplication, activation
(element-wise nonlinear function, e.g. sigmoid or ReLU [10]), 1- or 2-dimensional
convolution, etc. The networks can be trained with error backpropagation to mini-
mize the difference between its output and the target label.

In the cases of different applications and different kinds of datasets, the best re-
sults can be reached with specialized neural networks. For example, 2-dimensional
Convolutional Neural Networks (CNNs) can be used for image recognition tasks; Re-
current Neural Networks (RNNs) and 1-dimensional CNNs can process text data,
speech, or other kinds of time series; and feedforward neural networks can be used
in other general applications, e.g. processing tabular data (feedforward layers are
also widely used in CNNs or other types of networks).

The advantage of deep neural networks, which can be one of the reasons for their
recent successes, is that their performance continues to improve as the amount of
training data is increased. In contrast, other ML algorithms tend to stagnate after
reaching a decent accuracy with a certain amount of data. The incredible amount of
data in public or private datasets significantly contributed to the recent successes of
neural networks. Besides, the developments of Graphical Processing Units (GPUs),
lots of algorithmic improvements, and the computing power available via cloud ser-
vices made training and using deep neural networks in various application scenarios
possible and efficient.
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(a) Object localization (source:
[11]) (b) Semantic segmentation (source: [7])

Figure 2.1: Various computer vision tasks can be successfully
solved by convolutional neural networks.

2.1.1 Deep learning for computer vision

Understanding the environment and recognizing the surrounding objects, e.g. other
vehicles, pedestrians, and traffic signs is an important milestone in the development
of self-driving vehicles. Cameras are widely used to perform this task, as they are
cheaper and more accessible compared to LIDAR or RADAR sensors.

Deep neural networks have reached state-of-the-art results in several computer vision
tasks. Convolutional neural networks [12] have been successfully applied to various
image recognition and image processing tasks and outperformed former image pro-
cessing methods. These networks are designed especially to successfully handle data
with spatially correlated information and extract the relevant and required informa-
tion from the input, e.g. pixels of images.

Image recognition, one of the most essential and most widely applied image pro-
cessing tasks, consists of recognizing (one or more) objects in a given photo. This is
widely used, for example, in smart camera applications or automatic image tagging
algorithms. The ImageNet competition [13] is a large-scale competition focusing
on categorizing images into 1000 categories based on the objects on them. This
competition allows comparing the best image recognition algorithms. The fact that
this competition is being won by convolutional neural networks since 2012 (e.g. [1])
proves that currently, CNNs are the state-of-the-art methods for image recognition
tasks.

CNNs can be successfully used for more complex image processing tasks as well.
Object localization and semantic segmentation are both useful in the automotive
industry, as the cars not only have to determine what kind of objects (e.g. other
cars, pedestrians, cyclists, etc.) are in the image but finding their exact location is
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also an important part of the task. An example of these tasks is shown in Figure
2.1. In the case of object localization, in addition to recognizing the objects on the
image, their locations need to be determined too. [11] shows an example of using
CNNs for object localization. In the case of semantic segmentation, the image has
to be partitioned into regions such that each region covers one object in the picture.
It can also be viewed as a mapping from the pixels of the image to object categories,
where each pixel has to be mapped to the object it is a part of. [7] shows an example
of using CNNs for image segmentation.

2.2 Reinforcement learning

This section gives an overview of reinforcement learning and two approaches to solve
reinforcement learning problems: Q-learning and policy gradient methods. The de-
scription and the formalization of this chapter took ideas from [14] and the con-
tents of the university course EL2805 Reinforcement Learning taught by Alexandre
Proutiere at KTH Royal Institute of Technology1.

Reinforcement learning is an area of machine learning that can be modeled as an
interaction between an intelligent agent and a dynamic environment. The agent
tries to learn an optimal policy in order to reach a specified goal in the environment.
In each step t, the agent, based on its current state st, selects one of the possible
actions at ∈ A. The environment, based on the agent’s action at, computes the next
state st+1, and also provides a scalar reward value rt, which describes the quality of
the selected action.

The goal of the agent is to learn a policy π : S → A which maps each state s ∈ S
to an action a ∈ A, to maximize the total discounted reward R earned by following
a trajectory under π:

R = E

[ ∞∑
t=0

γtrt

]
. (2.1)

The discount factor, γ ∈ (0, 1), is used to represent that future rewards are less im-
portant than present ones, and also for mathematical stability. In a general setting,
both the transitions among the states and the policy π can be non-deterministic,
thus the expectation of the total collected reward is calculated.

1https://www.kth.se/student/kurser/kurs/EL2805?l=en (Access date: 20 May 2021)
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Some important concepts related to reinforcement learning are defined in the fol-
lowing.

Definition 1 (Model-based reinforcement learning). In the case of model-
based reinforcement learning, the goal is to construct an internal model of the
environment, which can accurately represent its transitions and outcomes. �

Definition 2 (Model-free reinforcement learning). In the case of model-free
reinforcement learning, we use the experience of the agent to learn simpler quantities
about the environment (e.g. state action values), from which we can derive a good
policy. �

Definition 3 (On-policy learning). In the case of on-policy learning, the same
policy is used for collecting experiences whose values are changed during training. �

Definition 4 (Off-policy learning). In the case of off-policy learning, we use a
separate behavior policy πb for collecting experiences during training, while we train
our policy π. �

2.2.1 Q-learning

Reinforcement learning algorithms are applicable to problems that fit the Markov
Decision Process (MDP). A common way to do so is called Q-learning. In this
algorithm, we try to calculate or learn the values of the state action value function,
also called Q-function, Q : S × A → R. The value of Q(s, a) represents the total
collectible discounted reward starting from state s and performing action a:

Q(s, a) = E

[ ∞∑
t=0

λtrt|s0 = s, a0 = a

]
. (2.2)

The values of the Q-function satisfy the Bellman equation [15]:

Q(s, a) = E

[
r(s, a) + λmax

b
Q(s′, b)

]
, (2.3)

where r(s, a) is the earned one-step reward and s′ is the next state after performing
action a in state s. That is, the collectible reward from the current state equals the
sum of the one-step reward and the maximum discounted collectible reward from
the next state.
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In Q-learning, the goal is to learn the values of the Q-function. This can be done by
observing experience samples (st, at, rt, st+1) from the environment and performing
updates on the values of the Q-function in each step with a learning rate α:

Q′(s, a) = Q(s, a) + 1s=st,a=atα
(
rt + λmax

b
Q(st+1, b)−Q(s, a)

)
. (2.4)

Once the values of the Q-function are learned for every state and action pair (s, a),
the optimal policy can be derived simply by choosing the action in each step with
the highest possible future reward:

π(s) = arg max
a

Q(s, a) (2.5)

Q-learning belongs to the family of off-policy learning algorithms. A behavior policy
πb is used to collect sample experiences during learning. It is proved that Q-learning
converges to the real Q-values [16]. However, in several application scenarios, the
state space or the action space can be very large (e.g. when the state is described
by an image). In such cases, it is infeasible to learn all values of the Q-function.
Instead, function approximators are used that try to approximate the values of the
Q-function. One such algorithm is Deep Q-Networks (DQN), which uses a neural
network for function approximation.

2.2.2 Deep Q-Networks

Deep Q-Networks [17] is an off-policy deep reinforcement learning algorithm. It is a
model-free approach: it tries to learn an optimal policy by learning from collected
experiences without building a mathematical model of the environment. DQN uses
a variation of Q-learning: it tries to learn the Q-function, which is a function repre-
senting the collectible total discounted future rewards Q(s, a) starting from a state s
and performing action a. However, as the state space can be very high-dimensional,
learning the exact values of the Q-function is impossible; instead, it tries to learn
an approximation Qθ(s, a) of the Q-function using a function approximator with
parameters θ. Currently, it is done by a neural network; when the state is described
in the form of an image, it can be, for example, a convolutional neural network.

The goal is to train the neural network with optimal parameters θ such that it can
approximate the Q-function accurately and thus realize optimal control. To stabilize
the training process, two ideas are used. First, an experience replay buffer B is used
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to store past transitions (s, a, r, s′), and the neural network updates are performed
based on minibatch samples from this buffer. This reduces the correlation among
the samples used in each step of the training (which would be really high using
consecutive samples) and also smoothes the changes of the data distribution over
training, which is the result of the agent exploring different trajectories. Second,
along with the Q-network a separate target network with parameters φ is also used,
which is updated only periodically, thus reducing the correlation with the target.

The following loss function is used to update the parameters of the Q-network (θ):

L(θ) = E(s,a,r,s′)∼B

[(
r + γmax

b
(Qφ(s′, b))−Qθ(s, a)

)2
]

(2.6)

The target network parameters (φ) are updated every C0 step with the Q-network
parameters.

2.2.3 DQN extensions

To improve the stability of the training with Deep Q-Networks, two extensions are
presented here.

Dueling DQN [18] proposes a new neural network architecture for training agents.
This network represents two separate estimators: one for the state value function,
and one for the state-action advantage function (the latter represents how advanta-
geous it is to choose a specific action in a state compared to other actions). These
estimators use the same feature extracting layers. The predicted Q values are cal-
culated by an aggregating layer that combines the output of the two estimators.

Double DQN [19] targets the problem of overestimation. As the process of estimating
action values includes a maximization step, the algorithm tends to overestimate some
state action values. In this algorithm, the target

Y = r + γQφ(St+1, arg max
a

Qφ(St+1, a)) (2.7)

is replaced with
Y = r + γQφ(St+1, arg max

a
Qθ(St+1, a)), (2.8)

that is, the max operation in the target is decomposed into action selection and
action evaluation with separate neural networks. That is, the greedy policy is eval-
uated using the online network, and the target network is used to estimate its value.
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This method improves the original DQN algorithm in terms of the accuracy of the
values and the quality of the resulting policy.

2.2.4 Policy gradient methods

Other than Q-learning, another family of algorithms to solve reinforcement learning
problems is called policy gradient methods. In these algorithms, we use a param-
eterized policy πθ. The goal is to find the optimal policy by learning the policy
parameters θ directly.

For learning, a performance measure J(θ) is defined, which describes how well the
policy with parameters θ performs. For example, in the case of episodic problems,
this can be defined as the total collectible discounted reward under the policy πθ
from the initial state. The goal is to find a policy that maximizes this measure,
hence the parameters of the policy are updated using gradient ascent in J with a
learning rate α:

θt+1 = θt + α∇J(θt). (2.9)

Actor-critic methods extend policy gradient by using another approximator for the
value function (the function V : S → R describing the value of each state, that is,
the total collectible discounted future reward from that state) as well. The learned
policy is referred to as the actor, and the learned value function is the critic.

2.2.5 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [20] is a policy gradient algorithm for solving
reinforcement learning problems. The main goal of the authors was to add improve-
ments to the vanilla policy gradient method to improve the stability of training
while keeping the algorithm itself simple and easily fine-tunable. PPO is an online
learning algorithm, meaning that the same policy is used for generating experiences
whose parameters are updated during training.

The algorithm uses an estimate of the advantage function, denoted by Â(s, a), which
defines how advantageous it is to choose action a in state s compared to other actions.
The advantage can be calculated as Â(s, a) = Qπθ(s, a)−V πθ(s). That is, an action
a being advantageous in state s means that choosing this action results in a higher
future reward compared to our overall assumptions regarding the given state.
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The objective function in the PPO algorithm is defined as

L(θ) = E
[
min(r(θ)Â, clip(r(θ), 1− ε, 1 + ε)Â)

]
. (2.10)

This objective constraints the size of the policy update. The goal of this constraint
is to make sure that the new policy is not too far from the old one. Here, r(θ) is
defined as:

r(θ) = πθ(a|s)
πθold(a|s) . (2.11)

The ratio between the old and the new policy is limited to the interval [1− ε, 1 + ε].
This clipping limits the effects of the gradient update.

The algorithm works by iterating over two phases. In the first phase, we run the
policy in the environment for a fixed number of time steps to collect experiences,
and compute the advantage estimates Âi. In the second phase, the parameters of
the policy are updated using minibatches of the collected experiences based on the
defined objective function.

2.2.6 Reinforcement learning for autonomous driving

Intelligent features of self-driving vehicles have to undergo extensive safety tests
before being applied in production. Applications of reinforcement learning in such
scenarios are still in their early phases, as these algorithms tend to be unstable.
Besides, the decisions of the agent can be difficult to explain or motivate, which
would be another key aspect in a real-world application. However, there is upcoming
research in applying these algorithms in this area. Some of its results from various
application scenarios are presented here.

A platform for using RL algorithms for driving small-scale autonomous vehicles is
presented in [21]. The DeepRacer platform makes it possible to experiment with
different RL algorithms in a simulated autonomous driving environment and transfer
the trained agents to the real world. They also provide a workflow for training an
agent using the PPO algorithm for autonomous racing and show that this method
can successfully control their racecar in their platform.

An example of autonomous road following using reinforcement learning is presented
in [22]. They used the TORCS simulator [23] to train agents for lane keeping.
The simulator provides the exact position and orientation of the vehicle and the
surrounding objects, which is used to learn the vehicle control policy. Multiple
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agents are trained and compared with discrete and continuous action spaces using
different reinforcement learning algorithms.

[24] shows an example of using reinforcement learning for autonomous lane changing.
In this problem, the vehicle has to accurately understand its surroundings to make
a safe and efficient lane change maneuver without colliding with other vehicles.

Another scenario, namely vehicle overtaking using reinforcement learning, is pre-
sented in [25]. This is a more complex case with three phases: changing lane, passing
the slower car, and returning to the original lane. They propose a multiple-goal re-
inforcement learning framework to cope with this scenario. Seven goals are defined
to properly complete the maneuver, including lane following, collision avoidance,
and keeping a steady speed.

[26] addresses the problem of navigating through unsignaled intersections. The goal,
in this case, is to learn a policy that makes it possible for the cars to drive through
the intersection without collision with as little latency as possible. The complexity
of this case is the result of having several participants whose behavior might be
unpredictable. Furthermore, occlusion can further harden the task; that is, some
cars might not be visible due to being covered by other vehicles or other objects. In
this paper, the DQN algorithm is used to solve the intersection problem.

2.3 Sim-to-real transfer

As reinforcement learning heavily relies on trial-and-error experiments and experi-
ence gained from previous failures and successes, a simulated environment is pre-
ferred instead of using the real-world device for training the agents. The simulator
can also provide additional metrics, which can be difficult to measure precisely in
the real world but can be useful for creating a meaningful reward function to train
the agent. For example, in the case of autonomous lane following, it is possible to
easily calculate the distance of the vehicle from the center of the lane, which is a
good indicator of how accurately we are driving; but measuring this metric in the
real world would be a much more difficult challenge.

However, training agents in a simulator introduces new challenges. We need to find
or create a simulated environment that models the world as accurately as possible,
which might require a lot of time and expertise. Also, the simulator cannot model
exactly every aspect of the real world; instead, it often uses simplifications. This
results in differences between the simulated and the real world. Such differences can
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Figure 2.2: Overview of the approaches of sim-to-real trans-
formation (source: [27]).

be, for example, the number of details, the colors of the objects, lighting conditions,
dynamics of the objects, and other parameters and physical aspects.

These challenges motivate the use of sim-to-real techniques, which refer to differ-
ent concepts that help to transfer the agents trained in the simulator to the real
world without severe performance degradation. Sim-to-real techniques include do-
main adaptation, domain randomization, and system identification, which will be
presented in more detail in the next sections. An overview of these methods can be
seen in Figure 2.2.

2.3.1 Domain adaptation

Domain adaptation is used in a much broader spectrum of machine learning applica-
tions than just robotics and reinforcement learning. When training neural networks
(or other machine learning models), we often assume that the training data has a
similar distribution to the data the model will be used on. This strong assumption
makes training easier; however, in many applications, it does not hold. For example,
when we collect medical data of patients, we only have a small amount of training
data available, which may not be an accurate reflection of the population, e.g., may
contain mostly data of old people. In order to use a model trained on this data to
predict the diseases of young patients, we should take into account that the model
can be biased due to the differences between the training and test data. Domain
adaptation techniques try to solve the challenge of training a model on one data
distribution (source domain) and making it able to work on another one (target
domain). For the target domain, labels are usually not or only in limited quantities
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available, and thus training a model for this domain is not feasible. However, train-
ing on the source domain and transferring its knowledge to the target domain can
help address this problem.

To have another example, domain adaptation can be imagined as when someone
knows how to speak Italian, and would like to learn to speak Spanish. Using his/her
previous Italian knowledge can significantly help to learn the new language. There
are many examples in machine learning, where the source and target domain of train-
ing are difficult. For example, a face recognition system can be trained on some faces,
but it has to adapt to new people as well. Similarly, a speaker-independent speech
recognition system can adapt to the voices of new people. Movie recommendation
systems can be trained on a set of movies, but they have to adapt to changes when
new movies are released.

Formally, domains are defined as the combination of an input space X , an out-
put space Y , and an associated probability distribution p. Inputs are subsets
of the D-dimensional real space RD, and outputs can be, for example, classes:
Y = {1, . . . , K}. The source domain DS is denoted as (X ,Y , pS) and the target
domain DT is denoted as (X ,Y , pT ). That is, input and output spaces remain
unchanged during domain adaptation, only the probability distributions change.

One approach to cope with the shift between the domains is instance reweighting.
Samples from the source domain that are closer to the distribution of the target
domain are considered with higher weights, as they can be used more accurately for
the predictions from the target domain; and other samples are considered with lower
weights. [28] describes an example of this approach. They use the source domain
and a small amount of data from the target domain to find the useful parts of the
source domain and show that models can successfully adapt to the target domain
when trained with their method. Another example of this approach can be read
in [29]. They describe a complex framework, in which they combine the learning
of instance weights and the usage of the Mahalanobis distance. Instance weights
are learned to bridge the distribution of the source and target domains; while the
Mahalanobis distance is used to maximize the distance of instances of the same class
and minimize the inter-class distance for the target domain. The effectiveness of this
method is proved by testing on several real-world datasets.

Another approach for domain adaptation is finding new representation for the in-
stances of the source and target domains to reduce the distribution divergence. In
other words, the samples of both domains should be transformed such that after
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(a) Opening a drawer with a robot hand (source: [33]).

(b) Solving a Rubik’s cube with a robot
hand (source: [6]).

(c) Pushing objects to a certain location
(source: [34]).

Figure 2.3: Domain randomization can be used to solve many
kind of robotic tasks.

transformation, their distributions become more similar. [30] shows an example
of this technique, which they apply to image classifiers trained on one dataset to
recognize the instances of other datasets. [31] describes structural correspondence
learning, which tries to identify correspondences among features from different do-
mains by modeling their correlations with pivot features. This technique is applied
to the field of natural language processing: they successfully transform a model
trained on financial news’ texts to biomedical texts. [32] uses dynamic distribution
alignment for domain randomization to reach state-of-the-art results on several ob-
ject recognition-based domain adaptation tasks, where the performance of classifiers
is measured on a dataset other than that which was used for training.

2.3.2 Domain randomization

Another approach to cope with the problem of sim-to-real transformation is do-
main randomization. This relies on a simple but powerful idea: during training, we
randomize some of the parameters of the simulator, thus creating different versions
of the environment with different parameters. An agent trained in an ensemble of
simulated environments can be expected to generalize better and work in the real
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Figure 2.4: Illustration of domain randomization for robotic
grasping (source: [35]).

world as well if it fits in the distribution of the training variations. The difference
between the simulated and the real environment is often called reality gap. Some
examples of using domain randomization in robotic tasks can be seen in Figure 2.3.

Training happens in an environment (e.g. simulator) over which we have full control;
this is called the source domain. We would like to transfer the agent to the target
domain. During training, we can control a set of M randomization parameters in
the source domain eξ. The source domain has a configuration ξ sampled from a
randomization space, ξ ∈ Ξ ⊂ RM . During training, episodes are collected from the
source domain with randomized parameters. The policy parameter θ is trained to
maximize the expected reward R(·) average across a distribution of configurations:

θ∗ = arg max
θ

Eξ∼Ξ
[
Eπθ,τ∼eξ [R(τ)]

]
(2.12)

where τξ is a trajectory collected in source domain with configuration ξ ([27]).

[35] successfully uses domain randomization to train a neural network in a simulator
that can localize objects on images, and use it to perform robotic grasping without
further training on real-world images. They focus on applying domain randomization
to computer vision: they train a neural network to detect the location of an object.
The illustration of their method can be seen in Figure 2.4. They randomize several
aspects of the simulated domain during training, for example, the number and shape
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of distractor objects, colors, textures, camera position and orientation, and light
sources and their characteristics. Their neural network is trained to accurately
localize the target objects in each randomized image, despite the aforementioned
randomizations related to the camera view. They evaluated their method by showing
that by using their network to localize the target object, a robotic arm can grab it
in most cases.

Domain randomization can be used not only for robotic applications but for object
detection as well. [36] uses synthetic images to train a neural network for object
detection. The advantage of this method over "classical" supervised learning is that
it doesn’t require collecting and accurately labeling real-world images, which is an
expensive and time-consuming process. Instead, synthetic objects (e.g. cars) are
rendered on various backgrounds along with randomized flying distractor objects.
Randomized textures, lighting conditions, and viewpoints are also applied to create
a synthetic dataset with a huge variety. They show that using this dataset, it is
possible to reach similar accuracy on real-world images as in the case of training on
those ones; and fine-tuning their model with real-world images results in a further
improvement of the accuracy.

In addition to applying domain randomization to visual domains, it can also be used
to randomize the dynamics of the simulator. As the physical dynamics of the real
world and calibration parameters cannot be modeled completely accurately, it can
help in the case of robotic applications. An example of this is described in [34].
They train a robotic arm to be able to push objects to specified locations. They
show that by randomizing the simulation dynamics during training, the model can
be transferred to the real world without further fine-tuning on real-world data, and
it reaches similar performance in the real world as in the simulator.

It is also possible to fine-tune the simulator parameters using a few real-world roll-
outs during training. An example of this is presented in [33]. The downside of
randomizing simulator parameters is that we can spend a lot of time training in
randomized environments which are too far from the real world, thus this part of the
training will not help to transfer the policy to the real-world agent. Also, randomized
parameters and randomization ranges have to be selected manually, which requires
the expertise of the practitioner. The authors of this paper decided to change the
simulator parameters based on real-world trials such that they are closer to the
real-world domain. This helps to accelerate the learning process and resulted in
successful policy transfer for two robotic tasks: opening a drawer with a robot hand
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Figure 2.5: Automatic Domain Randomization automatically
widens the randomization parameters during
training (modified figure of [37]).

(see Figure 2.3a) and the swing-peg-in-hole task, where a peg is connected to the
robot arm with a soft string, and the goal is to put it into a hole.

A more advanced technique, called Automatic Domain Randomization (ADR), is
introduced in [6]. This technique is used to solve a very challenging robotic task:
a human-like robotic hand is trained to solve a Rubik’s cube. This task requires a
policy that can control the robot very accurately. They used Kochiemba’s algorithm
to find an optimal solution for the given state of the cube and trained a neural
network to control the robot to perform the required rotations on the cube.

The motivations for ADR are the following. Training in the environment without
domain randomization results in a policy that works well in that environment, but
may overfit to the specific parameters of the simulator, and thus will not work in
the real world. Randomizing simulator parameters helps to solve this problem, but
it hardens the training phase, and a large part of the training may be performed on
randomized parameter settings that don’t help to transfer to the real world. Also,
selecting proper randomization settings, for example, the parameters and random-
ization ranges, is a difficult task. To solve these problems, ADR uses the following
idea. Initially, the training is started with a single, non-randomized environment.
Then, as the agent progresses, the amount of randomization is gradually increased
when the agent reaches a good enough performance in the previous environments.
For example, among other parameters, the size of the cube is gradually increased
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Figure 2.6: Training a model on lots of procedurally gener-
ated objects makes it able to generalize to real-
world objects as well (source: [38]).

during training (see Figure 2.5). This way, the neural network has to learn to solve
the task under increasingly difficult conditions. This method makes it possible to
successfully solve the Rubik’s cube with the real-world robotic hand with no training
on real-world data and no need for having an accurate model of the real world.

The robustness of ADR is tested by applying different perturbations to the robotic
hand and showing that it is still capable of solving the cube under the more difficult
conditions. For example, they tied two fingers of the robot, or put a glove on it, or
pushed the cube with a plush giraffe while the robot tried to solve it. These per-
turbations resulted in scenarios that the neural network wouldn’t be able to handle
without proper domain randomization techniques. Their tests confirmed that the
robot was still able to solve the cube with these additional complicating circum-
stances. They also showed that ADR performs better than "traditional" domain
randomization with fixed randomization ranges.

[38] applies the idea of domain randomization to object synthesis to perform robotic
grasping. This paper focuses on the problem of generating a sufficient amount of
data to train a neural network. Robotic grasping requires accurate high-quality 3D
meshes of real-world objects, which are quite difficult to create. Instead, they use a
simulator to create millions of unrealistic procedurally generated objects. Generat-
ing these objects is much easier than collecting accurate data of real-world objects,
and with a sufficiently diverse dataset, they can train a neural network on the gen-
erated dataset that can generalize to real objects.
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2.3.3 System identification

The third approach to creating successful policy transfer from the simulation to the
real world is called system identification. The idea of this is to build an accurate
mathematical model of the physical system [39]. This model has to be built based on
observing the input and output signals of the system. The parameters of the system
can be completely unknown or known up to a few parameters (physical constants).

To make the model more realistic, a very sophisticated calibration of the simulator
is necessary. If we can make a precise calibration, then we can expect that the
models trained in the simulator will also work in the real world. However, the
disadvantage of this approach is that creating accurate calibration is expensive, and
some parameters of the real-world system can change over time (due to wear-and-
tear) or in different physical conditions (temperature, humidity, etc.).

[40] shows an example of creating an accurate dynamics model for a helicopter
simulator. This is a challenging task, as the exact movement and dynamics of
a helicopter are really complex, and are affected by a lot of factors (e.g. wind,
vibration, etc.). To create a solution for this system identification challenge, they
train a neural network to predict the parameters for dynamics modeling.

2.4 Preliminaries

Previous results of my research are presented in [41], where a different method was
used for training the agent and transferring it to the real-world vehicle. The current
thesis uses some ideas already presented in the aforementioned paper but focuses
on a novel and more established method. The most important improvements are
that the current method does not need any fine-tuning when using on the real-world
vehicle, it performs smoother navigation and its performance is much more robust
to varying environmental conditions. Furthermore, the current report also focuses
on implementation and utilizing different learning algorithms for training agents.
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Chapter 3

Proposed method

This section describes the details of the proposed method. Two versions of the
method are presented, which differ in the learning algorithm used to train the agent.
Figure 3.1 shows an overview of the method. In each iteration, the environment pro-
vides the observation St in the form of raw multidimensional sensory data to the
agent. These observations go through essential transformation steps to form an ob-
servation sequence S ′t. N discrete actions are used for control, which are samples of
the vehicle’s action space RC . The agent receives the observation sequence, calcu-
lates a probability distribution pf (·) over the possible actions, and selects At as the
action with the highest probability. During inference, the actions are post-processed
(A′t) to stabilize the action space. The environment calculates the next state of the
agent and provides a reward function Rt that quantifies the action’s goodness. The
agent uses this value to learn an optimal policy.

Each part of the proposed method is described in the following sections.

3.1 Environment and simulation-to-real transfer

For training the agent, an autonomous driving simulator is used. In the train-
ing phase, several parameters of the simulated environment are randomized. This
technique enables the agents to learn to navigate in an ensemble of simulation en-
vironments, which results in better generalization performance.

Formally, during training, a set of M simulator parameters {λi|i = 1, . . . ,M} are
identified whose values can be changed. These parameters include both physical
and observation-specific parameters.

22



Figure 3.1: Overview of the proposed method. In each iter-
ation, the environment provides the state to the
agent in the form of raw multidimensional sen-
sory data. During the training phase, parame-
ters of the simulator are randomized for a bet-
ter simulation-to-real transfer. The observations
go through four transformation steps, and thus
an observation sequence is formed, which is pro-
cessed further by the agent. The agent uses a
neural network to map the state to an action com-
mand. In the inference phase, the commands are
post-processed for better performance.

Physical parameters include the size of the vehicle along different dimensions, the
position, pitch and field of view angle of the sensor, and the speed of the vehicle.
For each physical parameter λi, a randomization range [Pi, Qi] is determined. Pi

and Qi define the lower and upper bound of the interval of the allowed values of
the parameter λi. The values of Pi and Qi are specified such that their defined
interval is around the approximately measured value of the parameter in the real
environment. At the start of each episode, for each i the value of λi is sampled from
a uniform distribution determined by its randomization range, i.e. λi ∼ U(Pi, Qi).
The values of the parameters are sampled independently from their values in the
previous episodes and independently from each other.
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Observation-specific parameters are specific to the type of the vehicle’s sensor. For
example, when the vehicles are equipped with cameras, these parameters can include
the colors of the objects and global lighting conditions.

3.2 Observation transformation

The environment (which can refer both to the simulator and the sensor of the
real-world vehicle) provides the state of the agent St in the form of a raw D-
dimensional tensor St ∈ Rd0,0×d0,1×···×d0,D . Four essential steps are used to trans-
form these observations. The advantage of using these steps is to make it easier
for the agent to learn a good policy. The same transformation steps are used
both during training and inference. Each step can be formalized as a mapping
Fi : Rdi,0×di,1×···×di,D → Rdi+1,0×di+1,1×···×di+1,D that performs a transformation on the
tensor. These transformation steps are:

1. Reshape: First, the observations are reshaped to a smaller size using interpo-
lation. Formally, this step can be defined as a function F0 : Rd0,0×d0,1×···×d0,D →
Rd1,0×d1,1×···×d1,D . The same compression rate δ < 1 is used in each compres-
sion axis, i.e. d1,i = δd0,i in case the observation is compressed along axis i
and d1,i = d0,i otherwise. The main advantage of this step is that the neu-
ral network can process smaller observation tensors faster, thus, both training
and inference times are decreased (note that the latter is critical to realize
real-time vehicle control).

2. Slice: Those parts of the observation that do not contain useful information
for completing the given task are removed. This step can be formulated as
F1 : Rd1,0×d1,1×···×d1,D → Rd2,0×d2,1×···×d2,D where ∀i : d2,i ≤ d1,i. Similarly to
the previous one, this step also reduces the size of the observation, thus making
training and inference faster.

3. Normalize: The values of the observation are rescaled from their original
range to [0, 1]. Formally, we have F2 : Rd2,0×d2,1×···×d2,D → Rd3,0×d3,1×···×d3,D

where ∀i : d2,i = d3,i and F2(x) = x/max x. This step makes the training
more stable, as the weights and the data are in similar scale.

4. Observation sequence: Instead of using only the latest observation [St]
for describing the state of the agent, a sequence of k observations form the
actual state S ′t. That is, we have F3 : Rd3,0×d3,1×···×d3,D → Rd′

0×d
′
1×···×d

′
D , with
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d′i = k · d3,i if the observations are stacked along axis i and d′i = d3,i otherwise.
This step performs a stacking of the last k observations along a specified axis.
After stacking, the resulting observation sequence can describe the state of the
agent more accurately than just one single observation instance.

The agent’s policy network receives the resulting transformed observation sequence
S ′t as input.

3.3 Training the agent

The goal of the agents is to learn a parameterized function Gθ : Rd′
0×d

′
1×···×d

′
D → RN

which maps a transformed observation sequence S ′t to a probability distribution pf (·)
over the possible actions a ∈ A. The value of pf (a) should represent how likely, or
how useful, it is to choose the action a in the current state.

In this work, I used two reinforcement learning algorithms to train two agents. The
first agent is trained with the Deep Q-Networks algorithm, and the second one is
trained with Proximal Policy Optimization.

The agents use neural networks which are trained with the transformed observation
sequences S ′t as input. For fast inference a simple neural network is utilized; it is
critical to process the images in as little time as possible to successfully control the
vehicle, especially in the real-world environment. The last layer of the network has
N outputs, corresponding to the number of possible discrete actions.

3.3.1 Reward function

I use a continuous reward function Rt that provides valuable feedback to the agent
in each time step. The purpose of such a reward function is to give continuous
feedback to the agent, thus helping it to learn more effectively. The reward function
considers the general properties of the agent that can be extracted from the simu-
lation environment (e.g. position of the agent). Thus, based on the inner state of
the environment, at each iteration, several metrics {ρi|i = 1, . . . , %} are calculated.
Such a metric can be, for example, the distance and the angle from the center of
the lane or the speed of the vehicle. The reward value is computed as a function of
these metrics Rt = fr(ρ1, . . . , ρ%).
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3.4 Action space post-processing

In each time step, the agent outputs a probability distribution pf (a) over the N
possible discrete actions a ∈ A. Each action a is mapped to a control command
Ca ∈ RC .

During training, the goal of the agent is to learn a policy to choose the optimal
action sequence in an episode. At training time, at each step the agent uses the
action a∗ = arg maxa pf (a)

However, during inference, the discrete actions may result in a suboptimal and
fragmented action sequence. To make it more efficient, instead of selecting the
action predicted with the highest probability, a combination of all actions A′t ∈ RC

is used. To calculate this, the probability distribution predicted by the agent for the
actions is used. The final action is computed as its inner product with the control
commands representing the discrete actions:

A′t =
∑
a

pf (a)Ca. (3.1)
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Chapter 4

Environment

In this section, I present some of the autonomous driving simulators that can be used
for autonomous driving research, and introduce the details of the simulated and the
real-world Duckietown environment which I used to implement the proposed method
and evaluate the performance of the agents.

4.1 Autonomous driving environments

Using a self-driving simulator for training agents instead of real vehicles is a promis-
ing approach. It is much safer: for example, simulating accidents will not result in
any expenses but makes the agent able to learn to avoid such situations. It is also
cheaper and faster to collect data in a simulator, and the time and financial costs
of labeling data can also be saved.

There are several autonomous driving environments that can be used to train models.
Some of them are more complex, while some of them are simpler. Selecting a good
environment that fits the needs of my current work is an important step. As the
focus of this thesis is training agents with deep reinforcement learning and examining
domain randomization techniques for sim-to-real transfer, I need a simulator that
supports training agents with reinforcement learning (i.e. it is possible to compute
a reward function that represents the precision of the vehicle’s movement), and the
trained models can be tested in the real world, i.e. a vehicle and an environment
similar to the one in the simulator is accessible. Also, training neural networks is
already a task that requires high computing power; choosing a simulator that is less
complex and power-demanding makes it possible to run several experiments within
a reasonable time and compare their results.
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Figure 4.1: CARLA is a complex autonomous driving sim-
ulator which provides detailed, realistic environ-
ments (source: [42]).

One of the more complex autonomous driving simulators is CARLA [42]. It is an
open-source simulator that provides a highly detailed and realistic environment. The
simulator has a lot of features to model the real world as accurately as possible: for
example, it supports day and night mode, different weather conditions (sunshine,
wind, rain, snow, etc.). The environment is highly customizable: using its API, it
is possible to specify custom city maps and cars, control the traffic, the behavior of
the pedestrians, etc. CARLA can simulate many kinds of sensors for the cars: for
example, cameras, LIDARs, etc. can be used. In addition, for the camera images,
ground-truth depth estimation or semantic segmentation labels are available, which
can be useful for autonomous navigation. Images from the CARLA simulator are
shown in Figure 4.1.

The LGSVL Simulator [43] is another complex simulator for autonomous driving.
It is also open-source and makes it possible to simulate an autonomous vehicle in
a realistic 3D environment. The simulator supports multiple sensors, e.g. cameras,
LiDAR, RADAR, GPS, etc. Similarly to the CARLA environment, its parameters
are also customizable: for example, different weather conditions, maps, traffic and
pedestrian behaviors can be configured. The simulation can be controlled through
a Python API.

NVIDIA DRIVE Simulator1 is another simulator that provides a detailed environ-
ment for real-world autonomous vehicles. It allows for creating detailed real-world

1https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/ (Access
date: 20 May 2021)
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Figure 4.2: Image of the LGSVL simulator (source: https:
//github.com/lgsvl/simulator).

maps and customizing the vehicles with different sensors. Custom traffic scenarios
can be created with other vehicles, and different times (day/night) and weather con-
ditions (sunlight, rain, fog, etc.) can be specified. The trained models can be tested
in the real world using NVIDIA Constellation.

While these simulators are really great to simulate a complex urban environment,
due to being very detailed, they require a lot of computing capacity. In addition,
suppose a model is successfully trained in the simulator; testing it in the real world
would require a car equipped with the same sensors as in the simulator. It is quite
expensive, and also dangerous as an incorrect model could lead to crashes or other
incidents. Thus I decided to take a look at simpler autonomous driving simulators,
which can be used without a large amount of computing capacity.

In addition to highly realistic autonomous driving simulators, racing car simula-
tors can also be considered useful for training reinforcement learning models for
autonomous driving. TORCS (The Open Racing Car Simulator) [23] is an open-
source racing car simulator that provides a racing environment with different kinds
of cars and maps. In contrast to the previous simulators, where the goal is to drive
a car precisely and according to the traffic rules on the roads, in TORCS, the goal
is to drive a complete lap on the racetrack as fast as possible.

In addition to manual driving, TORCS supports controlling cars with custom algo-
rithms. Thus, this environment was also used for autonomous racing competitions
[44]. Models can be trained using sensory data (numeric metrics that describe the
position of the car) or visionary input. The first method makes it easier to train
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Figure 4.3: TORCS is an open-source racing car simulator
that supports controlling the vehicles with cus-
tom algorithms.

reinforcement learning models, as the state has fewer dimensions, and parameters
describing the state of the car in an easily utilizable way are directly available.
However, the visionary input can be reproduced in the real-world environment by
placing a camera on the car.

The TORCS simulator is simpler than the complex ones presented previously in
this chapter, thus it can better be used to train models with reinforcement learning.
However, testing its agents in the real world is still hard to realize; it could be
done best with a racetrack and a racing car, which are hard to access and are very
expensive.

The one environment that best suits my needs is the Duckietown environment, which
is presented in more detail in the next section.

4.2 Duckietown

Duckietown2 [9] is an educational and research platform where low cost vehicles
(Duckiebots) travel in small cities (Duckietowns). The platform is made of inexpen-
sive, off-the-shelf elements, which makes it easily accessible and ideal for education
and research. The environment is highly flexible: using standardized elements, dif-
ferent kinds of cities can be built. The platform offers a wide range of functionalities

2https://www.duckietown.org/ (Access date: 20 May 2021)
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and challenges: it can be used for research related to robotics, embedded artificial
intelligence, machine learning, autonomous driving, and even for cooperation be-
tween self-driving agents. All materials and codes of the platform are available
open-source.

One of the biggest advantages of the Duckietown platform is that it provides an
environment for self-driving vehicles that has similar scientific challenges as a more
complex autonomous driving environment, but for a much lower price. This makes
it widely available, and thus it is used in many well-known universities around the
world (e.g. ETH Zürich, University of Montreal, etc.).

The AI Driving Olympics3 [45] are a series of competitions on the Duckietown plat-
form organized at the recent NeurIPS and ICRA conferences. So far, five rounds
of competitions have been held; the sixth one is currently under planning. The
goal of these competitions is to make it possible to compare the best-performing
autonomous driving algorithms in the Duckietown environment. The competition
includes many kinds of challenges in various difficulties: for example, lane following
(i.e. stay in the right lane and drive as far as possible in a limited amount of time),
lane following with vehicles (follow the right lane and avoid crashes with other vehi-
cles), and lane following with vehicles and intersections (successfully drive through
intersections in addition to the previous ones). In the competition, the submitted
algorithms are previously tested in the simulator, and the best ones are evaluated
on the real vehicles, which is the basis of the final results of the competition. As the
agents are tested under well-defined metrics, the results of the competition can be
used to test the effectiveness of my method and compare it to the state-of-the-art
approaches on this platform.

4.2.1 Duckietowns

Duckietowns are the towns where the Duckiebots have to operate. These consist of
roads, lane markings, intersections, traffic lights, signage, houses, etc. Figure 4.4
shows two example setups for the towns. The inhabitants of the town are the rubber
ducks (duckies) that are transported by the Duckiebots; hence the naming.

Duckietowns are built of standardized road elements. These elements are straight
roads, turns, 3-way, and 4-way intersections. Using these elements, different kinds

3https://www.duckietown.org/research/ai-driving-olympics (Access date: 20 May
2021)
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(a) (b)

Figure 4.4: Example setups of the Duckietown environment:
(a) shows a simpler map with a single road, while
(b) shows a more complex setup with intersec-
tions in the AI Showroom of BME TMIT.

of maps can be built. Simpler maps contain only a single loop (see Figure 4.4a),
while more complex setups can also contain intersections as well (see Figure 4.4b).

According to the selected setup, Duckietowns can provide different kinds of chal-
lenges for the Duckiebots. The most essential challenge is lane following on a simple
map with no intersections, where the vehicle has to navigate in the right lane along
the road. However, more complex challenges are also available: for example, when
the map includes intersections, handling them can mean additional difficulties. Be-
sides, when more vehicles are navigating on the map at the same time, avoiding
collisions is also an important task that can be solved. More complex tasks (path
planning, cooperation between vehicles) can be available as well.

4.2.2 Duckiebots

Duckiebots are vehicles that can be driven around the Duckietowns. The Duckiebot
can be seen in Figure 4.5. These are small three-wheeled vehicles with a differential
drive. The Duckiebots are built of inexpensive, standard parts. The "brain" of
the vehicle is a Raspberry Pi 3 minicomputer, which can be used to control the
vehicle. It is powered by two DC motors that drive the two wheels of the vehicle;
the Duckiebot can be maneuvered by specifying wheel speed commands (two values
between -1 and 1 for the two wheels). The only sensor of the vehicle is a forward-
facing, wide-angle camera with a fish-eye lens, whose image has to be processed to
navigate the vehicle.
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Figure 4.5: Duckiebots are small three-wheeled vehicles with
a forward-facing camera. The vehicle has to be
controlled by processing the camera images and
giving wheel speed commands.

4.2.3 Duckietown simulator

The Duckietown platform includes a software library4 which includes the necessary
tools to interact with the infrastructure and the vehicles. This includes components
for communicating with the vehicle and controlling it manually or automatically
with custom algorithms; a simulated environment that can be used to train agents;
baseline algorithms which usually have a really bad performance, but can be used
as a good starting point to get to know the environment and try it out; and also
templates for submitting models for the AI Driving Olympics.

The Duckietown simulator [46] is the part of the software library that I used for
training the agents. The simulator creates a virtual view of the Duckietown envi-
ronment: the virtual vehicle can be controlled with the same wheel speed commands
as the real one, and the environment generates similar images to the ones that the
vehicle would see in the real world. An example of an image from the simulator can
be seen in Figure 4.6.

The simulator is highly customizable. For example, one can create custom maps and
use them in the simulator. Also, it can be used to train models to control the vehicle
more effectively than training on the real vehicle. The simulator supports creating
a reward function that describes how accurately the vehicle follows the right lane.

The Duckietown environment, with all of its components, including the simulator
and the easily accessible real-world parts, provides an ideal environment for me to
test the proposed method and analyze the performance of the agents. A real-world

4https://github.com/duckietown/ Access date: 14 April 2021
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Figure 4.6: Camera image of the vehicle in the Duckietown
simulator.

Duckietown environment is assembled in the BME TMIT AI Showroom, which can
be used for testing agents on real vehicles. The Duckietown environment is simpler
than most complex autonomous driving environments, which makes it possible to
try and experiment with different methods and getting results in a reasonable time;
but it still provides scientific challenges which are, in terms of difficulty, comparable
to the ones of more complex environments. Thus I decided to use this environment
in my work to implement the proposed method and train the agents.
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Chapter 5

Implementation

In this section, I describe the details of the proposed method’s actual realization.
The method was used to train two agents with two deep reinforcement learning
algorithms to successfully perform lane following based on visionary input in the
Duckietown environment.

The camera of the vehicles provides images in a 640 × 480 resolution with a 30fps
frame rate. The vehicle has to be controlled by specifying wheel speed commands
At ∈ [0, 1]2 for the two motorized wheels.

5.1 Simulation

For training, the Duckietown simulator is used. During training, several physical
and observation-specific parameters of the simulator are randomized. The complete
list of the randomized physical parameters and their randomization ranges are listed
in A.1.

Since camera images are used as input to the vehicle, the randomized visual param-
eters are the parameters that change the visual appearance of the camera images.
Namely, these are the color of the horizon and the position of the global lighting.
The effects of randomizing the visual parameters are visualized in Figure 5.1.

The training was carried out on the track shown in Figure 5.2. This is a complex
map that contains a diverse set of driving situations (e.g. long straight roads and
quickly alternating turns) with the intention of preparing the agent to be able to
drive on all kinds of maps during evaluation.
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Figure 5.1: Visual parameters of the simulator, such as colors
and textures, are randomized during training.

5.2 Observation transformation

The images are reshaped to a smaller resolution (80× 60) and the upper one-third
part of the remaining image is cropped, as this part is typically above the horizon,
and thus does not provide useful information for lane following. The image’s pixel’s
values are normalized to the [0, 1] range, and the last k = 5 images are used to form
an image sequence as an observation. This observation sequence is used as an input
for the agent.

5.3 Training the agents

Two agents were trained using the proposed method with different learning algo-
rithms to predict one of the possible actions. The action space consists of five
discrete values. These actions are mapped to wheel speed commands according to
Table 5.1. That is, in each time step, the agents predict a probability distribution
pf (a) over the possible five actions, which describes how likely, or how useful, would
it be to choose each action in the current state of the vehicle.

In both cases, the agents use a convolutional neural network with the same archi-
tecture to process the input observation sequence. It had to be designed carefully

36



Figure 5.2: For training, a more complex map was used, with
the intention of enabling the agent to learn to
drive in various scenarios, e.g. long straight roads
or quickly alternating turns.

such that the images can be processed in real-time in order to successfully control
the vehicle. For fast inference times, a simple neural network is utilized with three
convolutional layers, each followed by nonlinearity (ReLU [10]) and pooling (2 × 2
MaxPool) operations. The convolutional layers are followed by two fully connected
layers with 128 and 5 outputs. The policy network’s architecture is shown in Figure
5.3.

5.3.1 Deep Q-Networks

The first agent was trained using the Deep Q-Networks algorithm with the double Q-
learning and the dueling extensions. I used the open-source implementation available
in the stable baselines collection [47].

Among different hyperparameter combinations, I found these ones to be the most
suitable for the training. I trained the network for 1 500 000 time steps with a batch
size of 32, using a discount factor γ = 0.99, and the Adam optimizer [48] with 5·10−5

as the learning rate. In the DQN algorithm, the size of the replay buffer was set to
150 000, and at the beginning of the training, the agent collected 10 000 time steps
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Table 5.1: The discrete actions predicted by the agent are mapped to wheel speeds.
(Maximum speed is 1.0.)

Action Left wheel speed Right wheel speed
a La Ra

0 Sharp left 0.04 0.4
1 Sharp right 0.4 0.04
2 Straight 0.3 0.3
3 Shallow left 0.3 0.4
4 Shallow right 0.4 0.3

Figure 5.3: The architecture of the policy network.

experience of random actions before starting to learn. The complete training took
approximately 46 hours on an NVIDIA DGX Workstation equipped with 4 V100
GPUs, an Intel Xeon E5-2698 v4 2.2 GHz (20-Core) CPU, and 256GB RAM.

5.3.2 Proximal Policy Optimization

The second agent was trained with the Proximal Policy Optimization algorithm.
The network was trained for 3 000 000 time steps with a learning rate 5 · 10−5. The
discount factor λ = 0.99 was the same as in the case of the other agent. The
training of the agent took approximately 36 hours on the same computer used for
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the previous agent. Although the PPO agent was trained for more time steps than
the DQN agent, these values were chosen such that the two agents are trained for a
similar length of time.

5.3.3 Reward function

The purpose of the reward function is to describe how accurately the vehicle follows
the lane. When it goes well in the right lane, the agent receives high rewards; when
it starts to drift away from the optimal curve, it earns slightly smaller rewards;
when it goes to the oncoming lane, it receives small negative rewards (penalties),
and when it leaves the track, it receives high penalties (and the simulated episode
also ends at this point).

The reward computed in each step uses the inner state of the environment to provide
continuous feedback about the performance of the agent. The reward function is
defined according to the following formula. When the vehicle is on the road, the
reward is calculated as:

Rt = αv · v · cos β + αd · d+ αp · pc, (5.1)

where v is the speed of the vehicle in the simulator, β is the angle between the
heading of the vehicle and the tangent of the optimal curve at the closest point, d is
the distance from the center of the right lane, and pc is a penalty for collisions. The
coefficients αv, αd, and αp are used to scale the factors of the reward. The factor
αv · v · cos β encourages the agent to drive faster and follow the optimal curve. The
factor αd · d, with a negative coefficient αd, encourages driving close to the center of
the right lane. And finally, αp ·pc can be used to avoid collisions or driving too close
to other objects. When the vehicle drives too close to an object, pc has a negative
value, otherwise, it is zero. When there are no obstacles in the track, this factor has
no effect. I used the values αv = 1, αd = −10, and αp = 40.

When the vehicle is in an invalid position (e.g. it leaves the track), it is penalized
with −px = −4, which is approximately the equal amount of penalty as the reward
of driving four time steps correctly in the middle of the right lane. The simulated
episode is terminated when the vehicle leaves the track.
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5.4 Action post-processing

During inference, the actions are post-processed to make the movement of the vehicle
smoother and less oscillating. Each discrete action a is mapped to wheel speed
commands [La, Ra] according to Table 5.1. The final speed command is calculated
according to the following formula:

A′t = [
∑
a

pf (a) · La,
∑
a

pf (a) ·Ra] (5.2)

.

5.5 Reference agent

To investigate the implications and show the necessity of training the agents with
randomized simulator parameters, another agent was trained similarly to the DQN
agent, with the only difference being that the simulator parameters were fixed to
their default values during training. This agent is called the reference agent. I used
this agent to examine the difficulties and benefits of the parameter randomization
by comparing its performance to the other two agents in the simulated and the
real-world environment.
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Chapter 6

Evaluation and results

In this chapter, I introduce the results of training, the testing method and present the
results of testing the trained agents in the simulated and the real-world environment.
A video summarizing the results and showing the agents in action is available at
https://youtu.be/pkb77bc5468.

6.1 Collected rewards

The rewards received by the agents during training per episode are shown in Figure
6.1. These values correspond to the total reward collected over each episode of
training. During training, the episodes were limited to the length of 10000 time
steps.

The reward curves of the DQN agent and the reference agent start with a similar
steepness, but the reference agent can reach higher rewards. This is not surprising,
as the latter learns only in a single environment with fixed parameters, whereas
the former has to learn to drive in an ensemble of environments with randomized
parameters. The PPO agent reached lower rewards than the DQN agent, despite
being trained for more time steps.

6.2 Evaluation method

My goal was to create a method for reliable and stable lane following. Thus I devel-
oped the following evaluation method and used it to analyze the agents’ behavior.
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Figure 6.1: Reward earned by the agents per episodes in the
training.

The performance of the trained agents was evaluated both in the simulated and the
real-world environment. Several different maps were used for testing. 30 test cases
were run on each map. In each test case, the vehicle was placed in a randomly
selected position on the track, and the test case was considered successful if the
agent was able to drive at least one complete lap in the right lane. After completing
this, it has successfully driven through all parts of the track, and it can be assumed
that it could do it in the following laps as well. The performance of the agent is
quantified as the ratio of the successful test cases.

I used four maps for tests in the simulator. One has the same trail as the real-world
map (Map #4). In each test case, the starting position and the starting angle of
the vehicle were randomly selected on the drivable track. Those invalid starting
positions, where the vehicle was placed such that the angle between its heading and
the tangent of the optimal curve was larger than 20 degrees, and when it was placed
on the side of the track facing outwards, were discarded. Each test case was run for
a fixed number of time steps, which was enough to drive at least one complete lap;
this limit was set to 2500, 2500, 3000, and 1200 on Map #1, Map #2, Map #3, and
Map #4, respectively (30 time steps correspond to one second of driving).

The real-world tests were carried out in the setup shown in Figure 4.4a. In each
test case, the vehicle was placed in a randomly selected position, heading roughly
towards the correct direction (a few degrees of difference was allowed). The test
cases included going around the track in both directions (i.e. clockwise and counter-
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clockwise). Each test case was run for 30 seconds, which is enough to drive one
complete lap in either direction.

Passing these test cases can provide a difficult challenge to the agents. To be able
to do so, they have to make the correct decisions (choosing the right actions) in a
long term for several consecutive time steps. While making a mistake in one of the
time steps does not instantaneously result in a failure, correcting it can be difficult
in the upcoming steps. In addition, making multiple wrong decisions in a short time
period will lead to the failure of the test case.

To further analyze the behavior of the agent, I visualized the path of the vehicle in
the simulated environment. These visualizations were created by using the precise
position of the vehicle stored in the inner state of the environment.

6.3 Testing results

The results of the test cases for both the simulated and the real-world environment
are summarized in Table 6.1. The table compares the results of the three agents:
the DQN agent, the PPO agent, and the reference agent.

The DQN agent has very good performance in both environments, with a little
lower score in the real world. However, testing in the real world poses new challenges
compared to the simulated environment. It is essential to process the camera images
and assign control commands with as little latency as possible, to successfully control
the vehicle. In addition, as the images are processed on a computer instead of the
vehicle’s minicomputer, uneven network delays can also make vehicle control more
difficult. I used a single computer with an Intel R© CoreTM i7-4500U CPU @ 1.80GHz,
12 GB of RAM, and no dedicated GPU to evaluate the performance of the agent. I
measured that the method can be run with around 10 ms latency, which is sufficient
for real-time vehicle control, as the camera images are arriving with a 30fps rate.

The PPO agent had slightly worse performance in both environments compared to
the DQN agent. The mistakes of this agent were caused either by being started from
a difficult initial location (e.g. not from the middle of the right lane, from where
the agent would have to drive the vehicle back to the correct lane first), or failing
at certain points of the track (e.g. making a mistake in a turn).

The performance of the reference agent in the simulated environment was very good,
similarly to the DQN agent - with minor mistakes caused by failing to take one turn
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in Map #1. However, this agent was unable to drive a full round on the real-world
track - this is due to being trained in a single environment and possibly overfitting
to certain parameters to the simulator, thus being unable to generalize to the real-
world environment. This shows the importance and necessity of the parameter
randomization approach during the training of the agent.

Table 6.1: Rates of successful drives on four simulated and one real-world maps.

DQN Agent

Environment Test cases
Total Successful Success rate

Simulator Map #1 30 28 93.3%
Simulator Map #2 30 29 96.7%
Simulator Map #3 30 30 100%
Simulator Map #4 30 29 96.7%
Real world 30 22 73.3%

PPO Agent

Environment Test cases
Total Successful Success rate

Simulator Map #1 30 25 83.3%
Simulator Map #2 30 18 60%
Simulator Map #3 30 20 66.7%
Simulator Map #4 30 24 80%
Real world 30 16 53.3%

Reference Agent

Environment Test cases
Total Successful Success rate

Simulator Map #1 30 24 80%
Simulator Map #2 30 29 96.7%
Simulator Map #3 30 27 90%
Simulator Map #4 30 29 96.7%
Real world 30 0 0%

The visualizations of the paths driven by the DQN agent for the four maps used in
the simulator are shown in Figure 6.2. The figures show several successful and one
unsuccessful test case. The initial position is marked with a red circle. In some cases
(e.g. (e), (i)) the vehicle was started from the oncoming lane, but it was still able to
navigate back to the right lane and continue driving there. In the unsuccessful test
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case (c), the vehicle was started from a position from where it is difficult to navigate
back to the right lane.

The paths of the PPO agent in the tests are visualized in Figure 6.3. The figures
show several successful and two unsuccessful attempts. In most cases, the agent
was able to successfully follow the right lane. In the unsuccessful test scenarios, the
vehicle was started from a difficult position or from the oncoming lane, from where
the agent was not able to recover and navigate back to the right lane.

6.3.1 Effects of action post-processing

I examined the effects of the proposed action post-processing method in the case of
the DQN agent to show that it results in smoother vehicle control. The following
experiment was carried out in the simulator. I used a map with only a long straight
road and placed the vehicle at the beginning of the road. Then, the agent was
instructed to perform lane following for 2000 time steps with and without post-
processing the actions. I measured the mean absolute difference between the speeds
of the wheels during the runs. The average of these metrics over 15 experiments
were calculated. This metric measures how oscillating the vehicle’s movement is. If
the agent has to make more corrections (small turns) to be close to the center of the
lane, it results in a higher average difference between the speeds of the wheels.

Without action post-processing, the mean absolute difference between the wheels’
speeds was 0.169; with action post-processing, it was reduced to 0.026. This ex-
periment confirms that the vehicle’s movement became much smoother by post-
processing the actions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.2: DQN Agent navigation patterns in the simulator.
Figures (a)-(c), (d)-(f), (g)-(i) and (j)-(l) show the
paths of the vehicle in Simulator Map #1, Map
#2, Map #3, and Map #4, respectively. The
starting locations of the vehicle are marked with
a red circle, and its paths are drawn with a blue
line. While most pictures show examples of suc-
cessful test cases, figure (c) shows an example of
a failed test case.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.3: PPO Agent navigation patterns in the simulator.
Figures (a)-(c), (d)-(f), (g)-(i) and (j)-(l) show the
paths of the vehicle in Simulator Map #1, Map
#2, Map #3, and Map #4, respectively. The
starting locations of the vehicle are marked with
a red circle, and its paths are drawn with a blue
line. While most pictures show examples of suc-
cessful test cases, figures (c) and (f) show exam-
ples of failed test cases.
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Chapter 7

Summary

In this thesis, I addressed the challenge of autonomous lane following using deep
reinforcement learning. I developed a complete pipeline for training agents in a
simulated autonomous driving environment. I proposed a method for successfully
transferring the agents to the real-world environment without fine-tuning on real-
world data. I implemented the presented method in the Duckietown environment
and trained two agents using different learning algorithms: Deep Q-Networks and
Proximal Policy Optimization. I introduced an evaluation method and used it to
test and compare the performance of the agents. The trained agents were able to
successfully perform the lane following task both in the simulated and the real-world
environment in most cases.

Seeing the successful results of this method in the Duckietown environment arises
the question of whether it could be used in other autonomous driving environments
as well.

The method was designed to be generally applicable to similar environments. It does
not contain any parts that are specific to the Duckietown environment. That is, it
does not involve, for example, hand-engineering features specific to one environment
(e.g. performing lane segmentation based on the appearance of the Duckietown
environment and training a model on the segmented images).

Although the method was only tested in the Duckietown environment, I believe
that it can be used to perform lane following in similar autonomous driving envi-
ronments as well. In the case of environments being more similar to the Duckietown
environment (e.g. the DeepRacer platform), the method should be applicable with
only minor modifications. Such modifications can include the physical properties of
the environment (e.g. the setup and the properties, including the physical parame-

48



ters and the sensor type, of the controlled vehicle, and the hyperparameters of the
training algorithms).

In the case of more complex environments (e.g. the CARLA autonomous driving
simulator), the core of the method should still be applicable, but broader modifi-
cations might be necessary. For example, in more complex environments, the sur-
roundings of the vehicle might be more compound, meaning that a neural network
with a simple architecture proposed in this thesis might not be able to accurately
estimate the location of the vehicle. Thus using a more complex network might
be favored, which also requires more computing resources both for training and in-
ference. Driving vehicles with a steering wheel instead of a differential drive also
requires changing the agent’s action space. That is, modifying the action space that
fits such vehicles is required.

Regarding future work, this paper already presents a complete pipeline for training
agents for autonomous lane following. A journal paper describing the method, sup-
plementing it with further analysis, and proving its robustness with extreme test
scenarios, is currently under preparation. The source code for training the agents
will be made open-source along with the publication of the paper.

In the following, I present some ideas for extending the method for different use
cases and more complex application scenarios.

The current method focuses on realizing a method for stable and reliable lane fol-
lowing. This can be extended with a focus on driving at higher speeds. Such a
method could be successfully used in the AI Driving Olympics, where the qualifica-
tion criterion is defined as fast and accurate lane following in the simulator, and the
final rankings are determined based on how precisely and fast the agents can drive
the real-world vehicle.

The current method, which successfully realizes lane following, can be the basis
of more complex applications in autonomous systems, such as collision avoidance
and path planning. In the former case, obstacle detection methods can be used to
monitor the surroundings of the vehicle and detect possible collisions, e.g. with other
vehicles, pedestrians, or other objects. In the latter, the agent can be expected to
drive to a specific location in the shortest possible time on a more complex setup
(i.e. using a track with several intersections and possibly also with other vehicles).

Future work can also involve investigating the possibilities of training the agent to
be able to recover from failures (e.g. leaving the road or colliding with other objects).
One possible solution for this is making it able to drive backward and find its way
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back to the track. This way, the agent could detect when it gets into an invalid
location (from where normally it is impossible to continue driving on the road) and
correct its mistake.
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Appendix

A.1 Randomization values

DR values and their randomization ranges are described in Table A.1.

Table A.1: Randomized simulator parameters and randomization ranges.

Parameter (λi) Lowest (Pi) Highest (Qi)
Speed multiplier 0.5 2.0
Camera pitch angle 15,96◦ 22.98◦
Camera FOV angle 62.5◦ 90◦
Camera distance from floor 0.090 m 0.130 m
Camera distance from center of rotation 0.055 m 0.079 m
Distance of wheels 0.093 m 0.102 m
Robot width 0.136 m 0.150 m
Robot length 0.164 m 0.180 m
Robot height 0.109 m 0.120 m
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